10.1038/nrm2147
Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Vousden, K. H., & Lane, D. P. (2007). p53 in health and disease. Nature Reviews Molecular Cell Biology, 8(4), 275–283.

Authors 2
  1. Karen H. Vousden (first)
  2. David P. Lane (additional)
References 109 Referenced 1,867
  1. Royds, J. A. & Iacopetta, B. p53 and disease: when the guardian angel fails. Cell Death Differ. 13, 1017–1026 (2006). (10.1038/sj.cdd.4401913) / Cell Death Differ. by JA Royds (2006)
  2. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000). (10.1038/35042675) / Nature by B Vogelstein (2000)
  3. Donehower, L. A. The p53-deficient mouse: a model for basic and applied cancer studies. Sem. Cancer Biol. 7, 269–278 (1996). (10.1006/scbi.1996.0035) / Sem. Cancer Biol. by LA Donehower (1996)
  4. Pietsch, E. C., Humbey, O. & Murphey, M. E. Polymorphisms in the p53 pathway. Oncogene 25, 1602–1611 (2006). (10.1038/sj.onc.1209367) / Oncogene by EC Pietsch (2006)
  5. Lapenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006). (10.1038/sj.cdd.4401916) / Cell Death Differ. by O Lapenko (2006)
  6. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004). (10.1016/S0092-8674(04)00127-8) / Cell by S Cawley (2004)
  7. Wei, C. -L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell 124, 207–219 (2006). (10.1016/j.cell.2005.10.043) / Cell by C-L Wei (2006)
  8. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006). This paper provides evidence that loss of p53 might contribute to the Warburg effect. (10.1126/science.1126863) / Science by S Matoba (2006)
  9. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006). (10.1016/j.cell.2006.05.036) / Cell by K Bensaad (2006)
  10. Crighton, D. et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 14, 121–134 (2006). (10.1016/j.cell.2006.05.034) / Cell by D Crighton (2006)
  11. Gatz, S. A. & Wiesmuller, L. p53 in recombination and repair. Cell Death Differ. 13, 1003–1016 (2006). (10.1038/sj.cdd.4401903) / Cell Death Differ. by SA Gatz (2006)
  12. Bensaad, K. & Vousden, K. H. Savior and slayer: the two faces of p53. Nature Med. 11, 1278–1279 (2005). (10.1038/nm1205-1278) / Nature Med. by K Bensaad (2005)
  13. Roger, L., Gadea, G. & Roux, P. Control of cell migration: a tumour suppressor function for p53? Biol. Cell 98, 141–152 (2006). (10.1042/BC20050058) / Biol. Cell by L Roger (2006)
  14. Kortleverm, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nature Cell Biol. 8, 877–884 (2006). (10.1038/ncb1448) / Nature Cell Biol. by RM Kortleverm (2006)
  15. Toeodoro, J. G., Parker, A. E., Zhu, X. & Green, M. R. p53-mediated inhibtion of angiogenesis through up-regulation of a collagen prolyl hydroxylase. Science 313, 968–971 (2006). (10.1126/science.1126391) / Science by JG Toeodoro (2006)
  16. Murray-Zmijewski, F., Lane, D. P. & Bourdon, J. C. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13, 962–972 (2006). (10.1038/sj.cdd.4401914) / Cell Death Differ. by F Murray-Zmijewski (2006)
  17. Wang, X. et al. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J. Cell Biol. 172, 115–125 (2006). (10.1083/jcb.200507106) / J. Cell Biol. by X Wang (2006)
  18. Yee, K. S. & Vousden, K. H. Complicating the complexity of p53. Carcinogenesis 26, 1317–1322 (2005). (10.1093/carcin/bgi122) / Carcinogenesis by KS Yee (2005)
  19. Moll, U. M., Wolff, S., Speidel, D. & Deppert, W. Transcription-independent pro-apoptotic functions of p53. Curr. Opin. Cell Biol. 17, 631–636 (2005). (10.1016/j.ceb.2005.09.007) / Curr. Opin. Cell Biol. by UM Moll (2005)
  20. Yu, J. & Zhang, L. No PUMA, no death: implications for p53-dependent apoptosis. Cancer Cell 4, 248–249 (2003). (10.1016/S1535-6108(03)00249-6) / Cancer Cell by J Yu (2003)
  21. Strom, E. et al. Small-molecule inhibitor of p53 binding to mitochondria protects mice from γ radiation. Nature Chem. Biol. 2, 474–479 (2006). (10.1038/nchembio809) / Nature Chem. Biol. by E Strom (2006)
  22. Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D. & Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732–1735 (2005). An elegant study that consolidates the transcriptionally dependent and independent activities of p53 into a single model. (10.1126/science.1114297) / Science by JE Chipuk (2005)
  23. Levine, A. J., Hu, W. & Feng, Z. The p53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027–1036 (2006). (10.1038/sj.cdd.4401910) / Cell Death Differ. by AJ Levine (2006)
  24. Brooks, C. L. & Gu, W. p53 ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006). (10.1016/j.molcel.2006.01.020) / Mol. Cell by CL Brooks (2006)
  25. Braithwaite, A. W., Del Sal, G. & Lu, X. Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ. 13, 984–993 (2006). (10.1038/sj.cdd.4401924) / Cell Death Differ. by AW Braithwaite (2006)
  26. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005). (10.1038/sj.onc.1208615) / Oncogene by SL Harris (2005)
  27. Marine, J. C. et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 13, 927–934 (2006). (10.1038/sj.cdd.4401912) / Cell Death Differ. by JC Marine (2006)
  28. Nordstrom, W. & Abrams, J. M. Guardian ancestry: fly p53 and damage-inducible apoptosis. Cell Death Differ. 7, 1035–1038 (2000). (10.1038/sj.cdd.4400766) / Cell Death Differ. by W Nordstrom (2000)
  29. Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis and stress resistance. Science 294, 591–595 (2001). (10.1126/science.1065486) / Science by WB Derry (2001)
  30. Schumacher, B., Hofmann, K., Boulton, S. & Gartner, A. The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Curr. Biol. 11, 1722–1727 (2001). (10.1016/S0960-9822(01)00534-6) / Curr. Biol. by B Schumacher (2001)
  31. Kamijo, T. et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res. 59, 2464–2469 (1999). / Cancer Res. by T Kamijo (1999)
  32. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H. G., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003). (10.1016/S1535-6108(03)00134-X) / Cancer Cell by MA Lohrum (2003)
  33. Christophorou, M. A., Ringhausen, I., Finch, A. J., Brown Swigart, L. & Evan, G. I. The pathological p53-mediated response to DNA damage is distinct from p53-mediated tumor suppression. Nature 14, 214–217 (2006). (10.1038/nature05077) / Nature by MA Christophorou (2006)
  34. Efeyan, A., Garcia-Cao, I., Herranz, D., Velasco-Miguel, S. & Serrano, M. Policing of oncogene activity by p53. Nature 443, 159 (2006). References 33 and 34 suggest that the response to oncogene activation, but not to DNA damage, is crucial for p53-mediated tumour suppression. (10.1038/443159a) / Nature by A Efeyan (2006)
  35. Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigensis. Nature 434, 864–870 (2005). (10.1038/nature03482) / Nature by J Bartkova (2005)
  36. Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907–913 (2005). Two studies that, in contrast to 33 and 34, show the importance of the DNA-damage signal to tumour suppression. (10.1038/nature03485) / Nature by VG Gorgoulis (2005)
  37. Lassus, P., Ferlin, M., Piette, J. & Hibner, U. Anti-apoptotic activity of low levels of wild type p53. EMBO J. 15, 4566–4573 (1996). (10.1002/j.1460-2075.1996.tb00834.x) / EMBO J. by P Lassus (1996)
  38. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005). (10.1016/j.molcel.2005.03.027) / Mol. Cell by RG Jones (2005)
  39. Stambolsky, P. et al. Regulation of AIF expression by p53. Cell Death Differ. 13, 2140–2149 (2006). (10.1038/sj.cdd.4401965) / Cell Death Differ. by P Stambolsky (2006)
  40. Johnson, T. M., Yu, Z.-X., Ferrans, V. J., Lowenstein, R. A. & Finkel, T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc. Natl Acad. Sci. USA 93, 11848–11852 (1996). (10.1073/pnas.93.21.11848) / Proc. Natl Acad. Sci. USA by TM Johnson (1996)
  41. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997). (10.1038/38525) / Nature by K Polyak (1997)
  42. Velasco-Miguel, S. et al. PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18, 127–137 (1999). (10.1038/sj.onc.1202274) / Oncogene by S Velasco-Miguel (1999)
  43. Budanov, A. V., Sablina, A. A., Feinstein, E., Koonin, E. V. & Chumakov, P. M. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596–600 (2004). (10.1126/science.1095569) / Science by AV Budanov (2004)
  44. Yoon, K. A., Nakamura, Y. & Arakawa, H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J. Hum. Genet. 49, 134–140 (2004). (10.1007/s10038-003-0122-3) / J. Hum. Genet. by KA Yoon (2004)
  45. Gu, S. et al. Global investigation of p53-induced apoptosis through quantitative proteomic profiling using comparative amino acid-coded tagging. Mol. Cell. Proteomics 3, 998–1008 (2006). (10.1074/mcp.M400033-MCP200) / Mol. Cell. Proteomics by S Gu (2006)
  46. Sablina, A. A. et al. The antioxidant function of the p53 tumor suppressor gene. Nature Med. 11, 1306–1313 (2005). A demonstration of the antioxidant activity of basal levels of p53. (10.1038/nm1320) / Nature Med. by AA Sablina (2005)
  47. Hemann, M. T. et al. Suppression of tumorigenesis by the p53 target PUMA. Proc. Natl Acad. Sci. USA 101, 9333–9338 (2004). (10.1073/pnas.0403286101) / Proc. Natl Acad. Sci. USA by MT Hemann (2004)
  48. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004). (10.1038/nature03098) / Nature by SW Lowe (2004)
  49. Liu, G. et al. Chromosomal stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nature Genet. 36, 63–68 (2004). (10.1038/ng1282) / Nature Genet. by G Liu (2004)
  50. Dimri, G. P. What has senescence got to do with cancer? Cancer Cell 7, 505–512 (2005). (10.1016/j.ccr.2005.05.025) / Cancer Cell by GP Dimri (2005)
  51. Barbieri, C. E. & Pietenpol, J. A. p63 and epithelial biology. Exp. Cell Res. 312, 695–706 (2006). (10.1016/j.yexcr.2005.11.028) / Exp. Cell Res. by CE Barbieri (2006)
  52. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005). (10.1016/j.ccr.2005.02.019) / Cancer Cell by ER Flores (2005)
  53. Sutcliffe, J. E. & Brehm, A. Of flies and men; p53, a tumour suppressor. FEBS Lett. 567, 86–91 (2004). (10.1016/j.febslet.2004.03.122) / FEBS Lett. by JE Sutcliffe (2004)
  54. Mills, A. A. p53: link to the past, bridge to the future. Genes Dev. 19, 2091–2099 (2005). (10.1101/gad.1362905) / Genes Dev. by AA Mills (2005)
  55. Chio, J. & Donehower, L. A. p53 in embryonic development: maintaining a fine balance. CMLS Cell. Mol. Life Sci. 55, 38–47 (1999). (10.1007/s000180050268) / CMLS Cell. Mol. Life Sci. by J Chio (1999)
  56. Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol. 5, 931–936 (1995). (10.1016/S0960-9822(95)00183-7) / Curr. Biol. by JF Armstrong (1995)
  57. Sah, V. P. et al. A subset of p53-deficient embyos exhibit exencephaly. Nature Genet. 10, 175–180 (1995). (10.1038/ng0695-175) / Nature Genet. by VP Sah (1995)
  58. Hall, P. A. & Lane, D. P. Tumor suppressors: a developing role for p53? Curr. Biol. 7, R144–R147 (1997). (10.1016/S0960-9822(97)70074-5) / Curr. Biol. by PA Hall (1997)
  59. Baatout, S. et al. Developmental abnormalities induced by X-irradiation in p53 deficient mice. In Vivo. 16, 215–221 (2002). / In Vivo. by S Baatout (2002)
  60. Azuma, M., Toyama, R., Laver, E. & Dawid, I. B. Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J. Biol. Chem. 281, 13309–13316 (2006). (10.1074/jbc.M601892200) / J. Biol. Chem. by M Azuma (2006)
  61. Plaster, N., Sonntag, C., Busse, C. E. & Hammerschmidt, M. p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase δ1. Cell Death Differ. 13, 223–235 (2006). (10.1038/sj.cdd.4401747) / Cell Death Differ. by N Plaster (2006)
  62. Chen, J. et al. Loss of function of def selectively up-regulates Δ113p53 expression to arrest expansion growth of digestive organs in zebrafish. Genes Dev. 19, 2900–2911 (2005). (10.1101/gad.1366405) / Genes Dev. by J Chen (2005)
  63. Campbell, W. A. et al. Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. J. Neurochem. 96, 1423–1440 (2006). (10.1111/j.1471-4159.2006.03648.x) / J. Neurochem. by WA Campbell (2006)
  64. Nicol, C. J., Harrison, M. L., Laposa, R. R., Gimelshtein, I. L. & Well, P. G. A teratologic suppressor role for p53 in benzo(a)pyrene-treated transgenic p53-deficient mice. Nature Genet. 10, 181–187 (1995). (10.1038/ng0695-181) / Nature Genet. by CJ Nicol (1995)
  65. Norimura, T., Nomoto, S., Katsuki, M., Gondo, Y. & Kondo, S. p53-dependent apoptosis suppresses radiation-induced teratogenesis. Nature Med. 2, 577–580 (1996). (10.1038/nm0596-577) / Nature Med. by T Norimura (1996)
  66. Varley, J. M. Germline TP53 mutations and Li–Fraumeni syndrome. Hum. Mutat. 21, 313–320 (2003). (10.1002/humu.10185) / Hum. Mutat. by JM Varley (2003)
  67. Georgiev, P., Dahm, F., Graf, R. & Clavien, P. A. Blocking the path to death: anti-apoptotic molecules in ischemia/reperfusion injury of the liver. Curr. Pharm. Des. 12, 2911–2921 (2006). (10.2174/138161206777947588) / Curr. Pharm. Des. by P Georgiev (2006)
  68. Fiskum, G. et al. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J. Bioenerg. Biomembr. 36, 347–352 (2004). (10.1023/B:JOBB.0000041766.71376.81) / J. Bioenerg. Biomembr. by G Fiskum (2004)
  69. Dagher, P. C. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int. 66, 506–509 (2004). (10.1111/j.1523-1755.2004.761_7.x) / Kidney Int. by PC Dagher (2004)
  70. Matsusaka, H. et al. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice. Cardiovasc. Res. 70, 457–465 (2006). (10.1016/j.cardiores.2006.02.001) / Cardiovasc. Res. by H Matsusaka (2006)
  71. Jacobs, W. B., Kaplan, D. R. & Miller, F. D. The p53 family in nervous system development and disease. J. Neurochem. 97, 1571–1584 (2006). (10.1111/j.1471-4159.2006.03980.x) / J. Neurochem. by WB Jacobs (2006)
  72. Tyner, S. D. et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45–53 (2002). (10.1038/415045a) / Nature by SD Tyner (2002)
  73. Maier, B. et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 18, 306–319 (2004). (10.1101/gad.1162404) / Genes Dev. by B Maier (2004)
  74. van Heemst, D. et al. Variation in the human TP53 gene affects old age survival and cancer mortality. Exp. Gerontol. 40, 11–15 (2005). (10.1016/j.exger.2004.10.001) / Exp. Gerontol. by D van Heemst (2005)
  75. Sharpless, N. E. & DePinho, R. A. Telomeres, stem cells, senescence, and cancer. J. Clin. Invest. 113, 160–168 (2004). (10.1172/JCI20761) / J. Clin. Invest. by NE Sharpless (2004)
  76. Bauer, J. H., Poon, P. C., Glatt-Deeley, H., Abrams, J. M. & Helfand, S. L. Neuronal expression of p53 dominant-negative proteins in adult Drosophila melanogaster extends life span. Curr. Biol. 15, 2063–2068 (2005). (10.1016/j.cub.2005.10.051) / Curr. Biol. by JH Bauer (2005)
  77. Bauer, J. H. & Helfand, S. L. New tricks of an old molecule: lifespan regulation by p53. Aging Cell 5, 437–440 (2006). (10.1111/j.1474-9726.2006.00228.x) / Aging Cell by JH Bauer (2006)
  78. Bourdon, J. C. et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005). (10.1101/gad.1339905) / Genes Dev. by JC Bourdon (2005)
  79. Kondoh, H. et al. Glycolytic enzymes can modulate cellular lifespan. Cancer Res. 65, 177–185 (2005). (10.1158/0008-5472.177.65.1) / Cancer Res. by H Kondoh (2005)
  80. Garcia-Cao, I. et al. “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J. 21, 6225–6235 (2002). (10.1093/emboj/cdf595) / EMBO J. by I Garcia-Cao (2002)
  81. Mendrysa, S. M. et al. Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev. 20, 16–21 (2006). References 80 and 81 show that increasing the copy number of p53 while maintaining normal control over expression does not result in enhanced ageing. (10.1101/gad.1378506) / Genes Dev. by SM Mendrysa (2006)
  82. Mendrysa, S. M. & Perry, M. E. Tumor suppression by p53 without acceletated aging: just enough of a good thing? Cell Cycle 5, 714–717 (2006). (10.4161/cc.5.7.2632) / Cell Cycle by SM Mendrysa (2006)
  83. Poyurovsky, M. V. & Prives, C. Unleashing the power of p53: lessons from mice and men. Genes Dev. 20, 125–131 (2006). (10.1101/gad.1397506) / Genes Dev. by MV Poyurovsky (2006)
  84. Wells, B. S., Yoshida, E. & Johnston, L. A. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr. Biol. 16, 1606–1615 (2006). (10.1016/j.cub.2006.07.046) / Curr. Biol. by BS Wells (2006)
  85. Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594–604 (2002). (10.1038/nrc864) / Nature Rev. Cancer by KH Vousden (2002)
  86. Christophorou, M. A. et al. Temporal diffection of p53 function in vitro and in vivo. Nature Genet. 37, 718–726 (2005). (10.1038/ng1572) / Nature Genet. by MA Christophorou (2005)
  87. Soussi, T. & Lozano, G. p53 mutation heterogeneity in cancer. Biochem. Biophys. Res. Com. 331, 834–842 (2005). (10.1016/j.bbrc.2005.03.190) / Biochem. Biophys. Res. Com. by T Soussi (2005)
  88. Lang, G. A. et al. Gain-of-function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119, 861–872 (2004). (10.1016/j.cell.2004.11.006) / Cell by GA Lang (2004)
  89. Olive, K. P. et al. Mutant p53 gain-of-function in two mouse models of Li–Fraumeni syndrome. Cell 119, 847–860 (2004). Two sophisticated studies showing the effects of expression of mutant p53 in mouse models. (10.1016/j.cell.2004.11.004) / Cell by KP Olive (2004)
  90. Irwin, M. S. Family feud in chemosensitivity: p73 and mutant p53. Cell Cycle 3, 319–323 (2004). (10.4161/cc.3.3.768) / Cell Cycle by MS Irwin (2004)
  91. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000). / Cancer Res. by A Sigal (2000)
  92. Kim, E. & Deppert, W. Transcriptional activities of mutant p53: when mutations are more than a loss. J. Cell Biochem. 93, 878–886 (2004). (10.1002/jcb.20271) / J. Cell Biochem. by E Kim (2004)
  93. Bond, G. L. et al. A single nucleotide polymorphism in the Mdm2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119, 591–602 (2004). (10.1016/j.cell.2004.11.022) / Cell by GL Bond (2004)
  94. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecular antagonists of MDM2. Science 303, 844–848 (2004). One of a number of studies describing small-molecule activators of p53. (10.1126/science.1092472) / Science by LT Vassilev (2004)
  95. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004). (10.1038/nm1146) / Nature Med. by N Issaeva (2004)
  96. Yang, Y. et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547–559 (2005). (10.1016/j.ccr.2005.04.029) / Cancer Cell by Y Yang (2005)
  97. Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999). The description of a small-molecule inhibitor of p53 (10.1126/science.285.5434.1733) / Science by PG Komarov (1999)
  98. Green, D. R. Apoptotic pathways: the roads to ruin. Cell 94, 695–698 (1998). (10.1016/S0092-8674(00)81728-6) / Cell by DR Green (1998)
  99. Danial, N. N. & Korsmeyer, S. J. Cell death: critical control points. Cell 116, 205–219 (2004). (10.1016/S0092-8674(04)00046-7) / Cell by NN Danial (2004)
  100. Cory, S. & Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002). (10.1038/nrc883) / Nature Rev. Cancer by S Cory (2002)
  101. Jeffers, J. R. et al. Puma is an essential mediator of p53-dependent and-independent apoptotic pathways. Cancer Cell 4, 321–328 (2003). (10.1016/S1535-6108(03)00244-7) / Cancer Cell by JR Jeffers (2003)
  102. Villunger, A. et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins Puma and Noxa. Science 302, 1036–1038 (2003). (10.1126/science.1090072) / Science by A Villunger (2003)
  103. Vousden, K. H. p53 and PUMA: a deadly duo. Science 309, 1685–1686 (2005). (10.1126/science.1118232) / Science by KH Vousden (2005)
  104. Parks, D. J. et al. Enhanced pharmacokinetic properties of 1,4-benzodiazepine-2,5-dione antagonists of the HDM2–p53 protein–protein interaction through structure-based drug design. Bioog. Med. Chem. Lett. 16, 3310–3314 (2006). (10.1016/j.bmcl.2006.03.055) / Bioog. Med. Chem. Lett. by DJ Parks (2006)
  105. Ding, K. et al. Structure-based design of potent non-peptide MDM2 inhibitors. J. Am. Chem. Soc. 127, 10130–10131 (2005). (10.1021/ja051147z) / J. Am. Chem. Soc. by K Ding (2005)
  106. Lai, Z. et al. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc. Natl Acad. Sci. USA 99, 14734–14739 (2002). (10.1073/pnas.212428599) / Proc. Natl Acad. Sci. USA by Z Lai (2002)
  107. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999). (10.1126/science.286.5449.2507) / Science by BA Foster (1999)
  108. Bykov, V. J. N. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002). (10.1038/nm0302-282) / Nature Med. by VJN Bykov (2002)
  109. Gudkov, A. V. & Komarova, E. A. Prospective therapeutic applications of p53 inhibitors. Biochem. Biophys. Res. Com. 331, 726–736 (2005). (10.1016/j.bbrc.2005.03.153) / Biochem. Biophys. Res. Com. by AV Gudkov (2005)
Dates
Type When
Created 18 years, 4 months ago (March 23, 2007, 6:12 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 11:54 p.m.)
Indexed 1 hour, 3 minutes ago (Aug. 21, 2025, 5:30 a.m.)
Issued 18 years, 4 months ago (April 1, 2007)
Published 18 years, 4 months ago (April 1, 2007)
Published Print 18 years, 4 months ago (April 1, 2007)
Funders 0

None

@article{Vousden_2007, title={p53 in health and disease}, volume={8}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm2147}, DOI={10.1038/nrm2147}, number={4}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Vousden, Karen H. and Lane, David P.}, year={2007}, month=apr, pages={275–283} }