Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
References
110
Referenced
272
-
Meier, P., Finch, A. & Evan, G. Apoptosis in development. Nature 407, 796–801 (2000).
(
10.1038/35037734
) / Nature by P Meier (2000) -
Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).
(
10.1038/35037728
) / Nature by PH Krammer (2000) -
Rich, T., Allen, R. L. & Wyllie, A. H. Defying death after DNA damage. Nature 407, 777–783 (2000).
(
10.1038/35037717
) / Nature by T Rich (2000) -
Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).
(
10.1038/35037710
) / Nature by MO Hengartner (2000) -
Hacker, G. The morphology of apoptosis. Cell Tissue Res. 301, 5–17 (2000).
(
10.1007/s004410000193
) / Cell Tissue Res. by G Hacker (2000) -
Adams, J. M. & Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 61–66 (2001).
(
10.1016/S0968-0004(00)01740-0
) / Trends Biochem. Sci. by JM Adams (2001) -
Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).
(
10.1101/gad.13.3.239
) / Genes Dev. by QL Deveraux (1999) -
Jentsch, S. & Schlenker, S. Selective protein degradation: a journey's end within the proteasome. Cell 82, 881–884 (1995).
(
10.1016/0092-8674(95)90021-7
) / Cell by S Jentsch (1995) -
Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).
(
10.1146/annurev.biochem.70.1.503
) / Annu. Rev. Biochem. by CM Pickart (2001) -
Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).
(
10.1038/35056563
) / Nature Rev. Mol. Cell Biol. by AM Weissman (2001) -
Schwartz, L. M., Myer, A., Kosz, L., Engelstein, M. & Maier, C. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 5, 411–419 (1990).
(
10.1016/0896-6273(90)90080-Y
) / Neuron by LM Schwartz (1990) -
Orlowski, R. Z. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 6, 303–313 (1999).
(
10.1038/sj.cdd.4400505
) / Cell Death Differ. by RZ Orlowski (1999) -
Wojcik, C. Proteasomes in apoptosis: villains or guardians? Cell Mol. Life Sci. 56, 908–917 (1999).
(
10.1007/s000180050483
) / Cell Mol. Life Sci. by C Wojcik (1999) -
Dawson, S. P. et al. Developmental changes of the 26S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J. Biol. Chem. 270, 1850–1858 (1995).
(
10.1074/jbc.270.4.1850
) / J. Biol. Chem. by SP Dawson (1995) -
Jones, M. E., Haire, M. F., Kloetzel, P. M., Mykles, D. L. & Schwartz, L. M. Changes in the structure and function of the multicatalytic proteinase (proteasome) during programmed cell death in the intersegmental muscles of the hawkmoth, Dev Biol 169, 436–447 (1995).
(
10.1006/dbio.1995.1159
) / Dev Biol by ME Jones (1995) -
Duan, H. et al. SAG, a novel zinc RING finger protein that protects cells from apoptosis induced by redox agents. Mol. Cell Biol. 19, 3145–3155 (1999).
(
10.1128/MCB.19.4.3145
) / Mol. Cell Biol. by H Duan (1999) -
Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel–Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999).
(
10.1101/gad.13.14.1822
) / Genes Dev. by J Lisztwan (1999) -
Pause, A. et al. The von Hippel–Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).
(
10.1073/pnas.94.6.2156
) / Proc. Natl Acad. Sci. USA by A Pause (1997) -
Gorospe, M. et al. Protective function of von Hippel–Lindau protein against impaired protein processing in renal carcinoma cells. Mol. Cell. Biol. 19, 1289–1300 (1999).
(
10.1128/MCB.19.2.1289
) / Mol. Cell. Biol. by M Gorospe (1999) -
Schoenfeld, A. R. et al. The von Hippel–Lindau tumor suppressor gene protects cells from UV-mediated apoptosis. Oncogene 19, 5851–5857 (2000).
(
10.1038/sj.onc.1203985
) / Oncogene by AR Schoenfeld (2000) -
Devarajan, P. et al. The von Hippel–Lindau gene product inhibits renal cell apoptosis via Bcl-2-dependent pathways. J. Biol. Chem. 276, 40599–40605 (2001).
(
10.1074/jbc.M103424200
) / J. Biol. Chem. by P Devarajan (2001) -
Raasi, S., Schmidtke, G. & Groettrup, M. The ubiquitin-like protein FAT10 forms covalent conjugates and induces apoptosis. J. Biol. Chem. 276, 35334–35343 (2001).
(
10.1074/jbc.M105139200
) / J. Biol. Chem. by S Raasi (2001) -
Takayama, S. et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 80, 279–284 (1995).
(
10.1016/0092-8674(95)90410-7
) / Cell by S Takayama (1995) -
Mikula, M. et al. Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J. 20, 1952–1962 (2001).
(
10.1093/emboj/20.8.1952
) / EMBO J. by M Mikula (2001) -
Jesenberger, V. et al. Protective role of Raf-1 in Salmonella-induced macrophage apoptosis. J. Exp. Med. 193, 353–364 (2001).
(
10.1084/jem.193.3.353
) / J. Exp. Med. by V Jesenberger (2001) -
Wang, H. G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl Acad. Sci. USA 93, 7063–7068 (1996).
(
10.1073/pnas.93.14.7063
) / Proc. Natl Acad. Sci. USA by HG Wang (1996) -
Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M. & Reed, J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747 (1998).
(
10.1093/emboj/17.10.2736
) / EMBO J. by S Matsuzawa (1998) -
Thress, K., Henzel, W., Shillinglaw, W. & Kornbluth, S. Scythe: a novel reaper-binding apoptotic regulator. EMBO J. 17, 6135–6143 (1998).
(
10.1093/emboj/17.21.6135
) / EMBO J. by K Thress (1998) -
Thress, K., Evans, E. K. & Kornbluth, S. Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J. 18, 5486–5493 (1999).
(
10.1093/emboj/18.20.5486
) / EMBO J. by K Thress (1999) -
Shinohara, K. et al. Apoptosis induction resulting from proteasome inhibition. Biochem. J. 317, 385–388 (1996).
(
10.1042/bj3170385
) / Biochem. J. by K Shinohara (1996) -
Drexler, H. C. Activation of the cell death program by inhibition of proteasome function. Proc. Natl Acad. Sci. USA 94, 855–860 (1997).
(
10.1073/pnas.94.3.855
) / Proc. Natl Acad. Sci. USA by HC Drexler (1997) -
Grimm, L. M., Goldberg, A. L., Poirier, G. G., Schwartz, L. M. & Osborne, B. A. Proteasomes play an essential role in thymocyte apoptosis. EMBO J. 15, 3835–3844 (1996).
(
10.1002/j.1460-2075.1996.tb00757.x
) / EMBO J. by LM Grimm (1996) -
Sadoul, R. et al. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J. 15, 3845–3852 (1996).
(
10.1002/j.1460-2075.1996.tb00758.x
) / EMBO J. by R Sadoul (1996) -
Grimm, L. M. & Osborne, B. A. Apoptosis and the proteasome. Results Probl. Cell Differ. 23, 209–228 (1999).
(
10.1007/978-3-540-69184-6_10
) / Results Probl. Cell Differ. by LM Grimm (1999) - Miyashita, T., Harigai, M., Hanada, M. & Reed, J. C. Identification of a p53-dependent negative response element in the Bcl-2 gene. Cancer Res. 54, 3131–3135 (1994). / Cancer Res. by T Miyashita (1994)
-
Sadot, E., Geiger, B., Oren, M. & Ben-Ze'ev, A. Down-regulation of β-Catenin by activated p53. Mol. Cell. Biol. 21, 6768–6781 (2001).
(
10.1128/MCB.21.20.6768-6781.2001
) / Mol. Cell. Biol. by E Sadot (2001) -
Amson, R. B. et al. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the Drosophila seven in absentia gene. Proc. Natl Acad. Sci. USA 93, 3953–3957 (1996).
(
10.1073/pnas.93.9.3953
) / Proc. Natl Acad. Sci. USA by RB Amson (1996) -
Wu, G. S. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997).
(
10.1038/ng1097-141
) / Nature Genet. by GS Wu (1997) -
Muller, M. et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188, 2033–2045 (1998).
(
10.1084/jem.188.11.2033
) / J. Exp. Med. by M Muller (1998) -
Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001).
(
10.1016/S1097-2765(01)00323-9
) / Mol. Cell by V Stambolic (2001) -
Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216 (2001).
(
10.1083/jcb.200105137
) / J. Cell Biol. by A Fortin (2001) -
Ryan, K. M., Phillips, A. C. & Vousden, K. H. Regulation and function of the p53 tumor suppressor protein. Curr. Opin. Cell Biol. 13, 332–337 (2001).References 35–42 report on key regulators of apoptosis as transcriptional targets of p53.
(
10.1016/S0955-0674(00)00216-7
) / Curr. Opin. Cell Biol. by KM Ryan (2001) -
Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).
(
10.1074/jbc.275.21.16202
) / J. Biol. Chem. by ND Marchenko (2000) -
Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293 (1998).
(
10.1126/science.282.5387.290
) / Science by M Bennett (1998) -
Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).
(
10.1074/jbc.275.12.8945
) / J. Biol. Chem. by S Fang (2000) -
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).
(
10.1038/387296a0
) / Nature by Y Haupt (1997) -
Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by Mdm2. Nature 387, 299–303 (1997).References 46 and 47 identify Mdm2-promoted degradation of p53 as a mechanism to ensure effective termination of the p53 signal.
(
10.1038/387299a0
) / Nature by MH Kubbutat (1997) -
Boyd, S. D., Tsai, K. Y. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nature Cell Biol. 2, 563–568 (2000).
(
10.1038/35023500
) / Nature Cell Biol. by SD Boyd (2000) -
Geyer, R. K., Yu, Z. K. & Maki, C. G. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nature Cell Biol. 2, 569–573 (2000).
(
10.1038/35023507
) / Nature Cell Biol. by RK Geyer (2000) -
Hsieh, J. K. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3, 181–193 (1999).
(
10.1016/S1097-2765(00)80309-3
) / Mol. Cell by JK Hsieh (1999) -
Sharp, D. A., Kratowicz, S. A., Sank, M. J. & George, D. L. Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J. Biol. Chem. 274, 38189–38196 (1999).
(
10.1074/jbc.274.53.38189
) / J. Biol. Chem. by DA Sharp (1999) -
Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).
(
10.1016/S1097-2765(00)80351-2
) / Mol. Cell by Y Zhang (1999) -
Fuchs, S. Y. et al. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes Dev. 12, 2658–2663 (1998).
(
10.1101/gad.12.17.2658
) / Genes Dev. by SY Fuchs (1998) -
Pagano, M. et al. Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682–685 (1995).
(
10.1126/science.7624798
) / Science by M Pagano (1995) -
Vlach, J., Hennecke, S. & Amati, B. Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J. 16, 5334–5344 (1997).
(
10.1093/emboj/16.17.5334
) / EMBO J. by J Vlach (1997) -
Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).
(
10.1093/emboj/19.9.2069
) / EMBO J. by K Nakayama (2000) -
Roy, N., Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. The c-IAP-1 and c-IAP-2 proteins are direct inhibitors of specific caspases. EMBO J. 16, 6914–6925 (1997).
(
10.1093/emboj/16.23.6914
) / EMBO J. by N Roy (1997) -
Deveraux, Q. L., Takahashi, R., Salvesen, G. S. & Reed, J. C. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388, 300–304 (1997).This study uncovers the function of IAPs as caspase inhibitors.
(
10.1038/40901
) / Nature by QL Deveraux (1997) -
Deveraux, Q. L. et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215–2223 (1998).
(
10.1093/emboj/17.8.2215
) / EMBO J. by QL Deveraux (1998) -
Hauser, H. P., Bardroff, M., Pyrowolakis, G. & Jentsch, S. A giant ubiquitin-conjugating enzyme related to IAP apoptosis inhibitors. J. Cell Biol. 141, 1415–1422 (1998).The identification of a ubiquitin-conjugating enzyme with a BIR domain.
(
10.1083/jcb.141.6.1415
) / J. Cell Biol. by HP Hauser (1998) -
Joazeiro, C. A. & Weissman, A. M. RING finger proteins: mediators of ubiquitin ligase activity. Cell 102, 549–552 (2000).
(
10.1016/S0092-8674(00)00077-5
) / Cell by CA Joazeiro (2000) -
Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).Report on the autoubiquitylation and degradation of IAPs as a key event in the apoptotic programme.
(
10.1126/science.288.5467.874
) / Science by Y Yang (2000) -
Huang, H. et al. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275, 26661–26664 (2000).
(
10.1016/S0021-9258(19)61427-4
) / J. Biol. Chem. by H Huang (2000) -
Suzuki, Y., Nakabayashi, Y. & Takahashi, R. Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc. Natl Acad. Sci. USA 98, 8662–8667 (2001).The first study to provide evidence that an IAP can promote the degradation of an active caspase in living cells.
(
10.1073/pnas.161506698
) / Proc. Natl Acad. Sci. USA by Y Suzuki (2001) -
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).
(
10.1146/annurev.immunol.18.1.621
) / Annu. Rev. Immunol. by M Karin (2000) -
Palombella, V. J., Rando, O. J., Goldberg, A. L. & Maniatis, T. The ubiquitin–proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78, 773–785 (1994).This report provides evidence that the ubiquitin/proteasome pathway functions in the regulated processing of NF-κB precursors into active proteins.
(
10.1016/S0092-8674(94)90482-0
) / Cell by VJ Palombella (1994) -
Coux, O. & Goldberg, A. L. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor κB1. J. Biol. Chem. 273, 8820–8828 (1998).
(
10.1074/jbc.273.15.8820
) / J. Biol. Chem. by O Coux (1998) -
Hayashi, T. & Faustman, D. Essential role of human leukocyte antigen-encoded proteasome subunits in NF-κB activation and prevention of tumor necrosis factor-α-induced apoptosis. J. Biol. Chem. 275, 5238–5247 (2000).
(
10.1074/jbc.275.7.5238
) / J. Biol. Chem. by T Hayashi (2000) -
Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).By showing that IKK is activated through the assembly of Lys63-linked multiubiquitin chains, this study unveils a new regulatory function for ubiquitin in the activation of the NF-κB pathway.
(
10.1016/S0092-8674(00)00126-4
) / Cell by L Deng (2000) -
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).This study extends the finding that kinases can be activated by ubiquitylation.
(
10.1038/35085597
) / Nature by C Wang (2001) -
Tanaka, M. et al. Embryonic lethality, liver degeneration, and impaired NF-κB activation in IKK-β-deficient mice. Immunity 10, 421–429 (1999).
(
10.1016/S1074-7613(00)80042-4
) / Immunity by M Tanaka (1999) -
Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281, 1680–1683 (1998).
(
10.1126/science.281.5383.1680
) / Science by CY Wang (1998) -
Wu, M. X., Ao, Z., Prasad, K. V., Wu, R. & Schlossman, S. F. IEX-1L, an apoptosis inhibitor involved in NF-κB-mediated cell survival. Science 281, 998–1001 (1998).
(
10.1126/science.281.5379.998
) / Science by MX Wu (1998) -
Zong, W. X., Edelstein, L. C., Chen, C., Bash, J. & Gelinas, C. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct transcriptional target of NF-κB that blocks TNFα-induced apoptosis. Genes Dev. 13, 382–387 (1999).
(
10.1101/gad.13.4.382
) / Genes Dev. by WX Zong (1999) -
Kreuz, S., Siegmund, D., Scheurich, P. & Wajant, H. NF-κB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol. Cell. Biol. 21, 3964–3973 (2001).
(
10.1128/MCB.21.12.3964-3973.2001
) / Mol. Cell. Biol. by S Kreuz (2001) -
Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).References 72–76 identify key regulators of apoptosis as gene targets of NF-κB transcriptional activity.
(
10.1093/emboj/19.23.6351
) / EMBO J. by M Grossmann (2000) -
Tang, G. et al. Inhibition of JNK activation through NF-κB target genes. Nature 414, 313–317 (2001).
(
10.1038/35104568
) / Nature by G Tang (2001) -
De Smaele, E. et al. Induction of Gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414, 308–313 (2001).
(
10.1038/35104560
) / Nature by E De Smaele (2001) -
Barkett, M. & Gilmore, T. D. Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18, 6910–6924 (1999).
(
10.1038/sj.onc.1203238
) / Oncogene by M Barkett (1999) -
Connolly, J. L. et al. Reovirus-induced apoptosis requires activation of transcription factor NF-κB. J. Virol. 74, 2981–2989 (2000).
(
10.1128/JVI.74.7.2981-2989.2000
) / J. Virol. by JL Connolly (2000) -
Kasibhatla, S. et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol. Cell 1, 543–551 (1998).
(
10.1016/S1097-2765(00)80054-4
) / Mol. Cell by S Kasibhatla (1998) -
Rivera-Walsh, I., Waterfield, M., Xiao, G., Fong, A. & Sun, S. C. NF-κB signaling pathway governs TRAIL gene expression and human T-cell leukemia virus-I tax-induced T-cell death. J. Biol. Chem. 276, 40385–40388 (2001).
(
10.1074/jbc.C100501200
) / J. Biol. Chem. by I Rivera-Walsh (2001) -
Dimmeler, S., Breitschopf, K., Haendeler, J. & Zeiher, A. M. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway. J. Exp. Med. 189, 1815–1822 (1999).
(
10.1084/jem.189.11.1815
) / J. Exp. Med. by S Dimmeler (1999) -
Breitschopf, K., Haendeler, J., Malchow, P., Zeiher, A. M. & Dimmeler, S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol. Cell. Biol. 20, 1886–1896 (2000).
(
10.1128/MCB.20.5.1886-1896.2000
) / Mol. Cell. Biol. by K Breitschopf (2000) -
Marshansky, V. et al. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J. Immunol. 166, 3130–3142 (2001).
(
10.4049/jimmunol.166.5.3130
) / J. Immunol. by V Marshansky (2001) -
Breitschopf, K., Zeiher, A. M. & Dimmeler, S. Ubiquitin-mediated degradation of the proapoptotic active form of bid. A functional consequence on apoptosis induction. J. Biol. Chem. 275, 21648–21652 (2000).
(
10.1074/jbc.M001083200
) / J. Biol. Chem. by K Breitschopf (2000) -
Thomas, M. & Banks, L. Inhibition of Bak-induced apoptosis by HPV-18 E6. Oncogene 17, 2943–2954 (1998).
(
10.1038/sj.onc.1202223
) / Oncogene by M Thomas (1998) -
Li, B. & Dou, Q. P. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc. Natl Acad. Sci. USA 97, 3850–3855 (2000).
(
10.1073/pnas.070047997
) / Proc. Natl Acad. Sci. USA by B Li (2000) -
Peter, M. E., Heufelder, A. E. & Hengartner, M. O. Advances in apoptosis research. Proc. Natl Acad. Sci. USA 94, 12736–12737 (1997).
(
10.1073/pnas.94.24.12736
) / Proc. Natl Acad. Sci. USA by ME Peter (1997) -
Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).
(
10.1038/33416
) / Nature by T Kitada (1998) -
Shimura, H. et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genet. 25, 302–305 (2000).
(
10.1038/77060
) / Nature Genet. by H Shimura (2000) -
Cummings, C. J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892 (1999).
(
10.1016/S0896-6273(00)81035-1
) / Neuron by CJ Cummings (1999) -
Saigoh, K. et al. Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genet. 23, 47–51 (1999).
(
10.1038/12647
) / Nature Genet. by K Saigoh (1999) -
Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000).
(
10.1038/35037739
) / Nature by J Yuan (2000) -
Huang, P. & Oliff, A. Signaling pathways in apoptosis as potential targets for cancer therapy. Trends Cell Biol. 11, 343–348 (2001).
(
10.1016/S0962-8924(01)02063-3
) / Trends Cell Biol. by P Huang (2001) -
Baldwin, A. S. Jr. Series introduction: the transcription factor NF-κB and human disease. J. Clin. Invest. 107, 3–6 (2001).
(
10.1172/JCI11891
) / J. Clin. Invest. by AS Baldwin Jr. (2001) -
Bondeson, J., Foxwell, B., Brennan, F. & Feldmann, M. Defining therapeutic targets by using adenovirus: blocking NF-κB inhibits both inflammatory and destructive mechanisms in rheumatoid synovium but spares anti-inflammatory mediators. Proc. Natl Acad. Sci. USA 96, 5668–5673 (1999).
(
10.1073/pnas.96.10.5668
) / Proc. Natl Acad. Sci. USA by J Bondeson (1999) -
Wang, C. Y., Cusack, J. C. Jr, Liu, R. & Baldwin, A. S. Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-κB. Nature Med. 5, 412–417 (1999).
(
10.1038/7410
) / Nature Med. by CY Wang (1999) -
Perkins, N. D. The Rel/NF-κB family: friend and foe. Trends Biochem Sci. 25, 434–440 (2000).
(
10.1016/S0968-0004(00)01617-0
) / Trends Biochem Sci. by ND Perkins (2000) -
Lee, D. H. & Goldberg, A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998).
(
10.1016/S0962-8924(98)01346-4
) / Trends Cell Biol. by DH Lee (1998) - Adams, J. et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 59, 2615–2622 (1999) / Cancer Res. by J Adams (1999)
- Mlynarczuk, I. et al. Augmented pro-apoptotic effects of TRAIL and proteasome inhibitor in human promonocytic leukemic U937 cells. Anticancer Res. 21, 1237–1240 (2001). / Anticancer Res. by I Mlynarczuk (2001)
- Milligan, S. A. & Nopajaroonsri, C. Inhibition of NF-κB with proteasome inhibitors enhances apoptosis in human lung adenocarcinoma cells in vitro. Anticancer Res. 21, 39–44 (2001). / Anticancer Res. by SA Milligan (2001)
-
Mitsiades, C. S. et al. TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98, 795–804 (2001).
(
10.1182/blood.V98.3.795
) / Blood by CS Mitsiades (2001) -
Franco, A. V. et al. The role of NF-κB in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J. Immunol. 166, 5337–5345 (2001).
(
10.4049/jimmunol.166.9.5337
) / J. Immunol. by AV Franco (2001) -
Shah, S. A. et al. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J. Cell Biochem. 82, 110–122 (2001).
(
10.1002/jcb.1150
) / J. Cell Biochem. by SA Shah (2001) - Cusack, J. C. Jr et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-κB inhibition. Cancer Res. 61, 3535–3540 (2001). / Cancer Res. by JC Cusack Jr (2001)
- Teicher, B. A., Ara, G., Herbst, R., Palombella, V. J. & Adams, J. The proteasome inhibitor PS-341 in cancer therapy. Clin. Cancer Res. 5, 2638–2645 (1999). / Clin. Cancer Res. by BA Teicher (1999)
-
Cheng, E. H. et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).
(
10.1016/S1097-2765(01)00320-3
) / Mol. Cell by EH Cheng (2001) -
Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).
(
10.1016/S0092-8674(00)80574-7
) / Cell by M Koegl (1999)
Dates
Type | When |
---|---|
Created | 23 years, 1 month ago (July 26, 2002, 4:30 a.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:09 a.m.) |
Indexed | 1 month, 2 weeks ago (July 24, 2025, 7:07 a.m.) |
Issued | 23 years, 7 months ago (Feb. 1, 2002) |
Published | 23 years, 7 months ago (Feb. 1, 2002) |
Published Print | 23 years, 7 months ago (Feb. 1, 2002) |
@article{Jesenberger_2002, title={Deadly encounter: ubiquitin meets apoptosis}, volume={3}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm731}, DOI={10.1038/nrm731}, number={2}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Jesenberger, Veronika and Jentsch, Stefan}, year={2002}, month=feb, pages={112–121} }