Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
References
111
Referenced
536
-
Matlack, K. E. S., Mothes, W. & Rapoport, T. A. Protein translocation — tunnel vision. Cell 92, 381–390 (1998).
(
10.1016/S0092-8674(00)80930-7
) / Cell by KES Matlack (1998) -
Mori, K. Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454 (2000).
(
10.1016/S0092-8674(00)80855-7
) / Cell by K Mori (2000) -
Travers, K. J. et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249–258 (2000).
(
10.1016/S0092-8674(00)80835-1
) / Cell by KJ Travers (2000) -
Casagrande, R. et al. Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol. Cell 5, 729–735 (2000).
(
10.1016/S1097-2765(00)80251-8
) / Mol. Cell by R Casagrande (2000) -
Friedlander, R., Jarosch, E., Urban, J., Volkwein, C. & Sommer, T. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biol. 2, 379–384 (2000).
(
10.1038/35017001
) / Nature Cell Biol. by R Friedlander (2000) -
Hong, E., Davidson, A. R. & Kaiser, C. A. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J. Cell Biol. 135, 623–633 (1996).
(
10.1083/jcb.135.3.623
) / J. Cell Biol. by E Hong (1996) -
Chang, A. & Fink, G. R. Targeting of the yeast plasma membrane [H+]ATPase: a novel gene AST1 prevents mislocalization of mutant ATPase to the vacuole. J. Cell Biol. 128, 39–49 (1995).
(
10.1083/jcb.128.1.39
) / J. Cell Biol. by A Chang (1995) -
Klausner, R. D. & Sitia, R. Protein degradation in the endoplasmic reticulum. Cell 62, 611–614 (1990).
(
10.1016/0092-8674(90)90104-M
) / Cell by RD Klausner (1990) -
Kopito, R. R. ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997).
(
10.1016/S0092-8674(00)81881-4
) / Cell by RR Kopito (1997) -
McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).This report and reference 74 describe in vitro systems for the degradation of ER-associated proteins. Reference 10 first showed a cytosolic requirement for the degradation of a soluble ER protein.
(
10.1083/jcb.132.3.291
) / J. Cell Biol. by AA McCracken (1996) -
Brodsky, J. L. & McCracken, A. A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10, 507–513 (1999).This review gives a list of ER-associated degradation substrates in yeast. Components that are required and not required for their degradation are listed. The table indicates that different degradation pathways exist.
(
10.1006/scdb.1999.0321
) / Semin. Cell Dev. Biol. by JL Brodsky (1999) -
Russell, W. An address on a characteristic organism of cancer. BMJ 2, 1356–1360 (1890).
(
10.1136/bmj.2.1563.1356
) / BMJ by W Russell (1890) -
Kopito, R. R. & Sitia, R. Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep. 1, 225–231 (2000).
(
10.1093/embo-reports/kvd052
) / EMBO Rep. by RR Kopito (2000) -
Rivera, V. M. et al. Regulation of protein secretion through controlled aggregation in the endoplasmic reticulum. Science 287, 826–830 (2000).
(
10.1126/science.287.5454.826
) / Science by VM Rivera (2000) -
Braakman, I., Helenius, J. & Helenius, A. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356, 260–262 (1992).
(
10.1038/356260a0
) / Nature by I Braakman (1992) -
Vashist, S. et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J. Cell Biol. 155, 355–368 (2001).This paper and reference 17 show that soluble, misfolded ER proteins must first be transported from the ER to the Golgi before they can be degraded.
(
10.1083/jcb.200106123
) / J. Cell Biol. by S Vashist (2001) -
Caldwell, S. R., Hill, K. J. & Cooper, A. A. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J. Biol. Chem. 276, 23296–23303 (2001).
(
10.1074/jbc.M102962200
) / J. Biol. Chem. by SR Caldwell (2001) -
Kamhi-Nesher, S. et al. A novel quality control compartment derived from the endoplasmic reticulum. Mol. Biol. Cell 12, 1711–1723 (2001).
(
10.1091/mbc.12.6.1711
) / Mol. Biol. Cell by S Kamhi-Nesher (2001) -
Wiertz, E. J. H. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).
(
10.1016/S0092-8674(00)81054-5
) / Cell by EJHJ Wiertz (1996) -
Wiertz, E. J. H. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).This paper provides the first evidence that the Sec61 channel might be involved in retro-translocation of ER proteins. It also shows that viruses can co-opt the cellular pathway.
(
10.1038/384432a0
) / Nature by EJHJ Wiertz (1996) -
Schubert, U. et al. CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. J. Virol. 72, 2280–2288 (1998).
(
10.1128/JVI.72.3.2280-2288.1998
) / J. Virol. by U Schubert (1998) -
Boname, J. M. & Stevenson, P. G. MHC class I ubiquitination by a viral phd/lap finger protein. Immunity 15, 627–636 (2001).
(
10.1016/S1074-7613(01)00213-8
) / Immunity by JM Boname (2001) -
Sandvig, K. & van Deurs, B. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J. 19, 5943–5950 (2000).
(
10.1093/emboj/19.22.5943
) / EMBO J. by K Sandvig (2000) -
Lord, J. M. & Roberts, L. M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 140, 733–736 (1998).
(
10.1083/jcb.140.4.733
) / J. Cell Biol. by JM Lord (1998) -
Lencer, W. I., Hirst, T. R. & Holmes, R. K. Membrane traffic and the cellular uptake of cholera toxin. Biochim. Biophys. Acta 1450, 177–190 (1999).
(
10.1016/S0167-4889(99)00070-1
) / Biochim. Biophys. Acta by WI Lencer (1999) -
Schmitz, A., Herrgen, H., Winkeler, A. & Herzog, V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol. 148, 1203–1212 (2000).
(
10.1083/jcb.148.6.1203
) / J. Cell Biol. by A Schmitz (2000) -
Ellgaard, L. & Helenius, A. ER quality control: towards an understanding at the molecular level. Curr. Opin. Cell Biol. 13, 431–437 (2001).This review summarizes the current knowledge of quality control in the ER, with emphasis on the ER retention and degradation of glycoproteins.
(
10.1016/S0955-0674(00)00233-7
) / Curr. Opin. Cell Biol. by L Ellgaard (2001) -
Knop, M., Hauser, N. & Wolf, D. H. N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12, 1229–1238 (1996).
(
10.1002/(SICI)1097-0061(19960930)12:12<1229::AID-YEA15>3.0.CO;2-H
) / Yeast by M Knop (1996) -
Jakob, C. A., Burda, P., Roth, J. & Aebi, M. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell Biol. 142, 1223–1233 (1998).This paper and reference 30 indicate that the generation of a Man8-containing carbohydrate chain targets a misfolded glycoprotein to the degradation machinery.
(
10.1083/jcb.142.5.1223
) / J. Cell Biol. by CA Jakob (1998) -
Liu, Y., Choudhury, P., Cabral, C. M. & Sifers, R. N. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J. Biol. Chem. 274, 5861–5867 (1999).
(
10.1074/jbc.274.9.5861
) / J. Biol. Chem. by Y Liu (1999) -
Hosokawa, N. et al. A novel ER α-mannosidase-like protein accelerates ER-associated degradation. EMBO Rep. 2, 415–422 (2001).
(
10.1093/embo-reports/kve084
) / EMBO Rep. by N Hosokawa (2001) -
Nakatsukasa, K., Nishikawa, S., Hosokawa, N., Nagata, K. & Endo, T. Mnl1p, an α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem. 276, 8635–8638 (2001).
(
10.1074/jbc.C100023200
) / J. Biol. Chem. by K Nakatsukasa (2001) -
Jakob, C. A. et al. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep. 2, 423–430 (2001).
(
10.1093/embo-reports/kve089
) / EMBO Rep. by CA Jakob (2001) -
Tokunaga, F., Brostrom, C., Koide, T. & Arvan, P. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J. Biol. Chem. 275, 40757–40764 (2000).
(
10.1074/jbc.M001073200
) / J. Biol. Chem. by F Tokunaga (2000) -
Wilson, C. M., Farmery, M. R. & Bulleid, N. J. Pivotal role of calnexin and mannose trimming in regulating the endoplasmic reticulum-associated degradation of major histocompatibility complex class I heavy chain. J. Biol. Chem. 275, 21224–21232 (2000).
(
10.1074/jbc.M000567200
) / J. Biol. Chem. by CM Wilson (2000) -
Gillece, P., Luz, J. M., Lennarz, W. J., de La Cruz, F. J. & Romisch, K. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J. Cell. Biol. 147, 1443–1456 (1999).This paper, and references 40 and 41 , raise the possibility that PDI and related proteins could serve to unfold proteins in the ER lumen and to target substrates to the retro-translocation machinery.
(
10.1083/jcb.147.7.1443
) / J. Cell. Biol. by P Gillece (1999) -
Fagioli, C., Mezghrani, A. & Sitia, R. Reduction of interchain disulfide bonds precedes the dislocation of Ig-μ chains from the endoplasmic reticulum to the cytosol for proteasomal degradation. J. Biol. Chem. 276, 40962–40967 (2001).
(
10.1074/jbc.M107456200
) / J. Biol. Chem. by C Fagioli (2001) -
Orlandi, P. A. Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem. 272, 4591–4599 (1997).
(
10.1016/S0021-9258(19)67333-3
) / J. Biol. Chem. by PA Orlandi (1997) -
Tortorella, D. et al. Dislocation of type I membrane proteins from the ER to the cytosol is sensitive to changes in redox potential. J. Cell Biol. 142, 365–376 (1998).
(
10.1083/jcb.142.2.365
) / J. Cell Biol. by D Tortorella (1998) -
Wang, Q. & Chang, A. Eps1, a novel PDI-related protein involved in ER quality control in yeast. EMBO J. 18, 5972–5982 (1999).
(
10.1093/emboj/18.21.5972
) / EMBO J. by Q Wang (1999) -
Tsai, B., Rodighiero, C., Lencer, W. I. & Rapoport, T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104, 937–948 (2001).
(
10.1016/S0092-8674(01)00289-6
) / Cell by B Tsai (2001) -
Knittler, M. R., Dirks, S. & Haas, I. G. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 92, 1764–1768 (1995).
(
10.1073/pnas.92.5.1764
) / Proc. Natl Acad. Sci. USA by MR Knittler (1995) -
Plemper, R. K., Bohmler, S., Bordallo, J., Sommer, T. & Wolf, D. H. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388, 891–895 (1997).
(
10.1038/42276
) / Nature by RK Plemper (1997) -
Brodsky, J. L. et al. The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J. Biol. Chem. 274, 3453–3460 (1999).
(
10.1074/jbc.274.6.3453
) / J. Biol. Chem. by JL Brodsky (1999) -
Matlack, K. E., Misselwitz, B., Plath, K. & Rapoport, T. A. BiP acts as a molecular ratchet during posttranslational transport of prepro-α-factor across the ER membrane. Cell 97, 553–564 (1999).
(
10.1016/S0092-8674(00)80767-9
) / Cell by KE Matlack (1999) -
Chillaron, J. & Haas, I. G. Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. Mol. Biol. Cell 11, 217–226 (2000).
(
10.1091/mbc.11.1.217
) / Mol. Biol. Cell by J Chillaron (2000) -
Misselwitz, B., Staeck, O. & Rapoport, T. A. J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 2, 593–603 (1998).
(
10.1016/S1097-2765(00)80158-6
) / Mol. Cell by B Misselwitz (1998) -
Gillece, P., Pilon, M. & Romisch, K. The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane. Proc. Natl Acad. Sci. USA 97, 4609–4614 (2000).
(
10.1073/pnas.090083497
) / Proc. Natl Acad. Sci. USA by P Gillece (2000) -
Pilon, M., Schekman, R. & Romisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J. 16, 4540–4548 (1997).
(
10.1093/emboj/16.15.4540
) / EMBO J. by M Pilon (1997) -
Nishikawa, S. I., Fewell, S. W., Kato, Y., Brodsky, J. L. & Endo, T. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol. 153, 1061–1070 (2001).
(
10.1083/jcb.153.5.1061
) / J. Cell Biol. by SI Nishikawa (2001) -
Chen, Y., Le Caherec, F. & Chuck, S. L. Calnexin and other factors that alter translocation affect the rapid binding of ubiquitin to apoB in the Sec61 complex. J. Biol. Chem. 273, 11887–11894 (1998).
(
10.1074/jbc.273.19.11887
) / J. Biol. Chem. by Y Chen (1998) -
Gewurz, B. E. et al. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA 98, 6794–6799 (2001).
(
10.1073/pnas.121172898
) / Proc. Natl Acad. Sci. USA by BE Gewurz (2001) -
Bebok, Z., Mazzochi, C., King, S. A., Hong, J. S. & Sorscher, E. J. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J. Biol. Chem. 273, 29873–29878 (1998).
(
10.1074/jbc.273.45.29873
) / J. Biol. Chem. by Z Bebok (1998) -
de Virgilio, M., Weninger, H. & Ivessa, N. E. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J. Biol. Chem. 273, 9734–9743 (1998).
(
10.1074/jbc.273.16.9734
) / J. Biol. Chem. by M de Virgilio (1998) -
Petaja-Repo, U. E. et al. Newly synthesized human δ-opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the cytosol, deglycosylated, ubiquitinated, and degraded by the proteasome. J. Biol. Chem. 276, 4416–4423 (2001).
(
10.1074/jbc.M007151200
) / J. Biol. Chem. by UE Petaja-Repo (2001) -
Wesche, J., Rapak, A. & Olsnes, S. Dependence of ricin toxicity on translocation of the toxin A-chain from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 274, 34443–34449 (1999).
(
10.1074/jbc.274.48.34443
) / J. Biol. Chem. by J Wesche (1999) -
Simpson, J. C. et al. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS Lett. 459, 80–84 (1999).
(
10.1016/S0014-5793(99)01222-3
) / FEBS Lett. by JC Simpson (1999) -
Zhou, M. & Schekman, R. The engagement of Sec61p in the ER dislocation process. Mol. Cell 4, 925–934 (1999).
(
10.1016/S1097-2765(00)80222-1
) / Mol. Cell by M Zhou (1999) -
Walter, J., Urban, J., Volkwein, C. & Sommer, T. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J. 20, 3124–3131 (2001).
(
10.1093/emboj/20.12.3124
) / EMBO J. by J Walter (2001) -
Kihara, A., Akiyama, Y. & Ito, K. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18, 2970–2981 (1999).This paper and reference 61 show that misfolded proteins are extracted from bacterial and mitochondrial membranes by AAA proteases.
(
10.1093/emboj/18.11.2970
) / EMBO J. by A Kihara (1999) -
Leonhard, K. et al. Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 5, 629–638 (2000).
(
10.1016/S1097-2765(00)80242-7
) / Mol. Cell by K Leonhard (2000) -
Hamman, B. D., Chen, J. C., Johnson, E. E. & Johnson, A. E. The aqueous pore through the translocon has a diameter of 40–60 Å during cotranslational protein translocation at the ER membrane. Cell 89, 535–544 (1997).
(
10.1016/S0092-8674(00)80235-4
) / Cell by BD Hamman (1997) -
Menetret, J. et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol. Cell 6, 1219–1232 (2000).
(
10.1016/S1097-2765(00)00118-0
) / Mol. Cell by J Menetret (2000) -
Beckmann, R. et al. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107, 361–372 (2001).
(
10.1016/S0092-8674(01)00541-4
) / Cell by R Beckmann (2001) -
Mitchell, D. M. et al. Apoprotein B100 has a prolonged interaction with the translocon during which its lipidation and translocation change from dependence on the microsomal triglyceride transfer protein to independence. Proc. Natl Acad. Sci. USA 95, 14733–14738 (1998).
(
10.1073/pnas.95.25.14733
) / Proc. Natl Acad. Sci. USA by DM Mitchell (1998) -
Plemper, R. K., Deak, P. M., Otto, R. T. & Wolf, D. H. Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett. 443, 241–245 (1999).
(
10.1016/S0014-5793(98)01724-4
) / FEBS Lett. by RK Plemper (1999) -
Heinrich, S. U., Mothes, W., Brunner, J. & Rapoport, T. A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102, 233–244 (2000).
(
10.1016/S0092-8674(00)00028-3
) / Cell by SU Heinrich (2000) -
Hiller, M. M., Finger, A., Schweiger, M. & Wolf, D. H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin–proteasome pathway. Science 273, 1725–1728 (1996).
(
10.1126/science.273.5282.1725
) / Science by MM Hiller (1996) -
Biederer, T., Volkwein, C. & Sommer, T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin–proteasome pathway. EMBO J. 15, 2069–2076 (1996).
(
10.1002/j.1460-2075.1996.tb00560.x
) / EMBO J. by T Biederer (1996) -
Ward, C. L., Omura, S. & Kopito, R. R. Degradation of CFTR by the ubiquitin–proteasome pathway. Cell 83, 121–127 (1995).
(
10.1016/0092-8674(95)90240-6
) / Cell by CL Ward (1995) -
Yu, H. & Kopito, R. R. The role of multiubiquitination in dislocation and degradation of the α-subunit of the T cell antigen receptor. J. Biol. Chem. 274, 36852–36858 (1999).
(
10.1074/jbc.274.52.36852
) / J. Biol. Chem. by H Yu (1999) -
Kikkert, M. et al. Ubiquitination is essential for human cytomegalovirus US11-mediated dislocation of MHC class I molecules from the endoplasmic reticulum to the cytosol. Biochem. J. 358, 369–377 (2001).
(
10.1042/bj3580369
) / Biochem. J. by M Kikkert (2001) -
Shamu, C. E., Flierman, D., Ploegh, H. L., Rapoport, T. A. & Chau, V. Polyubiquitination is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol. Biol. Cell 12, 2546–2555 (2001).
(
10.1091/mbc.12.8.2546
) / Mol. Biol. Cell by CE Shamu (2001) -
Shamu, C. E., Story, C. M., Rapoport, T. A. & Ploegh, H. L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol. 147, 45–58 (1999).
(
10.1083/jcb.147.1.45
) / J. Cell Biol. by CE Shamu (1999) -
Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).This paper, and references 91, 97– 99 , show that the AAA ATPase Cdc48/p97 and its partners Ufd1 and Npl4 are involved in ER-protein degradation. The complex seems to extract proteins from the ER membrane.
(
10.1038/414652a
) / Nature by Y Ye (2001) -
Biederer, T., Volkwein, C. & Sommer, T. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278, 1806–1809 (1997).
(
10.1126/science.278.5344.1806
) / Science by T Biederer (1997) -
Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365, 176–179 (1993).This paper gives the first evidence for the involvement of ubiquitylation in ER-protein degradation. The absence of a ubiquitin-conjugating enzyme (Ubc6) suppresses a sec61 mutant, which indicates that a misfolded membrane protein is stabilized.
(
10.1038/365176a0
) / Nature by T Sommer (1993) -
Hampton, R. Y. & Bhakta, H. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Proc. Natl Acad. Sci. USA 94, 12944–12948 (1997).
(
10.1073/pnas.94.24.12944
) / Proc. Natl Acad. Sci. USA by RY Hampton (1997) -
Plemper, R. K., Egner, R., Kuchler, K. & Wolf, D. H. Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J. Biol. Chem. 273, 32848–32856 (1998).
(
10.1074/jbc.273.49.32848
) / J. Biol. Chem. by RK Plemper (1998) -
Hill, K. & Cooper, A. A. Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J. 19, 550–561 (2000).
(
10.1093/emboj/19.4.550
) / EMBO J. by K Hill (2000) -
Hampton, R. Y., Gardner, R. G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7, 2029–2044 (1996).This paper and reference 82 describe genetic screens in yeast to identify components that are involved in ER protein degradation.
(
10.1091/mbc.7.12.2029
) / Mol. Biol. Cell by RY Hampton (1996) -
Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D. H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).
(
10.1002/j.1460-2075.1996.tb00411.x
) / EMBO J. by M Knop (1996) -
Bordallo, J., Plemper, R. K., Finger, A. & Wolf, D. H. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9, 209–222 (1998).
(
10.1091/mbc.9.1.209
) / Mol. Biol. Cell by J Bordallo (1998) -
Bays, N. W., Gardner, R. G., Seelig, L. P., Joazeiro, C. A. & Hampton, R. Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nature Cell Biol. 3, 24–29 (2001).This article shows that Hrd1/Der3 functions as a ubiquitin-ligase in ER-protein degradation.
(
10.1038/35050524
) / Nature Cell Biol. by NW Bays (2001) -
Deak, P. M. & Wolf, D. H. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276, 10663–10669 (2001).
(
10.1074/jbc.M008608200
) / J. Biol. Chem. by PM Deak (2001) -
Plemper, R. K. et al. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci. 112, 4123–4134 (1999).
(
10.1242/jcs.112.22.4123
) / J. Cell Sci. by RK Plemper (1999) -
Gardner, R. G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151, 69–82 (2000).
(
10.1083/jcb.151.1.69
) / J. Cell Biol. by RG Gardner (2000) -
Fang, S. et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 98, 14422–14427 (2001).
(
10.1073/pnas.251401598
) / Proc. Natl Acad. Sci. USA by S Fang (2001) -
Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev. 15, 2660–2674 (2001).
(
10.1101/gad.933301
) / Genes Dev. by R Swanson (2001) -
Breitschopf, K., Bengal, E., Ziv, T., Admon, A. & Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17, 5964–5973 (1998).
(
10.1093/emboj/17.20.5964
) / EMBO J. by K Breitschopf (1998) -
Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).
(
10.1038/ncb746
) / Nature Cell Biol. by E Jarosch (2002) -
Riezman, H. The ins and outs of protein translocation. Science 278, 1728–1729 (1997).
(
10.1126/science.278.5344.1728
) / Science by H Riezman (1997) -
Mayer, T. U., Braun, T. & Jentsch, S. Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J. 17, 3251–3257 (1998).
(
10.1093/emboj/17.12.3251
) / EMBO J. by TU Mayer (1998) -
Huppa, J. B. & Ploegh, H. L. The α chain of the T cell antigen receptor is degraded in the cytosol. Immunity 7, 113–122 (1997).
(
10.1016/S1074-7613(00)80514-2
) / Immunity by JB Huppa (1997) -
Yang, M., Omura, S., Bonifacino, J. S. & Weissman, A. M. Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J. Exp. Med. 187, 835–846 (1998).
(
10.1084/jem.187.6.835
) / J. Exp. Med. by M Yang (1998) -
Hirsch, C. & Ploegh, H. L. Intracellular targeting of the proteasome. Trends Cell Biol. 10, 268–272 (2000).
(
10.1016/S0962-8924(00)01768-2
) / Trends Cell Biol. by C Hirsch (2000) -
Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R. Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 12, 4114–4128 (2001).
(
10.1091/mbc.12.12.4114
) / Mol. Biol. Cell by NW Bays (2001) -
Rabinovich, E., Kerem, A., Frohlich, K. U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).
(
10.1128/MCB.22.2.626-634.2002
) / Mol. Cell. Biol. by E Rabinovich (2002) -
Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621 (2002).
(
10.1093/emboj/21.4.615
) / EMBO J. by S Braun (2002) -
Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell 6, 1473–1484 (2000).
(
10.1016/S1097-2765(00)00143-X
) / Mol. Cell by X Zhang (2000) -
Patel, S. & Latterich, M. The AAA team: related ATPases with diverse functions. Trends Cell Biol. 8, 65–71 (1998).
(
10.1016/S0962-8924(97)01212-9
) / Trends Cell Biol. by S Patel (1998) -
Kondo, H. et al. p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75–78 (1997).
(
10.1038/40411
) / Nature by H Kondo (1997) -
Hitchcock, A. L. et al. The conserved npl4 protein complex mediates proteasome-dependent membrane-bound transcription factor activation. Mol. Biol. Cell 12, 3226–3241 (2001).
(
10.1091/mbc.12.10.3226
) / Mol. Biol. Cell by AL Hitchcock (2001) -
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).
(
10.1016/S0092-8674(01)00595-5
) / Cell by M Rape (2001) -
Meyer, H. H., Shorter, J. G., Seemann, J., Pappin, D. & Warren, G. A complex of mammalian ufd1 and npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J. 19, 2181–2192 (2000).
(
10.1093/emboj/19.10.2181
) / EMBO J. by HH Meyer (2000) -
Singleton, M. R., Sawaya, M. R., Ellenberger, T. & Wigley, D. B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).
(
10.1016/S0092-8674(00)80871-5
) / Cell by MR Singleton (2000) -
Schmidt, M., Lupas, A. N. & Finley, D. Structure and mechanism of ATP-dependent proteases. Curr. Opin. Chem. Biol. 3, 584–591 (1999).
(
10.1016/S1367-5931(99)00013-7
) / Curr. Opin. Chem. Biol. by M Schmidt (1999) -
Langer, T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci. 25, 247–251 (2000).
(
10.1016/S0968-0004(99)01541-8
) / Trends Biochem. Sci. by T Langer (2000) -
Dai, R. M. & Li, C. C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin–proteasome degradation. Nature Cell Biol. 3, 740–744 (2001).
(
10.1038/35087056
) / Nature Cell Biol. by RM Dai (2001) -
Pollard, M. G., Travers, K. J. & Weissman, J. S. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol. Cell 1, 171–182 (1998).
(
10.1016/S1097-2765(00)80018-0
) / Mol. Cell by MG Pollard (1998) -
Frand, A. R. & Kaiser, C. A. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol. Cell 1, 161–170 (1998).
(
10.1016/S1097-2765(00)80017-9
) / Mol. Cell by AR Frand (1998)
Dates
Type | When |
---|---|
Created | 22 years, 11 months ago (Sept. 20, 2002, 4:21 p.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:10 a.m.) |
Indexed | 13 hours, 40 minutes ago (Aug. 21, 2025, 12:46 p.m.) |
Issued | 23 years, 4 months ago (April 1, 2002) |
Published | 23 years, 4 months ago (April 1, 2002) |
Published Print | 23 years, 4 months ago (April 1, 2002) |
@article{Tsai_2002, title={Retro-translocation of proteins from the endoplasmic reticulum into the cytosol}, volume={3}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm780}, DOI={10.1038/nrm780}, number={4}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Tsai, Billy and Ye, Yihong and Rapoport, Tom A.}, year={2002}, month=apr, pages={246–255} }