Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Akhmanova, A., & Steinmetz, M. O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology, 9(4), 309–322.

Authors 2
  1. Anna Akhmanova (first)
  2. Michel O. Steinmetz (additional)
References 128 Referenced 883
  1. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell. Dev. Biol. 13, 83–117 (1997). (10.1146/annurev.cellbio.13.1.83) / Annu. Rev. Cell. Dev. Biol. by A Desai (1997)
  2. Howard, J. & Hyman, A. A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003). (10.1038/nature01600) / Nature by J Howard (2003)
  3. Nogales, E. & Wang, H. W. Structural mechanisms underlying nucleotide-dependent self-assembly of tubulin and its relatives. Curr. Opin. Struct. Biol. 16, 221–229 (2006). (10.1016/j.sbi.2006.03.005) / Curr. Opin. Struct. Biol. by E Nogales (2006)
  4. Nogales, E. & Wang, H. W. Structural intermediates in microtubule assembly and disassembly: how and why? Curr. Opin. Cell Biol. 18, 179–184 (2006). (10.1016/j.ceb.2006.02.009) / Curr. Opin. Cell Biol. by E Nogales (2006)
  5. Schuyler, S. C. & Pellman, D. Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105, 421–424 (2001). (10.1016/S0092-8674(01)00364-6) / Cell by SC Schuyler (2001)
  6. Rickard, J. E. & Kreis, T. E. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J. Cell Biol. 110, 1623–1633 (1990). (10.1083/jcb.110.5.1623) / J. Cell Biol. by JE Rickard (1990)
  7. Perez, F., Diamantopoulos, G. S., Stalder, R. & Kreis, T. E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999). References6 and 7 describe the first identified microtubule plus-end tracking protein, CLIP170. (10.1016/S0092-8674(00)80656-X) / Cell by F Perez (1999)
  8. Lansbergen, G. & Akhmanova, A. Microtubule plus end: a hub of cellular activities. Traffic 7, 499–507 (2006). (10.1111/j.1600-0854.2006.00400.x) / Traffic by G Lansbergen (2006)
  9. Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430–36434 (2003). (10.1074/jbc.M305773200) / J. Biol. Chem. by I Hayashi (2003)
  10. Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J. & Winder, S. J. Functional plasticity of CH domains. FEBS Lett. 513, 98–106 (2002). (10.1016/S0014-5793(01)03240-9) / FEBS Lett. by M Gimona (2002)
  11. Dougherty, G. W. et al. CLAMP, a novel microtubule-associated protein with EB-type calponin homology. Cell Motil. Cytoskeleton 62, 141–156 (2005). (10.1002/cm.20093) / Cell Motil. Cytoskeleton by GW Dougherty (2005)
  12. Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nature Struct. Mol. Biol. 14, 54–59 (2007). (10.1038/nsmb1186) / Nature Struct. Mol. Biol. by RR Wei (2007)
  13. Honnappa, S., John, C. M., Kostrewa, D., Winkler, F. K. & Steinmetz, M. O. Structural insights into the EB1–APC interaction. EMBO J. 24, 261–269 (2005). (10.1038/sj.emboj.7600529) / EMBO J. by S Honnappa (2005)
  14. Slep, K. C. et al. Structural determinants for EB1-mediated recruitment of APC and spectraplakins to the microtubule plus end. J. Cell Biol. 168, 587–598 (2005). (10.1083/jcb.200410114) / J. Cell Biol. by KC Slep (2005)
  15. Komarova, Y. et al. EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. Mol. Biol. Cell 16, 5334–5345 (2005). (10.1091/mbc.e05-07-0614) / Mol. Biol. Cell by Y Komarova (2005)
  16. Miller, R. K., D'Silva, S., Moore, J. K. & Goodson, H. V. The CLIP-170 orthologue Bik1p and positioning the mitotic spindle in yeast. Curr. Top. Dev. Biol. 76, 49–87 (2006). (10.1016/S0070-2153(06)76002-1) / Curr. Top. Dev. Biol. by RK Miller (2006)
  17. Weisbrich, A. et al. Structure-function relationship of CAP-Gly domains. Nature Struct. Mol. Biol. 14, 959–967 (2007). (10.1038/nsmb1291) / Nature Struct. Mol. Biol. by A Weisbrich (2007)
  18. Galjart, N. CLIPs and CLASPs and cellular dynamics. Nature Rev. Mol. Cell Biol. 6, 487–498 (2005). (10.1038/nrm1664) / Nature Rev. Mol. Cell Biol. by N Galjart (2005)
  19. Schroer, T. A. Dynactin. Annu. Rev. Cell. Dev. Biol. 20, 759–779 (2004). (10.1146/annurev.cellbio.20.012103.094623) / Annu. Rev. Cell. Dev. Biol. by TA Schroer (2004)
  20. Askham, J. M., Vaughan, K. T., Goodson, H. V. & Morrison, E. E. Evidence that an interaction between EB1 and p150Glued is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol. Biol. Cell 13, 3627–3645 (2002). (10.1091/mbc.e02-01-0061) / Mol. Biol. Cell by JM Askham (2002)
  21. Bu, W. & Su, L. K. Characterization of functional domains of human EB1 family proteins. J. Biol. Chem. 278, 49721–49731 (2003). (10.1074/jbc.M306194200) / J. Biol. Chem. by W Bu (2003)
  22. Goodson, H. V. et al. CLIP-170 interacts with dynactin complex and the APC-binding protein EB1 by different mechanisms. Cell Motil. Cytoskeleton 55, 156–173 (2003). (10.1002/cm.10114) / Cell Motil. Cytoskeleton by HV Goodson (2003)
  23. Busch, K. E. & Brunner, D. The microtubule plus end-tracking proteins mal3p and tip1p cooperate for cell-end targeting of interphase microtubules. Curr. Biol. 14, 548–559 (2004). (10.1016/j.cub.2004.03.029) / Curr. Biol. by KE Busch (2004)
  24. Lansbergen, G. et al. Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localisation. J. Cell Biol. 166, 1003–1014 (2004). (10.1083/jcb.200402082) / J. Cell Biol. by G Lansbergen (2004)
  25. Ligon, L. A., Shelly, S. S., Tokito, M. K. & Holzbaur, E. L. Microtubule binding proteins CLIP-170, EB1, and p150Glued form distinct plus-end complexes. FEBS Lett. 580, 1327–1332 (2006). (10.1016/j.febslet.2006.01.050) / FEBS Lett. by LA Ligon (2006)
  26. Li, S. et al. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J. Biol. Chem. 277, 48596–48601 (2002). (10.1074/jbc.M208512200) / J. Biol. Chem. by S Li (2002)
  27. Saito, K. et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure 12, 1719–1728 (2004). (10.1016/j.str.2004.07.012) / Structure by K Saito (2004)
  28. Hayashi, I., Wilde, A., Mal, T. K. & Ikura, M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol. Cell 19, 449–460 (2005). (10.1016/j.molcel.2005.06.034) / Mol. Cell by I Hayashi (2005)
  29. Honnappa, S. et al. Key interaction modes of dynamic +TIP networks. Mol. Cell 23, 663–671 (2006). (10.1016/j.molcel.2006.07.013) / Mol. Cell by S Honnappa (2006)
  30. Hayashi, I., Plevin, M. J. & Ikura, M. Autoinhibitory interactions within CLIP-170 mimic the intermolecular binding modes of p150Glued and EB1, providing a structural basis for the regulation of microtubule dynamics. Nature Struct. Biol. 14, 980–981 (2007). (10.1038/nsmb1299) / Nature Struct. Biol. by I Hayashi (2007)
  31. Slep, K. C. & Vale, R. D. Structural basis of microtubule plus end tracking by XMAP215, CLIP-170, and EB1. Mol. Cell 27, 976–991 (2007). (10.1016/j.molcel.2007.07.023) / Mol. Cell by KC Slep (2007)
  32. Pierre, P., Scheel, J., Rickard, J. E. & Kreis, T. E. CLIP-170 links endocytic vesicles to microtubules. Cell 70, 887–900 (1992). (10.1016/0092-8674(92)90240-D) / Cell by P Pierre (1992)
  33. De Zeeuw, C. I. et al. CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron 19, 1187–1199 (1997). (10.1016/S0896-6273(00)80411-0) / Neuron by CI De Zeeuw (1997)
  34. Nathke, I. S. The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu. Rev. Cell Dev. Biol. 20, 337–366 (2004). (10.1146/annurev.cellbio.20.012103.094541) / Annu. Rev. Cell Dev. Biol. by IS Nathke (2004)
  35. Miller, R. K. & Rose, M. D. Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J. Cell Biol. 140, 377–390 (1998). (10.1083/jcb.140.2.377) / J. Cell Biol. by RK Miller (1998)
  36. Jefferson, J. J., Leung, C. L. & Liem, R. K. Plakins: goliaths that link cell junctions and the cytoskeleton. Nature Rev. Mol. Cell Biol. 5, 542–553 (2004). (10.1038/nrm1425) / Nature Rev. Mol. Cell Biol. by JJ Jefferson (2004)
  37. Grigoriev, I. et al. STIM1 is a microtubule plus end tracking protein involved in remodeling of the endoplasmic reticulum. Curr. Biol 18, 177–182 (2008). (10.1016/j.cub.2007.12.050) / Curr. Biol by I Grigoriev (2008)
  38. Wu, X. S., Tsan, G. L. & Hammer, J. A. Melanophilin and myosin Va track the microtubule plus end on EB1. J. Cell Biol. 171, 201–207 (2005). (10.1083/jcb.200503028) / J. Cell Biol. by XS Wu (2005)
  39. Martinez-Lopez, M. J. et al. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol. Cell Neurosci. 28, 599–612 (2005). (10.1016/j.mcn.2004.09.016) / Mol. Cell Neurosci. by MJ Martinez-Lopez (2005)
  40. Rogers, S. L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R. D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004). (10.1016/j.cub.2004.09.078) / Curr. Biol. by SL Rogers (2004)
  41. Hoogenraad, C. C., Akhmanova, A., Grosveld, F., De Zeeuw, C. I. & Galjart, N. Functional analysis of CLIP-115 and its binding to microtubules. J. Cell Sci. 113, 2285–2297 (2000). (10.1242/jcs.113.12.2285) / J. Cell Sci. by CC Hoogenraad (2000)
  42. Culver-Hanlon, T. L., Lex, S. A., Stephens, A. D., Quintyne, N. J. & King, S. J. A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules. Nature Cell Biol. 8, 264–270 (2006). (10.1038/ncb1370) / Nature Cell Biol. by TL Culver-Hanlon (2006)
  43. Gard, D. L., Becker, B. E. & Josh Romney, S. MAPping the eukaryotic tree of life: structure, function, and evolution of the MAP215/Dis1 family of microtubule-associated proteins. Int. Rev. Cytol. 239, 179–272 (2004). (10.1016/S0074-7696(04)39004-2) / Int. Rev. Cytol. by DL Gard (2004)
  44. Al-Bassam, J., Larsen, N. A., Hyman, A. A. & Harrison, S. C. Crystal structure of a TOG domain: conserved features of XMAP215/Dis1-family TOG domains and implications for tubulin binding. Structure 15, 355–362 (2007). (10.1016/j.str.2007.01.012) / Structure by J Al-Bassam (2007)
  45. Kim, M. H. et al. The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12, 987–998 (2004). (10.1016/j.str.2004.03.024) / Structure by MH Kim (2004)
  46. Tarricone, C. et al. Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44, 809–821 (2004). / Neuron by C Tarricone (2004)
  47. Tai, C. Y., Dujardin, D. L., Faulkner, N. E. & Vallee, R. B. Role of dynein, dynactin, and CLIP-170 interactions in LIS1 kinetochore function. J. Cell Biol. 156, 959–968 (2002). (10.1083/jcb.200109046) / J. Cell Biol. by CY Tai (2002)
  48. Coquelle, F. M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002). (10.1128/MCB.22.9.3089-3102.2002) / Mol. Cell. Biol. by FM Coquelle (2002)
  49. Wu, X., Xiang, X. & Hammer, J. A. Motor proteins at the microtubule plus-end. Trends Cell Biol. 16, 135–143 (2006). (10.1016/j.tcb.2006.01.004) / Trends Cell Biol. by X Wu (2006)
  50. Carvalho, P., Gupta, M. L. Jr, Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004). (10.1016/j.devcel.2004.05.001) / Dev. Cell by P Carvalho (2004)
  51. Salmon, E. D. Microtubules: a ring for the depolymerization motor. Curr. Biol. 15, R299–R302 (2005). (10.1016/j.cub.2005.04.005) / Curr. Biol. by ED Salmon (2005)
  52. Mennella, V. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nature Cell Biol. 7, 235–245 (2005). The first demonstration that a microtubule-destabilizing factor can also track growing microtubule ends. (10.1038/ncb1222) / Nature Cell Biol. by V Mennella (2005)
  53. Brouhard, G. J. et al. XMAP215 is a processive microtubule polymerase. Cell 132, 79–88 (2008). A thorough analysis of XMAP215 behaviour and activity at the microtubule ends at a single molecule level. (10.1016/j.cell.2007.11.043) / Cell by GJ Brouhard (2008)
  54. Sandblad, L. et al. The Schizosaccharomyces pombe EB1 homolog Mal3p binds and stabilizes the microtubule lattice seam. Cell 127, 1415–1424 (2006). An elegant structural study, which shows microtubule seam binding by an EB family member. (10.1016/j.cell.2006.11.025) / Cell by L Sandblad (2006)
  55. Bieling, P. et al. Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450, 1100–1105 (2007). For the first time, describes the in vitro reconstitution of plus-end tracking behaviour of the three main fission yeast +TIPs: Mal3, Tip1 and Tea2. (10.1038/nature06386) / Nature by P Bieling (2007)
  56. Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831–843 (2004). (10.1016/j.devcel.2004.05.008) / Dev. Cell by KE Busch (2004)
  57. Tirnauer, J. S., Grego, S., Salmon, E. D. & Mitchison, T. J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002). / Mol. Biol. Cell by JS Tirnauer (2002)
  58. Arnal, I., Heichette, C., Diamantopoulos, G. S. & Chretien, D. CLIP-170/tubulin-curved oligomers coassemble at microtubule ends and promote rescues. Curr. Biol. 14, 2086–2095 (2004). (10.1016/j.cub.2004.11.055) / Curr. Biol. by I Arnal (2004)
  59. Diamantopoulos, G. S. et al. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J. Cell Biol. 144, 99–112 (1999). (10.1083/jcb.144.1.99) / J. Cell Biol. by GS Diamantopoulos (1999)
  60. Folker, E. S., Baker, B. M. & Goodson, H. V. Interactions between CLIP-170, tubulin, and microtubules: implications for the mechanism of CLIP-170 plus-end tracking behavior. Mol. Biol. Cell 16, 5373–5384 (2005). (10.1091/mbc.e04-12-1106) / Mol. Biol. Cell by ES Folker (2005)
  61. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S. & Howard, J. The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115–119 (2006). (10.1038/nature04736) / Nature by J Helenius (2006)
  62. Jimbo, T. et al. Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nature Cell Biol. 4, 323–327 (2002). (10.1038/ncb779) / Nature Cell Biol. by T Jimbo (2002)
  63. Siegrist, S. E. & Doe, C. Q. Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335 (2005). (10.1016/j.cell.2005.09.043) / Cell by SE Siegrist (2005)
  64. Carvalho, P., Tirnauer, J. S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 13, 229–237 (2003). (10.1016/S0962-8924(03)00074-6) / Trends Cell Biol. by P Carvalho (2003)
  65. Su, L. K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995). / Cancer Res. by LK Su (1995)
  66. Browning, H., Hackney, D. D. & Nurse, P. Targeted movement of cell end factors in fission yeast. Nature Cell Biol. 5, 812–818 (2003). (10.1038/ncb1034) / Nature Cell Biol. by H Browning (2003)
  67. Mimori-Kiyosue, Y. et al. CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J. Cell Biol. 168, 141–153 (2005). (10.1083/jcb.200405094) / J. Cell Biol. by Y Mimori-Kiyosue (2005)
  68. Niethammer, P. et al. Discrete states of a protein interaction network govern interphase and mitotic microtubule dynamics. PLoS Biol. 5, e29 (2007). One of the first attempts to achieve an integrated view of interactions between multiple MAPs and their regulation during the cell cycle. (10.1371/journal.pbio.0050029) / PLoS Biol. by P Niethammer (2007)
  69. Wen, Y. et al. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nature Cell Biol. 6, 820–830 (2004). (10.1038/ncb1160) / Nature Cell Biol. by Y Wen (2004)
  70. Mishima, M. et al. Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition. Proc. Natl Acad. Sci. USA 104, 10346–10351 (2007). Together with references17, 29 and 30, provides a structural basis of interactions between CAP-Gly domains and EEY/F motifs. (10.1073/pnas.0703876104) / Proc. Natl Acad. Sci. USA by M Mishima (2007)
  71. Badin-Larcon, A. C. et al. Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proc. Natl Acad. Sci. USA 101, 5577–5582 (2004). (10.1073/pnas.0307917101) / Proc. Natl Acad. Sci. USA by AC Badin-Larcon (2004)
  72. Peris, L. et al. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174, 839–849 (2006). (10.1083/jcb.200512058) / J. Cell Biol. by L Peris (2006)
  73. Wolyniak, M. J. et al. The regulation of microtubule dynamics in Saccharomyces cerevisiae by three interacting plus-end tracking proteins. Mol. Biol. Cell 17, 2789–2798 (2006). (10.1091/mbc.e05-09-0892) / Mol. Biol. Cell by MJ Wolyniak (2006)
  74. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003). Shows how the interaction between microtubule tips and the actin system contributes to spindle positioning in budding yeast. (10.1016/S0092-8674(03)00119-3) / Cell by D Liakopoulos (2003)
  75. Sheeman, B. et al. Determinants of Saccharomyces cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr. Biol. 13, 364–372 (2003). (10.1016/S0960-9822(03)00013-7) / Curr. Biol. by B Sheeman (2003)
  76. Zumbrunn, J., Kinoshita, K., Hyman, A. A. & Nathke, I. S. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Curr. Biol. 11, 44–49 (2001). (10.1016/S0960-9822(01)00002-1) / Curr. Biol. by J Zumbrunn (2001)
  77. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001). (10.1016/S0092-8674(01)00288-4) / Cell by A Akhmanova (2001)
  78. Wittmann, T. & Waterman-Storer, C. M. Spatial regulation of CLASP affinity for microtubules by Rac1 and GSK3β in migrating epithelial cells. J. Cell Biol. 169, 929–939 (2005). (10.1083/jcb.200412114) / J. Cell Biol. by T Wittmann (2005)
  79. Zhou, F. Q., Zhou, J., Dedhar, S., Wu, Y. H. & Snider, W. D. NGF-induced axon growth is mediated by localized inactivation of GSK-3β and functions of the microtubule plus end binding protein APC. Neuron 42, 897–912 (2004). (10.1016/j.neuron.2004.05.011) / Neuron by FQ Zhou (2004)
  80. Choi, J. H. et al. The FKBP12-rapamycin-associated protein (FRAP) is a CLIP-170 kinase. EMBO Rep. 3, 988–994 (2002). (10.1093/embo-reports/kvf197) / EMBO Rep. by JH Choi (2002)
  81. Vaughan, P. S., Miura, P., Henderson, M., Byrne, B. & Vaughan, K. T. A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J. Cell Biol. 158, 305–319 (2002). (10.1083/jcb.200201029) / J. Cell Biol. by PS Vaughan (2002)
  82. Zhang, X., Lan, W., Ems-McClung, S. C., Stukenberg, P. T. & Walczak, C. E. Aurora B phosphorylates multiple sites on MCAK to spatially and temporally regulate its function. Mol. Biol. Cell 18, 3264–3276 (2007). (10.1091/mbc.e07-01-0086) / Mol. Biol. Cell by X Zhang (2007)
  83. Maekawa, H. & Schiebel, E. Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev. 18, 1709–1724 (2004). (10.1101/gad.298704) / Genes Dev. by H Maekawa (2004)
  84. Moore, J. K. & Miller, R. K. The cyclin-dependent kinase Cdc28p regulates multiple aspects of Kar9p function in yeast. Mol. Biol. Cell 18, 1187–1202 (2007). (10.1091/mbc.e06-04-0360) / Mol. Biol. Cell by JK Moore (2007)
  85. Manna, T., Honnappa, S., Steinmetz, M. O. & Wilson, L. Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150(Glued). Biochemistry 47, 779–786 (2007). (10.1021/bi701912g) / Biochemistry by T Manna (2007)
  86. Li, Z. & Nathke, I. S. Tumor-associated NH2-terminal fragments are the most stable part of the adenomatous polyposis coli protein and can be regulated by interactions with COOH-terminal domains. Cancer Res. 65, 5195–5204 (2005). (10.1158/0008-5472.CAN-04-4609) / Cancer Res. by Z Li (2005)
  87. Moore, A. & Wordeman, L. C-terminus of mitotic centromere-associated kinesin (MCAK) inhibits its lattice-stimulated ATPase activity. Biochem. J. 383, 227–235 (2004). (10.1042/BJ20040736) / Biochem. J. by A Moore (2004)
  88. Komarova, Y. A., Akhmanova, A. S., Kojima, S., Galjart, N. & Borisy, G. G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002). (10.1083/jcb.200208058) / J. Cell Biol. by YA Komarova (2002)
  89. Westermann, S. & Weber, K. Post-translational modifications regulate microtubule function. Nature Rev. Mol. Cell Biol. 4, 938–947 (2003). (10.1038/nrm1260) / Nature Rev. Mol. Cell Biol. by S Westermann (2003)
  90. Erck, C. et al. A vital role of tubulin-tyrosine-ligase for neuronal organization. Proc. Natl Acad. Sci. USA 102, 7853–7858 (2005). (10.1073/pnas.0409626102) / Proc. Natl Acad. Sci. USA by C Erck (2005)
  91. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005). (10.1016/j.ceb.2004.11.001) / Curr. Opin. Cell Biol. by A Akhmanova (2005)
  92. Hestermann, A., Rehberg, M. & Graf, R. Centrosomal microtubule plus end tracking proteins and their role in Dictyostelium cell dynamics. J. Muscle Res. Cell Motil. 23, 621–630 (2002). (10.1023/A:1024450922609) / J. Muscle Res. Cell Motil. by A Hestermann (2002)
  93. Moores, C. A. & Milligan, R. A. Lucky 13-microtubule depolymerisation by kinesin-13 motors. J. Cell Sci. 119, 3905–3913 (2006). (10.1242/jcs.03224) / J. Cell Sci. by CA Moores (2006)
  94. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006). (10.1038/nature04928) / Nature by JW Kerssemakers (2006)
  95. Schek, H. T., Gardner, M. K., Cheng, J., Odde, D. J. & Hunt, A. J. Microtubule assembly dynamics at the nanoscale. Curr. Biol. 17, 1445–1455 (2007). References94 and 95 are the first to examine microtubule growth at the nanoscale level using optical tweezers. Their partly conflicting conclusions require further examination. (10.1016/j.cub.2007.07.011) / Curr. Biol. by HT Schek (2007)
  96. Kita, K., Wittmann, T., Nathke, I. S. & Waterman-Storer, C. M. Adenomatous polyposis coli on microtubule plus ends in cell extensions can promote microtubule net growth with or without EB1. Mol. Biol. Cell 17, 2331–2345 (2006). (10.1091/mbc.e05-06-0498) / Mol. Biol. Cell by K Kita (2006)
  97. Sousa, A., Reis, R., Sampaio, P. & Sunkel, C. E. The Drosophila CLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. Cell Motil. Cytoskeleton 64, 605–620 (2007). (10.1002/cm.20208) / Cell Motil. Cytoskeleton by A Sousa (2007)
  98. Lee, T., Langford, K. J., Askham, J. M., Bruning-Richardson, A. & Morrison, E. E. MCAK associates with EB1. Oncogene, 29 Oct 2007 (doi:10.1038/sj.onc.1210867). (10.1038/sj.onc.1210867) / Oncogene by T Lee (2007)
  99. Moore, A. T. et al. MCAK associates with the tips of polymerizing microtubules. J. Cell Biol. 169, 391–397 (2005). (10.1083/jcb.200411089) / J. Cell Biol. by AT Moore (2005)
  100. Lansbergen, G. et al. CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5β. Dev. Cell 11, 21–32 (2006). (10.1016/j.devcel.2006.05.012) / Dev. Cell by G Lansbergen (2006)
  101. Grallert, A. et al. Schizosaccharomyces pombe CLASP needs dynein, not EB1 or CLIP170, to induce microtubule instability and slows polymerization rates at cell tips in a dynein-dependent manner. Genes Dev. 20, 2421–2436 (2006). (10.1101/gad.381306) / Genes Dev. by A Grallert (2006)
  102. Huisman, S. M. & Segal, M. Cortical capture of microtubules and spindle polarity in budding yeast — where's the catch? J. Cell Sci. 118, 463–471 (2005). (10.1242/jcs.01650) / J. Cell Sci. by SM Huisman (2005)
  103. Gundersen, G. G., Gomes, E. R. & Wen, Y. Cortical control of microtubule stability and polarization. Curr. Opin. Cell Biol. 16, 106–112 (2004). (10.1016/j.ceb.2003.11.010) / Curr. Opin. Cell Biol. by GG Gundersen (2004)
  104. Siegrist, S. E. & Doe, C. Q. Microtubule-induced cortical cell polarity. Genes Dev. 21, 483–496 (2007). (10.1101/gad.1511207) / Genes Dev. by SE Siegrist (2007)
  105. Kodama, A., Karakesisoglou, I., Wong, E., Vaezi, A. & Fuchs, E. ACF7: an essential integrator of microtubule dynamics. Cell 115, 343–354 (2003). (10.1016/S0092-8674(03)00813-4) / Cell by A Kodama (2003)
  106. Tsvetkov, A. S., Samsonov, A., Akhmanova, A., Galjart, N. & Popov, S. V. Microtubule-binding proteins CLASP1 and CLASP2 interact with actin filaments. Cell Motil. Cytoskeleton 64, 519–530 (2007). (10.1002/cm.20201) / Cell Motil. Cytoskeleton by AS Tsvetkov (2007)
  107. Moseley, J. B. et al. Regulated binding of adenomatous polyposis coli protein to actin. J. Biol. Chem. 282, 12661–12668 (2007). (10.1074/jbc.M610615200) / J. Biol. Chem. by JB Moseley (2007)
  108. Etienne-Manneville, S., Manneville, J. B., Nicholls, S., Ferenczi, M. A. & Hall, A. Cdc42 and Par6-PKCζ regulate the spatially localized association of Dlg1 and APC to control cell polarization. J. Cell Biol. 170, 895–901 (2005). (10.1083/jcb.200412172) / J. Cell Biol. by S Etienne-Manneville (2005)
  109. Drabek, K. et al. Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr. Biol. 16, 2259–2264 (2006). (10.1016/j.cub.2006.09.065) / Curr. Biol. by K Drabek (2006)
  110. Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007). (10.1038/nature05637) / Nature by RS Lewis (2007)
  111. Maiato, H., DeLuca, J., Salmon, E. D. & Earnshaw, W. C. The dynamic kinetochore–microtubule interface. J. Cell Sci. 117, 5461–5477 (2004). (10.1242/jcs.01536) / J. Cell Sci. by H Maiato (2004)
  112. Pearson, C. G. & Bloom, K. Dynamic microtubules lead the way for spindle positioning. Nature Rev. Mol. Cell Biol. 5, 481–492 (2004). (10.1038/nrm1402) / Nature Rev. Mol. Cell Biol. by CG Pearson (2004)
  113. Pecreaux, J. et al. Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators. Curr. Biol. 16, 2111–2122 (2006). (10.1016/j.cub.2006.09.030) / Curr. Biol. by J Pecreaux (2006)
  114. Kim, H. et al. Microtubule binding by dynactin is required for microtubule organization but not cargo transport. J. Cell Biol. 176, 641–651 (2007). (10.1083/jcb.200608128) / J. Cell Biol. by H Kim (2007)
  115. Watson, P. & Stephens, D. J. Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J. Cell Sci. 119, 2758–2767 (2006). (10.1242/jcs.02999) / J. Cell Sci. by P Watson (2006)
  116. Goshima, G., Nedelec, F. & Vale, R. D. Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J. Cell Biol. 171, 229–240 (2005). (10.1083/jcb.200505107) / J. Cell Biol. by G Goshima (2005)
  117. Ambrose, J. C., Li, W., Marcus, A., Ma, H. & Cyr, R. A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol. Biol. Cell 16, 1584–1592 (2005). (10.1091/mbc.e04-10-0935) / Mol. Biol. Cell by JC Ambrose (2005)
  118. Ambrose, J. C. & Cyr, R. The kinesin ATK5 functions in early spindle assembly in Arabidopsis. Plant Cell 19, 226–236 (2007). (10.1105/tpc.106.047613) / Plant Cell by JC Ambrose (2007)
  119. Janson, M. E. et al. Crosslinkers and motors organize dynamic microtubules to form stable bipolar arrays in fission yeast. Cell 128, 357–368 (2007). Provides a quantitative view of interphase microtubule bundle formation in interphase fission yeast cells. (10.1016/j.cell.2006.12.030) / Cell by ME Janson (2007)
  120. Dogterom, M., Kerssemakers, J. W., Romet-Lemonne, G. & Janson, M. E. Force generation by dynamic microtubules. Curr. Opin. Cell Biol. 17, 67–74 (2005). (10.1016/j.ceb.2004.12.011) / Curr. Opin. Cell Biol. by M Dogterom (2005)
  121. Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 15, 48–53 (2003). (10.1016/S0955-0674(02)00007-8) / Curr. Opin. Cell Biol. by N Galjart (2003)
  122. Small, J. V. & Kaverina, I. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin. Cell Biol. 15, 40–47 (2003). (10.1016/S0955-0674(02)00008-X) / Curr. Opin. Cell Biol. by JV Small (2003)
  123. Stehbens, S. J. et al. Dynamic microtubules regulate the local concentration of E-cadherin at cell–cell contacts. J. Cell Sci. 119, 1801–1811 (2006). (10.1242/jcs.02903) / J. Cell Sci. by SJ Stehbens (2006)
  124. Shaw, R. M. et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128, 547–560 (2007). (10.1016/j.cell.2006.12.037) / Cell by RM Shaw (2007)
  125. Wang, H. W. & Nogales, E. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915 (2005). (10.1038/nature03606) / Nature by HW Wang (2005)
  126. Bulinski, J. C. & Gundersen, G. G. Stabilization of post-translational modification of microtubules during cellular morphogenesis. Bioessays 13, 285–293 (1991). (10.1002/bies.950130605) / Bioessays by JC Bulinski (1991)
  127. Mialhe, A. et al. Tubulin detyrosination is a frequent occurrence in breast cancers of poor prognosis. Cancer Res. 61, 5024–5027 (2001). / Cancer Res. by A Mialhe (2001)
  128. Kato, C. et al. Low expression of human tubulin tyrosine ligase and suppressed tubulin tyrosination/detyrosination cycle are associated with impaired neuronal differentiation in neuroblastomas with poor prognosis. Int. J. Cancer 112, 365–375 (2004). (10.1002/ijc.20431) / Int. J. Cancer by C Kato (2004)
Dates
Type When
Created 17 years, 5 months ago (March 5, 2008, 10:41 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 11:55 p.m.)
Indexed 3 days, 16 hours ago (Aug. 30, 2025, 1:03 p.m.)
Issued 17 years, 5 months ago (April 1, 2008)
Published 17 years, 5 months ago (April 1, 2008)
Published Print 17 years, 5 months ago (April 1, 2008)
Funders 0

None

@article{Akhmanova_2008, title={Tracking the ends: a dynamic protein network controls the fate of microtubule tips}, volume={9}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm2369}, DOI={10.1038/nrm2369}, number={4}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Akhmanova, Anna and Steinmetz, Michel O.}, year={2008}, month=apr, pages={309–322} }