Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Small, J. V., Geiger, B., Kaverina, I., & Bershadsky, A. (2002). How do microtubules guide migrating cells? Nature Reviews Molecular Cell Biology, 3(12), 957–964.

Authors 4
  1. J. Victor Small (first)
  2. Benjamin Geiger (additional)
  3. Irina Kaverina (additional)
  4. Alexander Bershadsky (additional)
References 79 Referenced 181
  1. Vasiliev, J. M. et al. Effect of colcemid on the locomotory behaviour of fibroblasts. J. Embryol. Exp. Morphol. 24, 625–640 (1970). / J. Embryol. Exp. Morphol. by JM Vasiliev (1970)
  2. Small, J. V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002). (10.1016/S0962-8924(01)02237-1) / Trends Cell Biol. by JV Small (2002)
  3. Chen, W. -T. Mechanism of retraction of the trailing edge during fibroblast movement. J. Cell Biol. 90, 187–200 (1981). (10.1083/jcb.90.1.187) / J. Cell Biol. by W-T Chen (1981)
  4. Jay, P. Y., Pham, P. A., Wong, S. A. & Elson, E. L. A mechanical function of myosin II in cell motility. J. Cell Sci. 108, 387–393 (1995). (10.1242/jcs.108.1.387) / J. Cell Sci. by PY Jay (1995)
  5. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane extracellular matrix–cytoskeleton crosstalk. Nature Rev. Mol. Cell Biol. 2, 793–805 (2001). (10.1038/35099066) / Nature Rev. Mol. Cell Biol. by B Geiger (2001)
  6. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995). (10.1016/0092-8674(95)90370-4) / Cell by CD Nobes (1995)
  7. Rottner, K., Hall, A. & Small, J. V. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9, 640–648 (1999). (10.1016/S0960-9822(99)80286-3) / Curr. Biol. by K Rottner (1999)
  8. Smilenov, L. B., Mikhailov, A., Pelham, R. J., Marcantonio, E. E. & Gundersen, G. G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172–1174 (1999). (10.1126/science.286.5442.1172) / Science by LB Smilenov (1999)
  9. Zamir, E. et al. Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts. Nature Cell Biol. 2, 191–196 (2000). (10.1038/35008607) / Nature Cell Biol. by E Zamir (2000)
  10. Ballestrem, C., Hinz, B., Imhof, B. A. & Wehrle-Haller, B. Marching at the front and dragging behind: differential αVβ3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155, 1319–1332 (2001). (10.1083/jcb.200107107) / J. Cell Biol. by C Ballestrem (2001)
  11. Kaverina, I. et al. Enforced polarisation and locomotion of fibroblasts lacking microtubules. Curr. Biol. 10, 739–742 (2000). (10.1016/S0960-9822(00)00544-3) / Curr. Biol. by I Kaverina (2000)
  12. Anderson, K. I. & Cross, R. Contact dynamics during keratocyte motility. Curr. Biol. 10, 253–260 (2000). (10.1016/S0960-9822(00)00357-2) / Curr. Biol. by KI Anderson (2000)
  13. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996). (10.1083/jcb.133.6.1403) / J. Cell Biol. by M Chrzanowska-Wodnicka (1996)
  14. Geiger, B. & Bershadsky, A. Assembly and mechanosensory function of focal contacts. Curr. Opin. Cell Biol. 13, 584–592 (2001). (10.1016/S0955-0674(00)00255-6) / Curr. Opin. Cell Biol. by B Geiger (2001)
  15. Ridley, A. J. & Hall, A. The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992). (10.1016/0092-8674(92)90163-7) / Cell by AJ Ridley (1992)
  16. Helfman, D. M. et al. Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol. Biol. Cell 10, 3097–3112 (1999). (10.1091/mbc.10.10.3097) / Mol. Biol. Cell by DM Helfman (1999)
  17. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002). (10.1038/ncb0402-e97) / Nature Cell Biol. by DJ Webb (2002)
  18. Riveline, D. et al. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153, 1175–1186 (2001). (10.1083/jcb.153.6.1175) / J. Cell Biol. by D Riveline (2001)
  19. Kaverina, I. et. al. Tensile stress stimulates microtubule outgrowth in living cells. J. Cell Sci. 115, 2283–2291 (2002). (10.1242/jcs.115.11.2283) / J. Cell Sci. by I Kaverina (2002)
  20. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nature Cell Biol. 1, 136–143 (1999). (10.1038/11056) / Nature Cell Biol. by N Watanabe (1999)
  21. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V. & Wang, Y. L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001). (10.1083/jcb.153.4.881) / J. Cell Biol. by KA Beningo (2001)
  22. Balaban, N. Q. et al. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biol. 3, 466–472 (2001). (10.1038/35074532) / Nature Cell Biol. by NQ Balaban (2001)
  23. Beningo, K. A. & Wang, Y. L. Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12, 79–84 (2002). (10.1016/S0962-8924(01)02205-X) / Trends Cell Biol. by KA Beningo (2002)
  24. Oliver, T., Dembo, M. & Jacobson, K. Separation of propulsive and adhesive traction stresses in locomoting keratocytes. J. Cell Biol. 145, 589–604 (1999). (10.1083/jcb.145.3.589) / J. Cell Biol. by T Oliver (1999)
  25. Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A. & Geiger, B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279–1289 (1996). (10.1016/S0960-9822(02)70714-8) / Curr. Biol. by A Bershadsky (1996)
  26. Enomoto, T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct. Funct. 21, 317–326 (1996). (10.1247/csf.21.317) / Cell Struct. Funct. by T Enomoto (1996)
  27. Liu, B. P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998). (10.3109/15419069809040295) / Cell Adhes. Commun. by BP Liu (1998)
  28. Pletjushkina, O. J. et al. Maturation of cell–substratum focal adhesions induced by depolymerization of microtubules is mediated by increased cortical tension. Cell Adhes. Commun. 5, 121–135 (1998). (10.3109/15419069809040286) / Cell Adhes. Commun. by OJ Pletjushkina (1998)
  29. Krylyshkina, O. et al. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol. 156, 349–360 (2002). (10.1083/jcb.200105051) / J. Cell Biol. by O Krylyshkina (2002)
  30. Danowski, B. A. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J. Cell Sci. 93, 255–266 (1989). (10.1242/jcs.93.2.255) / J. Cell Sci. by BA Danowski (1989)
  31. Kaverina, I., Krylyshkina, O. & Small, J. V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044 (1999). (10.1083/jcb.146.5.1033) / J. Cell Biol. by I Kaverina (1999)
  32. Kaverina, I., Rottner, K. & Small, J. V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–190 (1998). (10.1083/jcb.142.1.181) / J. Cell Biol. by I Kaverina (1998)
  33. Ishizaki, T. et al. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1. Nature Cell Biol. 3, 8–14 (2001). (10.1038/35050598) / Nature Cell Biol. by T Ishizaki (2001)
  34. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001). (10.1038/35087035) / Nature Cell Biol. by AF Palazzo (2001)
  35. Suter, D. M., Errante, L. D., Belotserkovsky, V. & Forscher, P. The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate–cytoskeletal coupling. J. Cell Biol. 141, 227–240 (1998). (10.1083/jcb.141.1.227) / J. Cell Biol. by DM Suter (1998)
  36. Schaefer, A. W., Kabir, N. & Forscher, P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J. Cell Biol. 158, 139–152 (2002). (10.1083/jcb.200203038) / J. Cell Biol. by AW Schaefer (2002)
  37. Salmon, W. C., Adams, M. C. & Waterman-Storer, C. M. Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells. J. Cell Biol. 158, 31–37 (2002). (10.1083/jcb.200203022) / J. Cell Biol. by WC Salmon (2002)
  38. Dunn, G. A. in Cell Adhesion and Motility (eds Curtis, A. S. G. & Pitts, J. D.) 409–423 (Cambridge Univ. Press, Cambridge, UK, 1980). / Cell Adhesion and Motility by GA Dunn (1980)
  39. Dunn, G. A. & Zicha, D. Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995). (10.1242/jcs.108.3.1239) / J. Cell Sci. by GA Dunn (1995)
  40. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999). (10.1016/S0960-9822(99)80042-6) / Curr. Biol. by AB Verkhovsky (1999)
  41. Ballestrem, C., Wehrle-Haller, B., Hinz, B. & Imhof, B. A. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol. Biol. Cell 11, 2999–3012 (2000). (10.1091/mbc.11.9.2999) / Mol. Biol. Cell by C Ballestrem (2000)
  42. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986). (10.1016/0092-8674(86)90318-1) / Cell by M Kirschner (1986)
  43. Kaverina, I., Krylyshkina, O. & Small, J. V. Regulation of substrate adhesion dynamics during cell motility. Int. J. Biochem. Cell Biol. 34, 746–761 (2002). (10.1016/S1357-2725(01)00171-6) / Int. J. Biochem. Cell Biol. by I Kaverina (2002)
  44. Wittmann, T. & Waterman-Storer, C. M. Cell motility: can Rho GTPases and microtubules point the way? J. Cell Sci. 114, 3795–3803 (2001). (10.1242/jcs.114.21.3795) / J. Cell Sci. by T Wittmann (2001)
  45. Krendel, M., Zenke, F. T. & Bokoch, G. M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nature Cell Biol. 4, 294–301 (2002). (10.1038/ncb773) / Nature Cell Biol. by M Krendel (2002)
  46. Euteneuer, U. & Schliwa, M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310, 58–61 (1984). (10.1038/310058a0) / Nature by U Euteneuer (1984)
  47. Keller, H. U., Naef, A. & Zimmermann, A. Effects of colchicine, vinblastine and nocodazole on polarity, motility, chemotaxis and cAMP levels of human polymorphonuclear leukocytes. Exp. Cell Res. 153, 173–185 (1984). (10.1016/0014-4827(84)90459-2) / Exp. Cell Res. by HU Keller (1984)
  48. Glasgow, J. E. & Daniele, R. P. Role of microtubules in random cell migration: stabilization of cell polarity. Cell Motil. Cytoskeleton 27, 88–96 (1994). (10.1002/cm.970270110) / Cell Motil. Cytoskeleton by JE Glasgow (1994)
  49. Sroka, J., von Gunten, M., Dunn, G. A. & Keller, H. U. Phenotype modulation in non-adherent and adherent sublines of Walker carcinosarcoma cells: the role of cell–substratum contacts and microtubules in controlling cell shape, locomotion and cytoskeletal structure. Int. J. Biochem. Cell Biol. 34, 882–899 (2002). (10.1016/S1357-2725(01)00178-9) / Int. J. Biochem. Cell Biol. by J Sroka (2002)
  50. Goode, B. L., Drubin, D. G. & Barnes, G. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12, 63–71 (2000). (10.1016/S0955-0674(99)00058-7) / Curr. Opin. Cell Biol. by BL Goode (2000)
  51. Schroer, T. A. Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr. Opin. Cell Biol. 13, 92–96 (2001). (10.1016/S0955-0674(00)00179-4) / Curr. Opin. Cell Biol. by TA Schroer (2001)
  52. Kolodney, M. S. & Wysolmerski, R. B. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J. Cell Biol. 117, 73–82 (1992). (10.1083/jcb.117.1.73) / J. Cell Biol. by MS Kolodney (1992)
  53. Brown, R. A., Talas, G., Porter, R. A., McGrouther, D. A. & Eastwood, M. Balanced mechanical forces and microtubule contribution to fibroblast contraction. J. Cell Physiol. 169, 439–447 (1996). (10.1002/(SICI)1097-4652(199612)169:3<439::AID-JCP4>3.0.CO;2-P) / J. Cell Physiol. by RA Brown (1996)
  54. Lyass, L. A., Bershadsky, A. D., Vasiliev, J. M. & Gelfand, I. M. Microtubule-dependent effect of phorbol ester on the contractility of cytoskeleton of cultured fibroblasts. Proc. Natl Acad. Sci. USA 85, 9538–9541 (1988). (10.1073/pnas.85.24.9538) / Proc. Natl Acad. Sci. USA by LA Lyass (1988)
  55. Solomon, F. & Magendantz, M. Cytochalasin separates microtubule disassembly from loss of asymmetric morphology. J. Cell Biol. 89, 157–161 (1981). (10.1083/jcb.89.1.157) / J. Cell Biol. by F Solomon (1981)
  56. Canman, J. C. & Bement, W. M. Microtubules suppress actomyosin-based cortical flow in Xenopus oocytes. J. Cell Sci. 110, 1907–1917 (1997). (10.1242/jcs.110.16.1907) / J. Cell Sci. by JC Canman (1997)
  57. Kolodney, M. S. & Elson, E. L. Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc. Natl Acad. Sci. USA 92, 10252–10256 (1995). (10.1073/pnas.92.22.10252) / Proc. Natl Acad. Sci. USA by MS Kolodney (1995)
  58. Bornens, M., Paintrand, M. & Celati, C. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity. J. Cell Biol. 109, 1071–1083 (1989). (10.1083/jcb.109.3.1071) / J. Cell Biol. by M Bornens (1989)
  59. Pletjushkina, O. J. et al. Induction of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Motil. Cytoskeleton 48, 235–244 (2001). (10.1002/cm.1012) / Cell Motil. Cytoskeleton by OJ Pletjushkina (2001)
  60. Lampidis, T. J., Kolonias, D., Savaraj, N. & Rubin, R. W. Cardiostimulatory and antiarrhythmic activity of tubulin-binding agents. Proc. Natl Acad. Sci. USA 89, 1256–1260 (1992). (10.1073/pnas.89.4.1256) / Proc. Natl Acad. Sci. USA by TJ Lampidis (1992)
  61. Paul, R. J., Bowman, P. S. & Kolodney, M. S. Effects of microtubule disruption on force, velocity, stiffness and [Ca2+](i) in porcine coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 279, H2493–H2501 (2000). (10.1152/ajpheart.2000.279.5.H2493) / Am. J. Physiol. Heart Circ. Physiol. by RJ Paul (2000)
  62. Zhang, D., Jin, N., Rhoades, R. A., Yancey, K. W. & Swartz, D. R. Influence of microtubules on vascular smooth muscle contraction. J. Muscle Res. Cell Motil. 21, 293–300 (2000). (10.1023/A:1005600118157) / J. Muscle Res. Cell Motil. by D Zhang (2000)
  63. Koide, M. et al. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy. Circulation 102, 1045–1052 (2000). (10.1161/01.CIR.102.9.1045) / Circulation by M Koide (2000)
  64. Wang, N. et al. Mechanical behavior in living cells consistent with the tensegrity model. Proc. Natl Acad. Sci. USA 98, 7765–7770 (2001). (10.1073/pnas.141199598) / Proc. Natl Acad. Sci. USA by N Wang (2001)
  65. Ingber, D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104, 613–627 (1993). (10.1242/jcs.104.3.613) / J. Cell Sci. by DE Ingber (1993)
  66. Elbaum, M., Kuchnir Fygenson, D. & Libchaber, A. Buckling microtubules in vesicles. Phys. Rev. Lett. 76, 4078–4081 (1996). (10.1103/PhysRevLett.76.4078) / Phys. Rev. Lett. by M Elbaum (1996)
  67. Felgner, H., Frank, R. & Schliwa, M. Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109, 509–516 (1996). (10.1242/jcs.109.2.509) / J. Cell Sci. by H Felgner (1996)
  68. Elbaum, M., Chausovsky, A., Levy, E. T., Shtutman, M. & Bershadsky, A. D. Microtubule involvement in regulating cell contractility and adhesion-dependent signalling: a possible mechanism for polarization of cell motility. Biochem. Soc. Symp. 65, 147–172 (1999). / Biochem. Soc. Symp. by M Elbaum (1999)
  69. Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem. 273, 34954–34960 (1998). (10.1074/jbc.273.52.34954) / J. Biol. Chem. by Y Ren (1998)
  70. van Horck, F. P., Ahmadian, M. R., Haeusler, L. C., Moolenaar, W. H. & Kranenburg, O. Characterization of p190RhoGEF, a RhoA-specific guanine nucleotide exchange factor that interacts with microtubules. J. Biol. Chem. 276, 4948–4956 (2001). (10.1074/jbc.M003839200) / J. Biol. Chem. by FP van Horck (2001)
  71. Ren, X. D., Kiosses, W. B. & Schwartz, M. A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578–585 (1999). (10.1093/emboj/18.3.578) / EMBO J. by XD Ren (1999)
  72. Fukata, Y., Amano, M. & Kaibuchi, K. Rho–Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22, 32–39 (2001). (10.1016/S0165-6147(00)01596-0) / Trends Pharmacol. Sci. by Y Fukata (2001)
  73. Bershadsky, A. D., Vaisberg, E. A. & Vasiliev, J. M. Pseudopodial activity at the active edge of migrating fibroblast is decreased after drug-induced microtubule depolymerization. Cell Motil. Cytoskeleton 19, 152–158 (1991). (10.1002/cm.970190303) / Cell Motil. Cytoskeleton by AD Bershadsky (1991)
  74. Dunn, G. A., Zicha, D. & Fraylich, P. E. Rapid, microtubule-dependent fluctuations of the cell margin. J. Cell Sci. 110, 3091–3098 (1997). (10.1242/jcs.110.24.3091) / J. Cell Sci. by GA Dunn (1997)
  75. Waterman-Storer, C. M., Worthylake, R. A., Liu, B. P., Burridge, K. & Salmon, E. D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45–50 (1999). (10.1038/9018) / Nature Cell Biol. by CM Waterman-Storer (1999)
  76. Bretscher, M. S. & Aguado-Velasco, C. Membrane traffic during cell locomotion. Curr. Opin. Cell Biol. 10, 537–541 (1998). (10.1016/S0955-0674(98)80070-7) / Curr. Opin. Cell Biol. by MS Bretscher (1998)
  77. Toomre, D., Keller, P., White, J., Olivo, J. C. & Simons, K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112, 21–33 (1999). (10.1242/jcs.112.1.21) / J. Cell Sci. by D Toomre (1999)
  78. Bershadsky, A. D. & Futerman, A. H. Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration. Proc. Natl Acad. Sci. USA 91, 5686–5689 (1994). (10.1073/pnas.91.12.5686) / Proc. Natl Acad. Sci. USA by AD Bershadsky (1994)
  79. Rodionov, V. I. et al. Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain. J. Cell Biol. 123, 1811–1820 (1993). (10.1083/jcb.123.6.1811) / J. Cell Biol. by VI Rodionov (1993)
Dates
Type When
Created 22 years, 9 months ago (Dec. 3, 2002, 4:35 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:11 a.m.)
Indexed 4 months, 2 weeks ago (April 22, 2025, 3:29 a.m.)
Issued 22 years, 9 months ago (Dec. 1, 2002)
Published 22 years, 9 months ago (Dec. 1, 2002)
Published Print 22 years, 9 months ago (Dec. 1, 2002)
Funders 0

None

@article{Small_2002, title={How do microtubules guide migrating cells?}, volume={3}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm971}, DOI={10.1038/nrm971}, number={12}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Small, J. Victor and Geiger, Benjamin and Kaverina, Irina and Bershadsky, Alexander}, year={2002}, month=dec, pages={957–964} }