Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Jesenberger, V., & Jentsch, S. (2002). Deadly encounter: ubiquitin meets apoptosis. Nature Reviews Molecular Cell Biology, 3(2), 112–121.

Authors 2
  1. Veronika Jesenberger (first)
  2. Stefan Jentsch (additional)
References 110 Referenced 272
  1. Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000). (10.1038/35037734) / Nature by P Meier (2000)
  2. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000). (10.1038/35037728) / Nature by PH Krammer (2000)
  3. Rich, T., Allen, R. L. & Wyllie, A. H. Defying death after DNA damage. Nature 407, 777–783 (2000). (10.1038/35037717) / Nature by T Rich (2000)
  4. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000). (10.1038/35037710) / Nature by MO Hengartner (2000)
  5. Hacker, G. The morphology of apoptosis. Cell Tissue Res. 301, 5–17 (2000). (10.1007/s004410000193) / Cell Tissue Res. by G Hacker (2000)
  6. Adams, J. M. & Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 61–66 (2001). (10.1016/S0968-0004(00)01740-0) / Trends Biochem. Sci. by JM Adams (2001)
  7. Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev. 13, 239–252 (1999). (10.1101/gad.13.3.239) / Genes Dev. by QL Deveraux (1999)
  8. Jentsch, S. & Schlenker, S. Selective protein degradation: a journey's end within the proteasome. Cell 82, 881–884 (1995). (10.1016/0092-8674(95)90021-7) / Cell by S Jentsch (1995)
  9. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001). (10.1146/annurev.biochem.70.1.503) / Annu. Rev. Biochem. by CM Pickart (2001)
  10. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001). (10.1038/35056563) / Nature Rev. Mol. Cell Biol. by AM Weissman (2001)
  11. Schwartz, L. M., Myer, A., Kosz, L., Engelstein, M. & Maier, C. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 5, 411–419 (1990). (10.1016/0896-6273(90)90080-Y) / Neuron by LM Schwartz (1990)
  12. Orlowski, R. Z. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 6, 303–313 (1999). (10.1038/sj.cdd.4400505) / Cell Death Differ. by RZ Orlowski (1999)
  13. Wojcik, C. Proteasomes in apoptosis: villains or guardians? Cell Mol. Life Sci. 56, 908–917 (1999). (10.1007/s000180050483) / Cell Mol. Life Sci. by C Wojcik (1999)
  14. Dawson, S. P. et al. Developmental changes of the 26S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J. Biol. Chem. 270, 1850–1858 (1995). (10.1074/jbc.270.4.1850) / J. Biol. Chem. by SP Dawson (1995)
  15. Jones, M. E., Haire, M. F., Kloetzel, P. M., Mykles, D. L. & Schwartz, L. M. Changes in the structure and function of the multicatalytic proteinase (proteasome) during programmed cell death in the intersegmental muscles of the hawkmoth, Dev Biol 169, 436–447 (1995). (10.1006/dbio.1995.1159) / Dev Biol by ME Jones (1995)
  16. Duan, H. et al. SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol. Cell Biol. 19, 3145–3155 (1999). (10.1128/MCB.19.4.3145) / Mol. Cell Biol. by H Duan (1999)
  17. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel–Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999). (10.1101/gad.13.14.1822) / Genes Dev. by J Lisztwan (1999)
  18. Pause, A. et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997). (10.1073/pnas.94.6.2156) / Proc. Natl Acad. Sci. USA by A Pause (1997)
  19. Gorospe, M. et al. Protective function of von Hippel–Lindau protein against impaired protein processing in renal carcinoma cells. Mol. Cell. Biol. 19, 1289–1300 (1999). (10.1128/MCB.19.2.1289) / Mol. Cell. Biol. by M Gorospe (1999)
  20. Schoenfeld, A. R. et al. The von Hippel–Lindau tumor suppressor gene protects cells from UV-mediated apoptosis. Oncogene 19, 5851–5857 (2000). (10.1038/sj.onc.1203985) / Oncogene by AR Schoenfeld (2000)
  21. Devarajan, P. et al. The von Hippel–Lindau gene product inhibits renal cell apoptosis via Bcl-2-dependent pathways. J. Biol. Chem. 276, 40599–40605 (2001). (10.1074/jbc.M103424200) / J. Biol. Chem. by P Devarajan (2001)
  22. Raasi, S., Schmidtke, G. & Groettrup, M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J. Biol. Chem. 276, 35334–35343 (2001). (10.1074/jbc.M105139200) / J. Biol. Chem. by S Raasi (2001)
  23. Takayama, S. et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80, 279–284 (1995). (10.1016/0092-8674(95)90410-7) / Cell by S Takayama (1995)
  24. Mikula, M. et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 20, 1952–1962 (2001). (10.1093/emboj/20.8.1952) / EMBO J. by M Mikula (2001)
  25. Jesenberger, V. et al. Protective role of Raf-1 in Salmonella-induced macrophage apoptosis. J. Exp. Med. 193, 353–364 (2001). (10.1084/jem.193.3.353) / J. Exp. Med. by V Jesenberger (2001)
  26. Wang, H. G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl Acad. Sci. USA 93, 7063–7068 (1996). (10.1073/pnas.93.14.7063) / Proc. Natl Acad. Sci. USA by HG Wang (1996)
  27. Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M. & Reed, J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747 (1998). (10.1093/emboj/17.10.2736) / EMBO J. by S Matsuzawa (1998)
  28. Thress, K., Henzel, W., Shillinglaw, W. & Kornbluth, S. Scythe: a novel reaper-binding apoptotic regulator. EMBO J. 17, 6135–6143 (1998). (10.1093/emboj/17.21.6135) / EMBO J. by K Thress (1998)
  29. Thress, K., Evans, E. K. & Kornbluth, S. Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J. 18, 5486–5493 (1999). (10.1093/emboj/18.20.5486) / EMBO J. by K Thress (1999)
  30. Shinohara, K. et al. Apoptosis induction resulting from proteasome inhibition. Biochem. J. 317, 385–388 (1996). (10.1042/bj3170385) / Biochem. J. by K Shinohara (1996)
  31. Drexler, H. C. Activation of the cell death program by inhibition of proteasome function. Proc. Natl Acad. Sci. USA 94, 855–860 (1997). (10.1073/pnas.94.3.855) / Proc. Natl Acad. Sci. USA by HC Drexler (1997)
  32. Grimm, L. M., Goldberg, A. L., Poirier, G. G., Schwartz, L. M. & Osborne, B. A. Proteasomes play an essential role in thymocyte apoptosis. EMBO J. 15, 3835–3844 (1996). (10.1002/j.1460-2075.1996.tb00757.x) / EMBO J. by LM Grimm (1996)
  33. Sadoul, R. et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J. 15, 3845–3852 (1996). (10.1002/j.1460-2075.1996.tb00758.x) / EMBO J. by R Sadoul (1996)
  34. Grimm, L. M. & Osborne, B. A. Apoptosis and the proteasome. Results Probl. Cell Differ. 23, 209–228 (1999). (10.1007/978-3-540-69184-6_10) / Results Probl. Cell Differ. by LM Grimm (1999)
  35. Miyashita, T., Harigai, M., Hanada, M. & Reed, J. C. Identification of a p53-dependent negative response element in the Bcl-2 gene. Cancer Res. 54, 3131–3135 (1994). / Cancer Res. by T Miyashita (1994)
  36. Sadot, E., Geiger, B., Oren, M. & Ben-Ze'ev, A. Down-regulation of β-Catenin by activated p53. Mol. Cell. Biol. 21, 6768–6781 (2001). (10.1128/MCB.21.20.6768-6781.2001) / Mol. Cell. Biol. by E Sadot (2001)
  37. Amson, R. B. et al. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the Drosophila seven in absentia gene. Proc. Natl Acad. Sci. USA 93, 3953–3957 (1996). (10.1073/pnas.93.9.3953) / Proc. Natl Acad. Sci. USA by RB Amson (1996)
  38. Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997). (10.1038/ng1097-141) / Nature Genet. by GS Wu (1997)
  39. Muller, M. et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033–2045 (1998). (10.1084/jem.188.11.2033) / J. Exp. Med. by M Muller (1998)
  40. Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001). (10.1016/S1097-2765(01)00323-9) / Mol. Cell by V Stambolic (2001)
  41. Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216 (2001). (10.1083/jcb.200105137) / J. Cell Biol. by A Fortin (2001)
  42. Ryan, K. M., Phillips, A. C. & Vousden, K. H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332–337 (2001).References 35–42 report on key regulators of apoptosis as transcriptional targets of p53. (10.1016/S0955-0674(00)00216-7) / Curr. Opin. Cell Biol. by KM Ryan (2001)
  43. Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000). (10.1074/jbc.275.21.16202) / J. Biol. Chem. by ND Marchenko (2000)
  44. Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293 (1998). (10.1126/science.282.5387.290) / Science by M Bennett (1998)
  45. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000). (10.1074/jbc.275.12.8945) / J. Biol. Chem. by S Fang (2000)
  46. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997). (10.1038/387296a0) / Nature by Y Haupt (1997)
  47. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).References 46 and 47 identify Mdm2-promoted degradation of p53 as a mechanism to ensure effective termination of the p53 signal. (10.1038/387299a0) / Nature by MH Kubbutat (1997)
  48. Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000). (10.1038/35023500) / Nature Cell Biol. by SD Boyd (2000)
  49. Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000). (10.1038/35023507) / Nature Cell Biol. by RK Geyer (2000)
  50. Hsieh, J. K. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3, 181–193 (1999). (10.1016/S1097-2765(00)80309-3) / Mol. Cell by JK Hsieh (1999)
  51. Sharp, D. A., Kratowicz, S. A., Sank, M. J. & George, D. L. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274, 38189–38196 (1999). (10.1074/jbc.274.53.38189) / J. Biol. Chem. by DA Sharp (1999)
  52. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999). (10.1016/S1097-2765(00)80351-2) / Mol. Cell by Y Zhang (1999)
  53. Fuchs, S. Y. et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 12, 2658–2663 (1998). (10.1101/gad.12.17.2658) / Genes Dev. by SY Fuchs (1998)
  54. Pagano, M. et al. Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995). (10.1126/science.7624798) / Science by M Pagano (1995)
  55. Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J. 16, 5334–5344 (1997). (10.1093/emboj/16.17.5334) / EMBO J. by J Vlach (1997)
  56. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000). (10.1093/emboj/19.9.2069) / EMBO J. by K Nakayama (2000)
  57. Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997). (10.1093/emboj/16.23.6914) / EMBO J. by N Roy (1997)
  58. Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).This study uncovers the function of IAPs as caspase inhibitors. (10.1038/40901) / Nature by QL Deveraux (1997)
  59. Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223 (1998). (10.1093/emboj/17.8.2215) / EMBO J. by QL Deveraux (1998)
  60. Hauser, H. P., Bardroff, M., Pyrowolakis, G. & Jentsch, S. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell Biol. 141, 1415–1422 (1998).The identification of a ubiquitin-conjugating enzyme with a BIR domain. (10.1083/jcb.141.6.1415) / J. Cell Biol. by HP Hauser (1998)
  61. Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000). (10.1016/S0092-8674(00)00077-5) / Cell by CA Joazeiro (2000)
  62. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).Report on the autoubiquitylation and degradation of IAPs as a key event in the apoptotic programme. (10.1126/science.288.5467.874) / Science by Y Yang (2000)
  63. Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000). (10.1016/S0021-9258(19)61427-4) / J. Biol. Chem. by H Huang (2000)
  64. Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).The first study to provide evidence that an IAP can promote the degradation of an active caspase in living cells. (10.1073/pnas.161506698) / Proc. Natl Acad. Sci. USA by Y Suzuki (2001)
  65. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000). (10.1146/annurev.immunol.18.1.621) / Annu. Rev. Immunol. by M Karin (2000)
  66. Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin–proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).This report provides evidence that the ubiquitin/proteasome pathway functions in the regulated processing of NF-κB precursors into active proteins. (10.1016/S0092-8674(94)90482-0) / Cell by VJ Palombella (1994)
  67. Coux, O. & Goldberg, A. L. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor κB1. J. Biol. Chem. 273, 8820–8828 (1998). (10.1074/jbc.273.15.8820) / J. Biol. Chem. by O Coux (1998)
  68. Hayashi, T. & Faustman, D. Essential role of human leukocyte antigen-encoded proteasome subunits in NF-κB activation and prevention of tumor necrosis factor-α-induced apoptosis. J. Biol. Chem. 275, 5238–5247 (2000). (10.1074/jbc.275.7.5238) / J. Biol. Chem. by T Hayashi (2000)
  69. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).By showing that IKK is activated through the assembly of Lys63-linked multiubiquitin chains, this study unveils a new regulatory function for ubiquitin in the activation of the NF-κB pathway. (10.1016/S0092-8674(00)00126-4) / Cell by L Deng (2000)
  70. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).This study extends the finding that kinases can be activated by ubiquitylation. (10.1038/35085597) / Nature by C Wang (2001)
  71. Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10, 421–429 (1999). (10.1016/S1074-7613(00)80042-4) / Immunity by M Tanaka (1999)
  72. Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998). (10.1126/science.281.5383.1680) / Science by CY Wang (1998)
  73. Wu, M. X., Ao, Z., Prasad, K. V., Wu, R. & Schlossman, S. F. IEX-1L, an apoptosis inhibitor involved in NF-κB-mediated cell survival. Science 281, 998–1001 (1998). (10.1126/science.281.5379.998) / Science by MX Wu (1998)
  74. Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev. 13, 382–387 (1999). (10.1101/gad.13.4.382) / Genes Dev. by WX Zong (1999)
  75. Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001). (10.1128/MCB.21.12.3964-3973.2001) / Mol. Cell. Biol. by S Kreuz (2001)
  76. Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).References 72–76 identify key regulators of apoptosis as gene targets of NF-κB transcriptional activity. (10.1093/emboj/19.23.6351) / EMBO J. by M Grossmann (2000)
  77. Tang, G. et al. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313–317 (2001). (10.1038/35104568) / Nature by G Tang (2001)
  78. De Smaele, E. et al. Induction of Gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001). (10.1038/35104560) / Nature by E De Smaele (2001)
  79. Barkett, M. & Gilmore, T. D. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18, 6910–6924 (1999). (10.1038/sj.onc.1203238) / Oncogene by M Barkett (1999)
  80. Connolly, J. L. et al. Reovirus-induced apoptosis requires activation of transcription factor NF-κB. J. Virol. 74, 2981–2989 (2000). (10.1128/JVI.74.7.2981-2989.2000) / J. Virol. by JL Connolly (2000)
  81. Kasibhatla, S. et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1, 543–551 (1998). (10.1016/S1097-2765(00)80054-4) / Mol. Cell by S Kasibhatla (1998)
  82. Rivera-Walsh, I., Waterfield, M., Xiao, G., Fong, A. & Sun, S. C. NF-κB signaling pathway governs TRAIL gene expression and human T-cell leukemia virus-I tax-induced T-cell death. J. Biol. Chem. 276, 40385–40388 (2001). (10.1074/jbc.C100501200) / J. Biol. Chem. by I Rivera-Walsh (2001)
  83. Dimmeler, S., Breitschopf, K., Haendeler, J. & Zeiher, A. M. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J. Exp. Med. 189, 1815–1822 (1999). (10.1084/jem.189.11.1815) / J. Exp. Med. by S Dimmeler (1999)
  84. Breitschopf, K., Haendeler, J., Malchow, P., Zeiher, A. M. & Dimmeler, S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol. Cell. Biol. 20, 1886–1896 (2000). (10.1128/MCB.20.5.1886-1896.2000) / Mol. Cell. Biol. by K Breitschopf (2000)
  85. Marshansky, V. et al. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J. Immunol. 166, 3130–3142 (2001). (10.4049/jimmunol.166.5.3130) / J. Immunol. by V Marshansky (2001)
  86. Breitschopf, K., Zeiher, A. M. & Dimmeler, S. Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J. Biol. Chem. 275, 21648–21652 (2000). (10.1074/jbc.M001083200) / J. Biol. Chem. by K Breitschopf (2000)
  87. Thomas, M. & Banks, L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17, 2943–2954 (1998). (10.1038/sj.onc.1202223) / Oncogene by M Thomas (1998)
  88. Li, B. & Dou, Q. P. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl Acad. Sci. USA 97, 3850–3855 (2000). (10.1073/pnas.070047997) / Proc. Natl Acad. Sci. USA by B Li (2000)
  89. Peter, M. E., Heufelder, A. E. & Hengartner, M. O. Advances in apoptosis research. Proc. Natl Acad. Sci. USA 94, 12736–12737 (1997). (10.1073/pnas.94.24.12736) / Proc. Natl Acad. Sci. USA by ME Peter (1997)
  90. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998). (10.1038/33416) / Nature by T Kitada (1998)
  91. Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000). (10.1038/77060) / Nature Genet. by H Shimura (2000)
  92. Cummings, C. J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892 (1999). (10.1016/S0896-6273(00)81035-1) / Neuron by CJ Cummings (1999)
  93. Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genet. 23, 47–51 (1999). (10.1038/12647) / Nature Genet. by K Saigoh (1999)
  94. Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000). (10.1038/35037739) / Nature by J Yuan (2000)
  95. Huang, P. & Oliff, A. Signaling pathways in apoptosis as potential targets for cancer therapy. Trends Cell Biol. 11, 343–348 (2001). (10.1016/S0962-8924(01)02063-3) / Trends Cell Biol. by P Huang (2001)
  96. Baldwin, A. S. Jr. Series introduction: the transcription factor NF-κB and human disease. J. Clin. Invest. 107, 3–6 (2001). (10.1172/JCI11891) / J. Clin. Invest. by AS Baldwin Jr. (2001)
  97. Bondeson, J., Foxwell, B., Brennan, F. & Feldmann, M. Defining therapeutic targets by using adenovirus: blocking NF-κB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc. Natl Acad. Sci. USA 96, 5668–5673 (1999). (10.1073/pnas.96.10.5668) / Proc. Natl Acad. Sci. USA by J Bondeson (1999)
  98. Wang, C. Y., Cusack, J. C. Jr, Liu, R. & Baldwin, A. S. Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Med. 5, 412–417 (1999). (10.1038/7410) / Nature Med. by CY Wang (1999)
  99. Perkins, N. D. The Rel/NF-κB family: friend and foe. Trends Biochem Sci. 25, 434–440 (2000). (10.1016/S0968-0004(00)01617-0) / Trends Biochem Sci. by ND Perkins (2000)
  100. Lee, D. H. & Goldberg, A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998). (10.1016/S0962-8924(98)01346-4) / Trends Cell Biol. by DH Lee (1998)
  101. Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999) / Cancer Res. by J Adams (1999)
  102. Mlynarczuk, I. et al. Augmented pro-apoptotic effects of TRAIL and proteasome inhibitor in human promonocytic leukemic U937 cells. Anticancer Res. 21, 1237–1240 (2001). / Anticancer Res. by I Mlynarczuk (2001)
  103. Milligan, S. A. & Nopajaroonsri, C. Inhibition of NF-κB with proteasome inhibitors enhances apoptosis in human lung adenocarcinoma cells in vitro. Anticancer Res. 21, 39–44 (2001). / Anticancer Res. by SA Milligan (2001)
  104. Mitsiades, C. S. et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98, 795–804 (2001). (10.1182/blood.V98.3.795) / Blood by CS Mitsiades (2001)
  105. Franco, A. V. et al. The role of NF-κB in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J. Immunol. 166, 5337–5345 (2001). (10.4049/jimmunol.166.9.5337) / J. Immunol. by AV Franco (2001)
  106. Shah, S. A. et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell Biochem. 82, 110–122 (2001). (10.1002/jcb.1150) / J. Cell Biochem. by SA Shah (2001)
  107. Cusack, J. C. Jr et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res. 61, 3535–3540 (2001). / Cancer Res. by JC Cusack Jr (2001)
  108. Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999). / Clin. Cancer Res. by BA Teicher (1999)
  109. Cheng, E. H. et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001). (10.1016/S1097-2765(01)00320-3) / Mol. Cell by EH Cheng (2001)
  110. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999). (10.1016/S0092-8674(00)80574-7) / Cell by M Koegl (1999)
Dates
Type When
Created 23 years, 1 month ago (July 26, 2002, 4:30 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:09 a.m.)
Indexed 1 month, 2 weeks ago (July 24, 2025, 7:07 a.m.)
Issued 23 years, 7 months ago (Feb. 1, 2002)
Published 23 years, 7 months ago (Feb. 1, 2002)
Published Print 23 years, 7 months ago (Feb. 1, 2002)
Funders 0

None

@article{Jesenberger_2002, title={Deadly encounter: ubiquitin meets apoptosis}, volume={3}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm731}, DOI={10.1038/nrm731}, number={2}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Jesenberger, Veronika and Jentsch, Stefan}, year={2002}, month=feb, pages={112–121} }