Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
References
134
Referenced
272
-
Hackman, P. et al. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am. J. Hum. Genet. 71, 492–500 (2002).
(
10.1086/342380
) / Am. J. Hum. Genet. by P Hackman (2002) -
Muchir, A. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet. 9, 1453–1459 (2000).
(
10.1093/hmg/9.9.1453
) / Hum. Mol. Genet. by A Muchir (2000) -
Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nature Genet. 21, 285–288 (1999).
(
10.1038/6799
) / Nature Genet. by G Bonne (1999) -
Novelli, G. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71, 426–431 (2002).
(
10.1086/341908
) / Am. J. Hum. Genet. by G Novelli (2002) -
Chen, L. et al. LMNA mutations in atypical Werner's syndrome. Lancet 362, 440–445 (2003).
(
10.1016/S0140-6736(03)14069-X
) / Lancet by L Chen (2003) -
Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).
(
10.1056/NEJM199912023412302
) / N. Engl. J. Med. by D Fatkin (1999) -
De Sandre-Giovannoli, A. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot–Marie–Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70, 726–736 (2002).
(
10.1086/339274
) / Am. J. Hum. Genet. by A De Sandre-Giovannoli (2002) -
Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423, 293–298 (2003).
(
10.1038/nature01629
) / Nature by M Eriksson (2003) -
De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson–Gilford progeria. Science 300, 2055 (2003).
(
10.1126/science.1084125
) / Science by A De Sandre-Giovannoli (2003) -
Bione, S. et al. Identification of a novel X-linked gene responsible for Emery–Dreifuss muscular dystrophy. Nature Genet. 8, 323–327 (1994).
(
10.1038/ng1294-323
) / Nature Genet. by S Bione (1994) -
Koenig, M., Monaco, A. P. & Kunkel, L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–226 (1988). One of the groundbreaking papers in the field, which describes the protein product of the dystrophin gene, the first gene associated with MD.
(
10.1016/0092-8674(88)90383-2
) / Cell by M Koenig (1988) -
Mokri, B. & Engel, A. G. Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25, 1111–1120 (1975).
(
10.1212/WNL.25.12.1111
) / Neurology by B Mokri (1975) -
Davies, K. E. et al. Linkage analysis of two cloned DNA sequences flanking the Duchenne muscular dystrophy locus on the short arm of the human X chromosome. Nucleic Acids Res. 11, 2303–2312 (1983).
(
10.1093/nar/11.8.2303
) / Nucleic Acids Res. by KE Davies (1983) -
Grum, V. L., Li, D., MacDonald, R. I. & Mondragon, A. Structures of two repeats of spectrin suggest models of flexibility. Cell 98, 523–535 (1999).
(
10.1016/S0092-8674(00)81980-7
) / Cell by VL Grum (1999) -
Pasternak, C., Wong, S. & Elson, E. L. Mechanical function of dystrophin in muscle cells. J. Cell Biol. 128, 355–361 (1995).
(
10.1083/jcb.128.3.355
) / J. Cell Biol. by C Pasternak (1995) -
Hemmings, L., Kuhlman, P. A. & Critchley, D. R. Analysis of the actin-binding domain of α-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain. J. Cell Biol. 116, 1369–1380 (1992).
(
10.1083/jcb.116.6.1369
) / J. Cell Biol. by L Hemmings (1992) -
Rybakova, I. N., Amann, K. J. & Ervasti, J. M. A new model for the interaction of dystrophin with F-actin. J. Cell Biol. 135, 661–672 (1996).
(
10.1083/jcb.135.3.661
) / J. Cell Biol. by IN Rybakova (1996) -
Rybakova, I. N. & Ervasti, J. M. Dystrophin–glycoprotein complex is monomeric and stabilizes actin filaments in vitro through a lateral association. J. Biol. Chem. 272, 28771–28778 (1997).
(
10.1074/jbc.272.45.28771
) / J. Biol. Chem. by IN Rybakova (1997) -
Rybakova, I. N., Patel, J. R. & Ervasti, J. M. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J. Cell Biol. 150, 1209–1214 (2000).
(
10.1083/jcb.150.5.1209
) / J. Cell Biol. by IN Rybakova (2000) -
Ervasti, J. M., Ohlendieck, K., Kahl, S. D., Gaver, M. G. & Campbell, K. P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–319 (1990). Describes four members of the DAPC and illustrates that their expression is diminished in DMD patients, a crucial finding in the understanding of the pathogenesis of dystrophic muscle.
(
10.1038/345315a0
) / Nature by JM Ervasti (1990) -
Yoshida, M. & Ozawa, E. Glycoprotein complex anchoring dystrophin to sarcolemma. J. Biochem. (Tokyo) 108, 748–752 (1990).
(
10.1093/oxfordjournals.jbchem.a123276
) / J. Biochem. (Tokyo) by M Yoshida (1990) -
Rando, T. A. The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24, 1575–1594 (2001).
(
10.1002/mus.1192
) / Muscle Nerve by TA Rando (2001) -
Petrof, B. J., Shrager, J. B., Stedman, H. H., Kelly, A. M. & Sweeney, H. L. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl Acad. Sci. USA 90, 3710–3714 (1993). Shows that dystrophin-deficient muscle is more susceptible to injury after damage by mechanical stress caused by contraction, supporting the hypothesis that dystrophin reinforces the sarcolemma.
(
10.1073/pnas.90.8.3710
) / Proc. Natl Acad. Sci. USA by BJ Petrof (1993) -
Grady, R. M. et al. Role for α-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nature Cell Biol. 1, 215–220 (1999).
(
10.1038/12034
) / Nature Cell Biol. by RM Grady (1999) -
Newey, S. E., Benson, M. A., Ponting, C. P., Davies, K. E. & Blake, D. J. Alternative splicing of dystrobrevin regulates the stoichiometry of syntrophin binding to the dystrophin protein complex. Curr. Biol. 10, 1295–1298 (2000).
(
10.1016/S0960-9822(00)00760-0
) / Curr. Biol. by SE Newey (2000) -
Brenman, J. E. et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and α1-syntrophin mediated by PDZ domains. Cell 84, 757–767 (1996).
(
10.1016/S0092-8674(00)81053-3
) / Cell by JE Brenman (1996) -
Wehling, M., Spencer, M. J. & Tidball, J. G. A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice. J. Cell Biol. 155, 123–131 (2001).
(
10.1083/jcb.200105110
) / J. Cell Biol. by M Wehling (2001) -
Oak, S. A., Russo, K., Petrucci, T. C. & Jarrett, H. W. Mouse α1-syntrophin binding to Grb2: further evidence of a role for syntrophin in cell signaling. Biochemistry 40, 11270–11278 (2001).
(
10.1021/bi010490n
) / Biochemistry by SA Oak (2001) -
Adams, M. E. et al. Absence of α-syntrophin leads to structurally aberrant neuromuscular synapses deficient in utrophin. J. Cell Biol. 150, 1385–1398 (2000).
(
10.1083/jcb.150.6.1385
) / J. Cell Biol. by ME Adams (2000) -
Crosbie, R. H. et al. Mdx muscle pathology is independent of nNOS perturbation. Hum. Mol. Genet. 7, 823–829 (1998).
(
10.1093/hmg/7.5.823
) / Hum. Mol. Genet. by RH Crosbie (1998) -
Adams, M. E., Mueller, H. A. & Froehner, S. C. In vivo requirement of the α-syntrophin PDZ domain for the sarcolemmal localization of nNOS and aquaporin-4. J. Cell Biol. 155, 113–122 (2001).
(
10.1083/jcb.200106158
) / J. Cell Biol. by ME Adams (2001) -
Love, D. R. et al. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339, 55–58 (1989). The first report about utrophin, an autosomal homologue of dystrophin. This protein has been actively investigated for treatment of MD as its upregulation has been shown to ameliorate dystrophic features.
(
10.1038/339055a0
) / Nature by DR Love (1989) -
Crawford, G. E. et al. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 150, 1399–1410 (2000).
(
10.1083/jcb.150.6.1399
) / J. Cell Biol. by GE Crawford (2000) -
Yoshida, M. et al. Biochemical evidence for association of dystrobrevin with the sarcoglycan–sarcospan complex as a basis for understanding sarcoglycanopathy. Hum. Mol. Genet. 9, 1033–1040 (2000).
(
10.1093/hmg/9.7.1033
) / Hum. Mol. Genet. by M Yoshida (2000) -
Mizuno, Y. et al. Desmuslin, an intermediate filament protein that interacts with α-dystrobrevin and desmin. Proc. Natl Acad. Sci. USA 98, 6156–6161 (2001).
(
10.1073/pnas.111153298
) / Proc. Natl Acad. Sci. USA by Y Mizuno (2001) -
Benson, M. A., Newey, S. E., Martin-Rendon, E., Hawkes, R. & Blake, D. J. Dysbindin, a novel coiled-coil-containing protein that interacts with the dystrobrevins in muscle and brain. J. Biol. Chem. 276, 24232–24241 (2001).
(
10.1074/jbc.M010418200
) / J. Biol. Chem. by MA Benson (2001) -
Newey, S. E. et al. Syncoilin, a novel member of the intermediate filament superfamily that interacts with α-dystrobrevin in skeletal muscle. J. Biol. Chem. 276, 6645–6655 (2001).
(
10.1074/jbc.M008305200
) / J. Biol. Chem. by SE Newey (2001) -
Poon, E., Howman, E. V., Newey, S. E. & Davies, K. E. Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex. J. Biol. Chem. 277, 3433–3439 (2002).
(
10.1074/jbc.M105273200
) / J. Biol. Chem. by E Poon (2002) -
Ichida, F. et al. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103, 1256–1263 (2001).
(
10.1161/01.CIR.103.9.1256
) / Circulation by F Ichida (2001) -
Granger, B. L. & Lazarides, E. Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle. Cell 22, 727–738 (1980).
(
10.1016/0092-8674(80)90549-8
) / Cell by BL Granger (1980) -
Bellin, R. M. et al. Molecular characteristics and interactions of the intermediate filament protein synemin. Interactions with α-actinin may anchor synemin-containing heterofilaments. J. Biol. Chem. 274, 29493–29499 (1999).
(
10.1074/jbc.274.41.29493
) / J. Biol. Chem. by RM Bellin (1999) -
Bhosle, R. C., Michele, D. E., Campbell, K. P., Li, Z. & Robson, R. M. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem. Biophys. Res. Commun. 346, 768–777 (2006).
(
10.1016/j.bbrc.2006.05.192
) / Biochem. Biophys. Res. Commun. by RC Bhosle (2006) -
Williamson, R. A. et al. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum. Mol. Genet. 6, 831–841 (1997).
(
10.1093/hmg/6.6.831
) / Hum. Mol. Genet. by RA Williamson (1997) -
Cohn, R. D. et al. Disruption of Dag1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110, 639–648 (2002).
(
10.1016/S0092-8674(02)00907-8
) / Cell by RD Cohn (2002) -
Ibraghimov-Beskrovnaya, O. et al. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355, 696–702 (1992). Describes the dystroglycans and finds that the larger α-dystroglycan is reduced in dystrophin-deficient mice, thereby disrupting the link between dystrophin, the sarcolemma and the ECM.
(
10.1038/355696a0
) / Nature by O Ibraghimov-Beskrovnaya (1992) -
Michele, D. E. & Campbell, K. P. Dystrophin–glycoprotein complex: post-translational processing and dystroglycan function. J. Biol. Chem. 278, 15457–15460 (2003).
(
10.1074/jbc.R200031200
) / J. Biol. Chem. by DE Michele (2003) - Chamberlain, J. S. et al. Interactions between dystrophin and the sarcolemma membrane. Soc. Gen. Physiol. Ser. 52, 19–29 (1997). / Soc. Gen. Physiol. Ser. by JS Chamberlain (1997)
-
Ozawa, E., Mizuno, Y., Hagiwara, Y., Sasaoka, T. & Yoshida, M. Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 32, 563–576 (2005).
(
10.1002/mus.20349
) / Muscle Nerve by E Ozawa (2005) -
Laval, S. H. & Bushby, K. M. Limb–girdle muscular dystrophies — from genetics to molecular pathology. Neuropathol. Appl. Neurobiol. 30, 91–105 (2004).
(
10.1111/j.1365-2990.2004.00555.x
) / Neuropathol. Appl. Neurobiol. by SH Laval (2004) -
Barton, E. R. Impact of sarcoglycan complex on mechanical signal transduction in murine skeletal muscle. Am. J. Physiol. Cell Physiol. 290, C411–C419 (2006).
(
10.1152/ajpcell.00192.2005
) / Am. J. Physiol. Cell Physiol. by ER Barton (2006) -
Hayashi, K. et al. Sarcospan: ultrastructural localization and its relation to the sarcoglycan subcomplex. Micron 37, 591–596 (2006).
(
10.1016/j.micron.2005.11.013
) / Micron by K Hayashi (2006) -
Rafii, M. S. et al. Biglycan binds to α- and γ-sarcoglycan and regulates their expression during development. J. Cell. Physiol. 1 Aug 2006 (doi:10.1002/jcp.20740).
(
10.1002/jcp.20740
) -
Thompson, T. G. et al. Filamin 2 (FLN2): a muscle-specific sarcoglycan interacting protein. J. Cell Biol. 148, 115–126 (2000).
(
10.1083/jcb.148.1.115
) / J. Cell Biol. by TG Thompson (2000) -
Yang, B. et al. SH3 domain-mediated interaction of dystroglycan and Grb2. J. Biol. Chem. 270, 11711–11714 (1995).
(
10.1074/jbc.270.20.11711
) / J. Biol. Chem. by B Yang (1995) -
Way, M. & Parton, R. G. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett. 378, 108–112 (1996).
(
10.1016/0014-5793(96)82884-5
) / FEBS Lett. by M Way (1996) -
Galbiati, F. et al. Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin–glycoprotein complex, and T-tubule abnormalities. J. Biol. Chem. 276, 21425–21433 (2001).
(
10.1074/jbc.M100828200
) / J. Biol. Chem. by F Galbiati (2001) -
Venema, V. J., Ju, H., Zou, R. & Venema, R. C. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain. J. Biol. Chem. 272, 28187–28190 (1997).
(
10.1074/jbc.272.45.28187
) / J. Biol. Chem. by VJ Venema (1997) -
Song, K. S. et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271, 15160–15165 (1996).
(
10.1074/jbc.271.25.15160
) / J. Biol. Chem. by KS Song (1996) -
Scherer, P. E. & Lisanti, M. P. Association of phosphofructokinase-M with caveolin-3 in differentiated skeletal myotubes. Dynamic regulation by extracellular glucose and intracellular metabolites. J. Biol. Chem. 272, 20698–20705 (1997).
(
10.1074/jbc.272.33.20698
) / J. Biol. Chem. by PE Scherer (1997) -
Galbiati, F. et al. Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc. Natl Acad. Sci. USA 97, 9689–9694 (2000).
(
10.1073/pnas.160249097
) / Proc. Natl Acad. Sci. USA by F Galbiati (2000) -
Sotgia, F. et al. Caveolin-3 directly interacts with the C-terminal tail of β-dystroglycan. Identification of a central WW-like domain within caveolin family members. J. Biol. Chem. 275, 38048–38058 (2000).
(
10.1074/jbc.M005321200
) / J. Biol. Chem. by F Sotgia (2000) -
Minetti, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb–girdle muscular dystrophy. Nature Genet. 18, 365–368 (1998).
(
10.1038/ng0498-365
) / Nature Genet. by C Minetti (1998) -
Herrmann, R. et al. Dissociation of the dystroglycan complex in caveolin-3-deficient limb girdle muscular dystrophy. Hum. Mol. Genet. 9, 2335–2340 (2000).
(
10.1093/oxfordjournals.hmg.a018926
) / Hum. Mol. Genet. by R Herrmann (2000) -
Matsuda, C. et al. The sarcolemmal proteins dysferlin and caveolin-3 interact in skeletal muscle. Hum. Mol. Genet. 10, 1761–1766 (2001).
(
10.1093/hmg/10.17.1761
) / Hum. Mol. Genet. by C Matsuda (2001) -
Galbiati, F., Volonte, D., Minetti, C., Bregman, D. B. & Lisanti, M. P. Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation. Treatment with proteasomal inhibitors blocks the dominant negative effect of LGMD-1C mutants and rescues wild-type caveolin-3. J. Biol. Chem. 275, 37702–37711 (2000).
(
10.1074/jbc.M006657200
) / J. Biol. Chem. by F Galbiati (2000) -
Matsuda, C. et al. Dysferlin interacts with affixin (β-parvin) at the sarcolemma. J. Neuropathol. Exp. Neurol. 64, 334–340 (2005).
(
10.1093/jnen/64.4.334
) / J. Neuropathol. Exp. Neurol. by C Matsuda (2005) -
Yamaji, S. et al. Affixin interacts with α-actinin and mediates integrin signaling for reorganization of F-actin induced by initial cell–substrate interaction. J. Cell Biol. 165, 539–551 (2004).
(
10.1083/jcb.200308141
) / J. Cell Biol. by S Yamaji (2004) -
Lennon, N. J. et al. Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound-healing. J. Biol. Chem. 278, 50466–50473 (2003).
(
10.1074/jbc.M307247200
) / J. Biol. Chem. by NJ Lennon (2003) -
Holt, K. H., Crosbie, R. H., Venzke, D. P. & Campbell, K. P. Biosynthesis of dystroglycan: processing of a precursor propeptide. FEBS Lett. 468, 79–83 (2000).
(
10.1016/S0014-5793(00)01195-9
) / FEBS Lett. by KH Holt (2000) -
Barresi, R. & Campbell, K. P. Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199–207 (2006).
(
10.1242/jcs.02814
) / J. Cell Sci. by R Barresi (2006) -
Kobayashi, K. et al. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394, 388–392 (1998).
(
10.1038/28653
) / Nature by K Kobayashi (1998) -
Beltran-Valero de Bernabe, D. et al. Mutations in the FKRP gene can cause muscle–eye–brain disease and Walker–Warburg syndrome. J. Med. Genet. 41, e61 (2004).
(
10.1136/jmg.2003.013870
) / J. Med. Genet. by D Beltran-Valero de Bernabe (2004) -
Taniguchi, K. et al. Worldwide distribution and broader clinical spectrum of muscle–eye–brain disease. Hum. Mol. Genet. 12, 527–534 (2003).
(
10.1093/hmg/ddg043
) / Hum. Mol. Genet. by K Taniguchi (2003) -
Beltran-Valero de Bernabe, D. et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker–Warburg syndrome. Am. J. Hum. Genet. 71, 1033–1043 (2002).
(
10.1086/342975
) / Am. J. Hum. Genet. by D Beltran-Valero de Bernabe (2002) -
Brockington, M. et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69, 1198–1209 (2001).
(
10.1086/324412
) / Am. J. Hum. Genet. by M Brockington (2001) -
Longman, C. et al. Mutations in the human LARGE gene cause MDC1D, a novel form of congenital muscular dystrophy with severe mental retardation and abnormal glycosylation of α-dystroglycan. Hum. Mol. Genet. 12, 2853–2861 (2003).
(
10.1093/hmg/ddg307
) / Hum. Mol. Genet. by C Longman (2003) -
Brockington, M. et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10, 2851–2859 (2001).
(
10.1093/hmg/10.25.2851
) / Hum. Mol. Genet. by M Brockington (2001) -
Kanagawa, M. et al. Molecular recognition by LARGE is essential for expression of functional dystroglycan. Cell 117, 953–964 (2004).
(
10.1016/j.cell.2004.06.003
) / Cell by M Kanagawa (2004) -
Yoshida, A. et al. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1, 717–724 (2001).
(
10.1016/S1534-5807(01)00070-3
) / Dev. Cell by A Yoshida (2001) -
Endo, T. O-Mannosyl glycans in mammals. Biochim. Biophys. Acta 1473, 237–246 (1999).
(
10.1016/S0304-4165(99)00182-8
) / Biochim. Biophys. Acta by T Endo (1999) -
Esapa, C. T. et al. Functional requirements for fukutin-related protein in the Golgi apparatus. Hum. Mol. Genet. 11, 3319–3331 (2002).
(
10.1093/hmg/11.26.3319
) / Hum. Mol. Genet. by CT Esapa (2002) -
Saito, Y., Mizuguchi, M., Oka, A. & Takashima, S. Fukutin protein is expressed in neurons of the normal developing human brain but is reduced in Fukuyama-type congenital muscular dystrophy brain. Ann. Neurol. 47, 756–764 (2000).
(
10.1002/1531-8249(200006)47:6<756::AID-ANA8>3.0.CO;2-9
) / Ann. Neurol. by Y Saito (2000) -
Ishii, H., Hayashi, Y. K., Nonaka, I. & Arahata, K. Electron microscopic examination of basal lamina in Fukuyama congenital muscular dystrophy. Neuromuscul. Disord. 7, 191–197 (1997).
(
10.1016/S0960-8966(97)00462-8
) / Neuromuscul. Disord. by H Ishii (1997) -
Topaloglu, H. et al. FKRP gene mutations cause congenital muscular dystrophy, mental retardation, and cerebellar cysts. Neurology 60, 988–992 (2003).
(
10.1212/01.WNL.0000052996.14099.DC
) / Neurology by H Topaloglu (2003) -
Brown, S. C. et al. Abnormalities in α-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. Am. J. Pathol. 164, 727–737 (2004).
(
10.1016/S0002-9440(10)63160-4
) / Am. J. Pathol. by SC Brown (2004) -
Manya, H. et al. Demonstration of mammalian protein O-mannosyltransferase activity: coexpression of POMT1 and POMT2 required for enzymatic activity. Proc. Natl Acad. Sci. USA 101, 500–505 (2004).
(
10.1073/pnas.0307228101
) / Proc. Natl Acad. Sci. USA by H Manya (2004) -
van Reeuwijk, J. et al. The expanding phenotype of POMT1 mutations: from Walker–Warburg syndrome to congenital muscular dystrophy, microcephaly, and mental retardation. Hum. Mutat. 27, 453–459 (2006).
(
10.1002/humu.20313
) / Hum. Mutat. by J van Reeuwijk (2006) -
von der Mark, H. et al. Skeletal myoblasts utilize a novel β1-series integrin and not α6β1 for binding to the E8 and T8 fragments of laminin. J. Biol. Chem. 266, 23593–23601 (1991).
(
10.1016/S0021-9258(18)54324-6
) / J. Biol. Chem. by H von der Mark (1991) -
Gontier, Y. et al. The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. J. Cell Sci. 118, 3739–3749 (2005).
(
10.1242/jcs.02484
) / J. Cell Sci. by Y Gontier (2005) -
Mayer, U. et al. Absence of integrin α7 causes a novel form of muscular dystrophy. Nature Genet. 17, 318–323 (1997).
(
10.1038/ng1197-318
) / Nature Genet. by U Mayer (1997) -
Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin — a transmembrane linkage. Nature 320, 531–533 (1986).
(
10.1038/320531a0
) / Nature by A Horwitz (1986) -
Hodges, B. L. et al. Altered expression of the α7β1 integrin in human and murine muscular dystrophies. J. Cell Sci. 110, 2873–2881 (1997).
(
10.1242/jcs.110.22.2873
) / J. Cell Sci. by BL Hodges (1997) -
Burkin, D. J., Wallace, G. Q., Nicol, K. J., Kaufman, D. J. & Kaufman, S. J. Enhanced expression of the α7β1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. J. Cell Biol. 152, 1207–1218 (2001).
(
10.1083/jcb.152.6.1207
) / J. Cell Biol. by DJ Burkin (2001) -
Allikian, M. J., Hack, A. A., Mewborn, S., Mayer, U. & McNally, E. M. Genetic compensation for sarcoglycan loss by integrin α7β1 in muscle. J. Cell Sci. 117, 3821–3830 (2004).
(
10.1242/jcs.01234
) / J. Cell Sci. by MJ Allikian (2004) -
Laing, N. G. & Nowak, K. J. When contractile proteins go bad: the sarcomere and skeletal muscle disease. Bioessays 27, 809–822 (2005).
(
10.1002/bies.20269
) / Bioessays by NG Laing (2005) -
Gregorio, C. C. et al. The NH2 terminus of titin spans the Z-disc: its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J. Cell Biol. 143, 1013–1027 (1998).
(
10.1083/jcb.143.4.1013
) / J. Cell Biol. by CC Gregorio (1998) -
Nicholas, G. et al. Titin-cap associates with, and regulates secretion of, Myostatin. J. Cell Physiol. 193, 120–131 (2002).
(
10.1002/jcp.10158
) / J. Cell Physiol. by G Nicholas (2002) -
Vainzof, M. et al. Telethonin protein expression in neuromuscular disorders. Biochim. Biophys. Acta 1588, 33–40 (2002).
(
10.1016/S0925-4439(02)00113-8
) / Biochim. Biophys. Acta by M Vainzof (2002) -
Mayans, O. et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863–869 (1998).
(
10.1038/27603
) / Nature by O Mayans (1998) -
Zou, P. et al. Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 439, 229–233 (2006). Describes how two titin proteins form an antiparallel sandwich with one telethonin molecule, providing insight into how sarcomeres are anchored and crosslinked and perhaps explaining the mechanical stability of the Z-line.
(
10.1038/nature04343
) / Nature by P Zou (2006) -
Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb–girdle muscular dystrophy type 2A. Cell 81, 27–40 (1995). The first description that mutations within an enzyme, calpain-3, rather than a predominantly structural protein, cause MD.
(
10.1016/0092-8674(95)90368-2
) / Cell by I Richard (1995) -
Guyon, J. R. et al. Calpain 3 cleaves filamin C and regulates its ability to interact with γ- and δ-sarcoglycans. Muscle Nerve 28, 472–483 (2003).
(
10.1002/mus.10465
) / Muscle Nerve by JR Guyon (2003) -
van der Ven, P. F. et al. Indications for a novel muscular dystrophy pathway. γ-filamin, the muscle-specific filamin isoform, interacts with myotilin. J. Cell Biol. 151, 235–248 (2000).
(
10.1083/jcb.151.2.235
) / J. Cell Biol. by PF van der Ven (2000) -
Haravuori, H. et al. Secondary calpain3 deficiency in 2q-linked muscular dystrophy: titin is the candidate gene. Neurology 56, 869–877 (2001).
(
10.1212/WNL.56.7.869
) / Neurology by H Haravuori (2001) -
Baghdiguian, S. et al. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IκBα/NF-κB pathway in limb–girdle muscular dystrophy type 2A. Nature Med. 5, 503–511 (1999).
(
10.1038/8385
) / Nature Med. by S Baghdiguian (1999) -
Kramerova, I., Kudryashova, E., Tidball, J. G. & Spencer, M. J. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 13, 1373–1388 (2004).
(
10.1093/hmg/ddh153
) / Hum. Mol. Genet. by I Kramerova (2004) -
Kudryashova, E., Kudryashov, D., Kramerova, I. & Spencer, M. J. Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. J. Mol. Biol. 354, 413–424 (2005).
(
10.1016/j.jmb.2005.09.068
) / J. Mol. Biol. by E Kudryashova (2005) -
Salmikangas, P. et al. Myotilin, the limb–girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Mol. Genet. 12, 189–203 (2003).
(
10.1093/hmg/ddg020
) / Hum. Mol. Genet. by P Salmikangas (2003) -
Salmikangas, P. et al. Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb–girdle muscular dystrophy. Hum. Mol. Genet. 8, 1329–1336 (1999).
(
10.1093/hmg/8.7.1329
) / Hum. Mol. Genet. by P Salmikangas (1999) -
Faulkner, G. et al. ZASP: a new Z-band alternatively spliced PDZ-motif protein. J. Cell Biol. 146, 465–475 (1999).
(
10.1083/jcb.146.2.465
) / J. Cell Biol. by G Faulkner (1999) -
Ozawa, R. et al. Emerin-lacking mice show minimal motor and cardiac dysfunctions with nuclear-associated vacuoles. Am. J. Pathol. 168, 907–917 (2006).
(
10.2353/ajpath.2006.050564
) / Am. J. Pathol. by R Ozawa (2006) -
Vaughan, A. et al. Both emerin and lamin C depend on lamin A for localization at the nuclear envelope. J. Cell Sci. 114, 2577–2590 (2001).
(
10.1242/jcs.114.14.2577
) / J. Cell Sci. by A Vaughan (2001) -
Yates, J. R. et al. Genotype–phenotype analysis in X-linked Emery–Dreifuss muscular dystrophy and identification of a missense mutation associated with a milder phenotype. Neuromuscul. Disord. 9, 159–165 (1999).
(
10.1016/S0960-8966(98)00121-7
) / Neuromuscul. Disord. by JR Yates (1999) -
Fidzianska, A. & Hausmanowa-Petrusewicz, I. Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J. Neurol. Sci. 210, 47–51 (2003).
(
10.1016/S0022-510X(03)00012-1
) / J. Neurol. Sci. by A Fidzianska (2003) -
Melcon, G. et al. Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum. Mol. Genet. 15, 637–651 (2006).
(
10.1093/hmg/ddi479
) / Hum. Mol. Genet. by G Melcon (2006) -
Bakay, M. et al. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 129, 996–1013 (2006). Shows that mutations in two genes, one encoding the nuclear-envelope proteins lamin A and lamin C and one encoding emerin, lead to similar MDs that involve the Rb1 and MyoD transcriptional regulatory pathway. These MDs are similar to another MD, FSHD, which is also thought to involve perturbations of the nuclear envelope.
(
10.1093/brain/awl023
) / Brain by M Bakay (2006) -
Frock, R. L. et al. Lamin A/C and emerin are critical for skeletal muscle satellite cell differentiation. Genes Dev. 20, 486–500 (2006).
(
10.1101/gad.1364906
) / Genes Dev. by RL Frock (2006) -
Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).
(
10.1126/science.1546325
) / Science by M Mahadevan (1992) -
Liquori, C. L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).
(
10.1126/science.1062125
) / Science by CL Liquori (2001) -
Day, J. W. & Ranum, L. P. RNA pathogenesis of the myotonic dystrophies. Neuromuscul. Disord. 15, 5–16 (2005).
(
10.1016/j.nmd.2004.09.012
) / Neuromuscul. Disord. by JW Day (2005) -
Brais, B. et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature Genet. 18, 164–167 (1998).
(
10.1038/ng0298-164
) / Nature Genet. by B Brais (1998) -
Wahle, E. A novel poly(A)-binding protein acts as a specificity factor in the second phase of messenger RNA polyadenylation. Cell 66, 759–768 (1991).
(
10.1016/0092-8674(91)90119-J
) / Cell by E Wahle (1991) -
Calado, A., Kutay, U., Kuhn, U., Wahle, E. & Carmo-Fonseca, M. Deciphering the cellular pathway for transport of poly(A)-binding protein II. RNA 6, 245–256 (2000).
(
10.1017/S1355838200991908
) / RNA by A Calado (2000) -
Davies, J. E., Berger, Z. & Rubinsztein, D. C. Oculopharyngeal muscular dystrophy: potential therapies for an aggregate-associated disorder. Int. J. Biochem. Cell Biol. 38, 1457–1462 (2006).
(
10.1016/j.biocel.2006.01.016
) / Int. J. Biochem. Cell Biol. by JE Davies (2006) -
Hewitt, J. E. et al. Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. Hum. Mol. Genet. 3, 1287–1295 (1994).
(
10.1093/hmg/3.8.1287
) / Hum. Mol. Genet. by JE Hewitt (1994) -
van der Maarel, S. M. & Frants, R. R. The D4Z4 repeat-mediated pathogenesis of facioscapulohumeral muscular dystrophy. Am. J. Hum. Genet. 76, 375–386 (2005).
(
10.1086/428361
) / Am. J. Hum. Genet. by SM van der Maarel (2005) -
Gabellini, D. et al. Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439, 973–977 (2006). The first indication that, in mice, the transgenic overexpression of a gene, FRG1 , which neighbours a repeat-element region, can lead to an MD that is phenotypically similar to human FSHD. These findings reveal a possible mechanism behind the human disease.
(
10.1038/nature04422
) / Nature by D Gabellini (2006) -
Chakkalakal, J. V., Thompson, J., Parks, R. J. & Jasmin, B. J. Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J. 19, 880–891 (2005).
(
10.1096/fj.04-1956rev
) / FASEB J. by JV Chakkalakal (2005) -
Nowak, K. J. & Davies, K. E. Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep. 5, 872–876 (2004).
(
10.1038/sj.embor.7400221
) / EMBO Rep. by KJ Nowak (2004) -
Blankinship, M. J., Gregorevic, P. & Chamberlain, J. S. Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol. Ther. 13, 241–249 (2006).
(
10.1016/j.ymthe.2005.11.001
) / Mol. Ther. by MJ Blankinship (2006) - Wilton, S. D. & Fletcher, S. Modification of pre-mRNA processing: application to dystrophin expression. Curr. Opin. Mol. Ther. 8, 130–135 (2006). / Curr. Opin. Mol. Ther. by SD Wilton (2006)
-
Alter, J. et al. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nature Med. 12, 175–177 (2006). Outlines the delivery of morpholino oligonucleotides through an intravenous injection in a dystrophic mouse model, resulting in body-wide expression of dystrophin and improvement in muscle function.
(
10.1038/nm1345
) / Nature Med. by J Alter (2006) -
Zhu, T. et al. Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 112, 2650–2659 (2005).
(
10.1161/CIRCULATIONAHA.105.565598
) / Circulation by T Zhu (2005) -
Denti, M. A. et al. Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc. Natl Acad. Sci. USA 103, 3758–3763 (2006). An exciting description of body-wide delivery of a small nuclear RNA through transduction of an AAV in a dystrophic mouse model, which led to persistent exon skipping of dystrophin and subsequent recovery of functional and biochemical parameters.
(
10.1073/pnas.0508917103
) / Proc. Natl Acad. Sci. USA by MA Denti (2006)
Dates
Type | When |
---|---|
Created | 18 years, 11 months ago (Sept. 13, 2006, 12:59 p.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 11:53 p.m.) |
Indexed | 16 hours, 42 minutes ago (Sept. 4, 2025, 9:17 a.m.) |
Issued | 18 years, 11 months ago (Sept. 13, 2006) |
Published | 18 years, 11 months ago (Sept. 13, 2006) |
Published Online | 18 years, 11 months ago (Sept. 13, 2006) |
Published Print | 18 years, 11 months ago (Oct. 1, 2006) |
@article{Davies_2006, title={Molecular mechanisms of muscular dystrophies: old and new players}, volume={7}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm2024}, DOI={10.1038/nrm2024}, number={10}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Davies, Kay E and Nowak, Kristen J}, year={2006}, month=sep, pages={762–773} }