Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Sullivan, M., & Morgan, D. O. (2007). Finishing mitosis, one step at a time. Nature Reviews Molecular Cell Biology, 8(11), 894–903.

Authors 2
  1. Matt Sullivan (first)
  2. David O. Morgan (additional)
References 82 Referenced 291
  1. Morgan, D. O. The Cell Cycle: Principles of Control (New Science Press, London, 2007). / The Cell Cycle: Principles of Control by DO Morgan (2007)
  2. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006). (10.1038/nrm1988) / Nature Rev. Mol. Cell Biol. by JM Peters (2006)
  3. Thornton, B. R. & Toczyski, D. P. Precise destruction: an emerging picture of the APC. Genes Dev. 20, 3069–3078 (2006). (10.1101/gad.1478306) / Genes Dev. by BR Thornton (2006)
  4. Furuno, N., den Elzen, N. & Pines, J. Human cyclin A is required for mitosis until mid prophase. J. Cell Biol. 147, 295–306 (1999). (10.1083/jcb.147.2.295) / J. Cell Biol. by N Furuno (1999)
  5. Gong, D. et al. Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1. Curr. Biol. 17, 85–91 (2007). (10.1016/j.cub.2006.11.066) / Curr. Biol. by D Gong (2007)
  6. den Elzen, N. & Pines, J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001). (10.1083/jcb.153.1.121) / J. Cell Biol. by N den Elzen (2001)
  7. Hagting, A. et al. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125–1137 (2002). (10.1083/jcb.200111001) / J. Cell Biol. by A Hagting (2002)
  8. Sigrist, S., Jacobs, J., Stratmann, R. & Lehner, C. F. Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B, and B3. EMBO J. 14, 4827–4838 (1995). (10.1002/j.1460-2075.1995.tb00164.x) / EMBO J. by S Sigrist (1995)
  9. Jacobs, H. W., Knoblich, J. A. & Lehner, C. F. Drosophila cyclin B3 is required for female fertility and is dispensable for mitosis like cyclin B. Genes Dev. 12, 3741–3751 (1998). (10.1101/gad.12.23.3741) / Genes Dev. by HW Jacobs (1998)
  10. Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nature Rev. Mol. Cell Biol. 8, 149–160 (2007). (10.1038/nrm2105) / Nature Rev. Mol. Cell Biol. by J Bloom (2007)
  11. Parry, D. H. & O'Farrell, P. H. The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis. Curr. Biol. 11, 671–683 (2001). Evidence that the timing of destruction of distinct cyclins by the APC helps to order late mitotic events. (10.1016/S0960-9822(01)00204-4) / Curr. Biol. by DH Parry (2001)
  12. Peeper, D. S. et al. A- and B-type cyclins differentially modulate substrate specificity of cyclin-CDK complexes. EMBO J. 12, 1947–1954 (1993). (10.1002/j.1460-2075.1993.tb05844.x) / EMBO J. by DS Peeper (1993)
  13. Brown, N. R., Noble, M. E., Endicott, J. A. & Johnson, L. N. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biol. 1, 438–443 (1999). (10.1038/15674) / Nature Cell Biol. by NR Brown (1999)
  14. Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005). (10.1038/nature03329) / Nature by M Loog (2005)
  15. Stegmeier, F. & Amon, A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203–232 (2004). (10.1146/annurev.genet.38.072902.093051) / Annu. Rev. Genet. by F Stegmeier (2004)
  16. D'Amours, D. & Amon, A. At the interface between signaling and executing anaphase — Cdc14 and the FEAR network. Genes Dev. 18, 2581–2595 (2004). (10.1101/gad.1247304) / Genes Dev. by D D'Amours (2004)
  17. Shou, W. et al. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233–244 (1999). (10.1016/S0092-8674(00)80733-3) / Cell by W Shou (1999)
  18. Visintin, R., Hwang, E. S. & Amon, A. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818–823 (1999). (10.1038/19775) / Nature by R Visintin (1999)
  19. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002). (10.1016/S0092-8674(02)00618-9) / Cell by F Stegmeier (2002)
  20. Queralt, E., Lehane, C., Novak, B. & Uhlmann, F. Downregulation of PP2ACdc55 phosphatase by separase initiates mitotic exit in budding yeast. Cell 125, 719–732 (2006). Evidence that separase promotes Cdc14 activation during early anaphase by blocking the actions of the phosphatase PP2A. (10.1016/j.cell.2006.03.038) / Cell by E Queralt (2006)
  21. Jaspersen, S. L., Charles, J. F., Tinker-Kulberg, R. L. & Morgan, D. O. A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9, 2803–2817 (1998). (10.1091/mbc.9.10.2803) / Mol. Biol. Cell by SL Jaspersen (1998)
  22. D'Amours, D., Stegmeier, F. & Amon, A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117, 455–469 (2004). (10.1016/S0092-8674(04)00413-1) / Cell by D D'Amours (2004)
  23. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004). (10.1016/S0092-8674(04)00415-5) / Cell by M Sullivan (2004)
  24. Ross, K. E. & Cohen-Fix, O. A role for the FEAR pathway in nuclear positioning during anaphase. Dev. Cell 6, 729–735 (2004). (10.1016/S1534-5807(04)00128-5) / Dev. Cell by KE Ross (2004)
  25. Higuchi, T. & Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433, 171–176 (2005). Demonstration that Cdc14 activation during early anaphase promotes normal anaphase spindle and chromosome behaviours. (10.1038/nature03240) / Nature by T Higuchi (2005)
  26. Pereira, G. & Schiebel, E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003). (10.1126/science.1091936) / Science by G Pereira (2003)
  27. Woodbury, E. L. & Morgan, D. O. Cdk and APC activities limit the spindle-stabilizing function of Fin1 to anaphase. Nature Cell Biol. 9, 106–112 (2007). (10.1038/ncb1523) / Nature Cell Biol. by EL Woodbury (2007)
  28. Khmelinskii, A., Lawrence, C., Roostalu, J. & Schiebel, E. Cdc14-regulated midzone assembly controls anaphase B. J. Cell Biol. 177, 981–993 (2007). (10.1083/jcb.200702145) / J. Cell Biol. by A Khmelinskii (2007)
  29. Trautmann, S. & McCollum, D. Cell cycle: new functions for Cdc14 family phosphatases. Curr. Biol. 12, R733–R735 (2002). (10.1016/S0960-9822(02)01250-2) / Curr. Biol. by S Trautmann (2002)
  30. Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001). (10.1016/S0092-8674(01)00603-1) / Cell by O Stemmann (2001)
  31. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–148 (2001). (10.1083/jcb.153.1.137) / J. Cell Biol. by S Geley (2001)
  32. Gorr, I. H., Boos, D. & Stemmann, O. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell 19, 135–141 (2005). (10.1016/j.molcel.2005.05.022) / Mol. Cell by IH Gorr (2005)
  33. Chang, D. C., Xu, N. & Luo, K. Q. Degradation of cyclin B is required for the onset of anaphase in mammalian cells. J. Biol. Chem. 278, 37865–37873 (2003). (10.1074/jbc.M306376200) / J. Biol. Chem. by DC Chang (2003)
  34. Herbert, M. et al. Homologue disjunction in mouse oocytes requires proteolysis of securin and cyclin B1. Nature Cell Biol. 5, 1023–1025 (2003). (10.1038/ncb1062) / Nature Cell Biol. by M Herbert (2003)
  35. Parry, D. H., Hickson, G. R. & O'Farrell, P. H. Cyclin B destruction triggers changes in kinetochore behavior essential for successful anaphase. Curr. Biol. 13, 647–653 (2003). (10.1016/S0960-9822(03)00242-2) / Curr. Biol. by DH Parry (2003)
  36. Wheatley, S. P. et al. CDK1 inactivation regulates anaphase spindle dynamics and cytokinesis in vivo. J. Cell Biol. 138, 385–393 (1997). (10.1083/jcb.138.2.385) / J. Cell Biol. by SP Wheatley (1997)
  37. Zhu, C., Lau, E., Schwarzenbacher, R., Bossy-Wetzel, E. & Jiang, W. Spatiotemporal control of spindle midzone formation by PRC1 in human cells. Proc. Natl Acad. Sci. USA 103, 6196–6201 (2006). (10.1073/pnas.0506926103) / Proc. Natl Acad. Sci. USA by C Zhu (2006)
  38. Jaspersen, S. L., Charles, J. F. & Morgan, D. O. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 9, 227–236 (1999). (10.1016/S0960-9822(99)80111-0) / Curr. Biol. by SL Jaspersen (1999)
  39. Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 1721–1724 (1998). (10.1126/science.282.5394.1721) / Science by W Zachariae (1998)
  40. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001). (10.1038/35107009) / Nature by P Nash (2001)
  41. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997). (10.1126/science.278.5337.455) / Science by R Verma (1997)
  42. Visintin, R. et al. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2, 709–718 (1998). (10.1016/S1097-2765(00)80286-5) / Mol. Cell by R Visintin (1998)
  43. Moll, T., Tebb, G., Surana, U., Robitsch, H. & Nasmyth, K. The role of phosphorylation and the CDC28 protein kinase in the cell cycle-regulated nuclear import of the S. cerevisiae transcription factor SWI5. Cell 66, 743–758 (1991). (10.1016/0092-8674(91)90118-I) / Cell by T Moll (1991)
  44. Jaquenoud, M., van Drogen, F. & Peter, M. Cell cycle-dependent nuclear export of Cdh1p may contribute to the inactivation of APC/CCdh1. EMBO J. 21, 6515–6526 (2002). (10.1093/emboj/cdf634) / EMBO J. by M Jaquenoud (2002)
  45. Bembenek, J. et al. Crm1-mediated nuclear export of Cdc14 is required for the completion of cytokinesis in budding yeast. Cell Cycle 4, 961–971 (2005). (10.4161/cc.4.7.1798) / Cell Cycle by J Bembenek (2005)
  46. King, R. W., Glotzer, M. & Kirschner, M. W. Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol. Biol. Cell 7, 1343–1357 (1996). (10.1091/mbc.7.9.1343) / Mol. Biol. Cell by RW King (1996)
  47. Pfleger, C. M. & Kirschner, M. W. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655–665 (2000). (10.1101/gad.14.6.655) / Genes Dev. by CM Pfleger (2000)
  48. Burton, J. L., Tsakraklides, V. & Solomon, M. J. Assembly of an APC–Cdh1–substrate complex is stimulated by engagement of a destruction box. Mol. Cell 18, 533–542 (2005). (10.1016/j.molcel.2005.04.022) / Mol. Cell by JL Burton (2005)
  49. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell 18, 543–553 (2005). (10.1016/j.molcel.2005.04.023) / Mol. Cell by C Kraft (2005)
  50. Yamano, H., Gannon, J., Mahbubani, H. & Hunt, T. Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts. Mol. Cell 13, 137–147 (2004). (10.1016/S1097-2765(03)00480-5) / Mol. Cell by H Yamano (2004)
  51. Carroll, C. W., Enquist-Newman, M. & Morgan, D. O. The APC subunit Doc1 promotes recognition of the substrate destruction box. Curr. Biol. 15, 11–18 (2005). (10.1016/j.cub.2004.12.066) / Curr. Biol. by CW Carroll (2005)
  52. Hildebrandt, E. R. & Hoyt, M. A. Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APCCdh1 and a bipartite destruction sequence. Mol. Biol. Cell 12, 3402–3416 (2001). (10.1091/mbc.12.11.3402) / Mol. Biol. Cell by ER Hildebrandt (2001)
  53. Castro, A., Vigneron, S., Bernis, C., Labbe, J. C. & Lorca, T. Xkid is degraded in a D-box, KEN-box, and A-box-independent pathway. Mol. Cell Biol. 23, 4126–4138 (2003). (10.1128/MCB.23.12.4126-4138.2003) / Mol. Cell Biol. by A Castro (2003)
  54. Araki, M., Wharton, R. P., Tang, Z., Yu, H. & Asano, M. Degradation of origin recognition complex large subunit by the anaphase-promoting complex in Drosophila. EMBO J. 22, 6115–6126 (2003). (10.1093/emboj/cdg573) / EMBO J. by M Araki (2003)
  55. Littlepage, L. E. & Ruderman, J. V. Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes Dev. 16, 2274–2285 (2002). (10.1101/gad.1007302) / Genes Dev. by LE Littlepage (2002)
  56. Sullivan, M. & Morgan, D. O. A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase I. J. Biol. Chem. 282, 19710–19715 (2007). (10.1074/jbc.M701507200) / J. Biol. Chem. by M Sullivan (2007)
  57. Yeong, F. M., Lim, H. H., Padmashree, C. G. & Surana, U. Exit from mitosis in budding yeast: biphasic inactivation of the Cdc28–Clb2 mitotic kinase and the role of Cdc20. Mol. Cell 5, 501–511 (2000). (10.1016/S1097-2765(00)80444-X) / Mol. Cell by FM Yeong (2000)
  58. Wäsch, R. & Cross, F. APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418, 556–562 (2002). (10.1038/nature00856) / Nature by R Wäsch (2002)
  59. Eluere, R. et al. Compartmentalization of the functions and regulation of the mitotic cyclin Clb2 in S. cerevisiae. J. Cell Sci. 120, 702–711 (2007). (10.1242/jcs.03380) / J. Cell Sci. by R Eluere (2007)
  60. Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biol. 8, 607–614 (2006). The authors suggest that certain APC substrates, such as Nek2A, can bind to the APC independently of Cdc20, triggering their destruction before metaphase. (10.1038/ncb1410) / Nature Cell Biol. by MJ Hayes (2006)
  61. Gabellini, D. et al. Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression. EMBO J. 22, 3715–3724 (2003). (10.1093/emboj/cdg340) / EMBO J. by D Gabellini (2003)
  62. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007). (10.1038/nrm2163) / Nature Rev. Mol. Cell Biol. by A Musacchio (2007)
  63. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Curr. Biol. 13, 1459–1468 (2003). (10.1016/S0960-9822(03)00581-5) / Curr. Biol. by HC Vodermaier (2003)
  64. Lindon, C. & Pines, J. Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells. J. Cell Biol. 164, 233–241 (2004). Evidence for ordered proteolysis of APCCdh1 substrates during anaphase. (10.1083/jcb.200309035) / J. Cell Biol. by C Lindon (2004)
  65. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006). (10.1016/j.tcb.2005.11.006) / Trends Cell Biol. by J Pines (2006)
  66. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006). Biochemical evidence that ordered APC-substrate degradation is determined in part by the affinity of the APC for its substrates. (10.1016/j.cell.2005.10.032) / Cell by M Rape (2006)
  67. Mailand, N. & Diffley, J. F. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915–926 (2005). (10.1016/j.cell.2005.08.013) / Cell by N Mailand (2005)
  68. Huang, J. & Raff, J. The disappearance of cyclin B at the end of mitosis is regulated spatially in Drosophila cells. EMBO J. 18, 2184–2195 (1999). (10.1093/emboj/18.8.2184) / EMBO J. by J Huang (1999)
  69. Thornton, B. R. & Toczyski, D. P. Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biol. 5, 1090–1094 (2003). (10.1038/ncb1066) / Nature Cell Biol. by BR Thornton (2003)
  70. Juang, Y.-L. et al. APC-mediated proteolysis of Ase1 and the morphogenesis of the mitotic spindle. Science 275, 1311–1314 (1997). (10.1126/science.275.5304.1311) / Science by Y-L Juang (1997)
  71. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003). (10.1038/nature02062) / Nature by JA Ubersax (2003)
  72. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006). (10.1146/annurev.cellbio.22.010605.093503) / Annu. Rev. Cell Dev. Biol. by O Kerscher (2006)
  73. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004). (10.1016/j.bbamcr.2004.09.019) / Biochim. Biophys. Acta by CM Pickart (2004)
  74. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006). (10.1038/ncb1436) / Nature Cell Biol. by DS Kirkpatrick (2006)
  75. Rodrigo-Brenni, M. & Morgan, D. O. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127–139 (2007). (10.1016/j.cell.2007.05.027) / Cell by M Rodrigo-Brenni (2007)
  76. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000). (10.1093/emboj/19.1.94) / EMBO J. by JS Thrower (2000)
  77. Carroll, C. W. & Morgan, D. O. The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nature Cell Biol. 4, 880–887 (2002). (10.1038/ncb871) / Nature Cell Biol. by CW Carroll (2002)
  78. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nature Struct. Mol. Biol. 12, 933–934 (2005). (10.1038/nsmb984) / Nature Struct. Mol. Biol. by ZM Eletr (2005)
  79. Thornton, B. R. et al. An architectural map of the anaphase-promoting complex. Genes Dev. 20, 449–460 (2006). (10.1101/gad.1396906) / Genes Dev. by BR Thornton (2006)
  80. Azzam, R. et al. Phosphorylation by cyclin B–Cdk underlies release of mitotic exit activator Cdc14 from the nucleolus. Science 305, 516–519 (2004). Evidence that Cdk-dependent phosphorylation of Net1 promotes the release of the phosphatase Cdc14 during anaphase. (10.1126/science.1099402) / Science by R Azzam (2004)
  81. Hu, F. et al. Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107, 655–665 (2001). (10.1016/S0092-8674(01)00580-3) / Cell by F Hu (2001)
  82. Jaspersen, S. L. & Morgan, D. O. Cdc14 activates Cdc15 to promote mitotic exit in budding yeast. Curr. Biol. 10, 615–618 (2000). (10.1016/S0960-9822(00)00491-7) / Curr. Biol. by SL Jaspersen (2000)
Dates
Type When
Created 17 years, 11 months ago (Oct. 3, 2007, 7:01 a.m.)
Deposited 3 years, 4 months ago (April 19, 2022, 12:22 p.m.)
Indexed 4 weeks ago (Aug. 7, 2025, 4:33 p.m.)
Issued 17 years, 10 months ago (Nov. 1, 2007)
Published 17 years, 10 months ago (Nov. 1, 2007)
Published Print 17 years, 10 months ago (Nov. 1, 2007)
Funders 0

None

@article{Sullivan_2007, title={Finishing mitosis, one step at a time}, volume={8}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm2276}, DOI={10.1038/nrm2276}, number={11}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Sullivan, Matt and Morgan, David O.}, year={2007}, month=nov, pages={894–903} }