Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
References
133
Referenced
1,690
-
Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).
(
10.1016/S0092-8674(00)81958-3
) / Cell by RD Kornberg (1999) - van Holde, K. E. in Chromatin (ed. Rich, A.) 1–148 (Springer, New York, 1988). / Chromatin by KE van Holde (1988)
-
Bannister, A. J. & Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005).
(
10.1038/nature04048
) / Nature by AJ Bannister (2005) -
Lachner, M., O'Sullivan, R. J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003).
(
10.1242/jcs.00493
) / J. Cell Sci. by M Lachner (2003) -
Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005).
(
10.1016/j.gde.2005.01.005
) / Curr. Opin. Genet. Dev. by R Margueron (2005) -
Zhang, Y. & Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 15, 2343–2360 (2001).
(
10.1101/gad.927301
) / Genes Dev. by Y Zhang (2001) -
Bedford, M. T. & Richard, S. Arginine methylation an emerging regulator of protein function. Mol. Cell 18, 263–272 (2005).
(
10.1016/j.molcel.2005.04.003
) / Mol. Cell by MT Bedford (2005) -
Stallcup, M. R. Role of protein methylation in chromatin remodeling and transcriptional regulation. Oncogene 20, 3014–3020 (2001).
(
10.1038/sj.onc.1204325
) / Oncogene by MR Stallcup (2001) -
Hansen, J. C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu. Rev. Biophys. Biomol. Struct. 31, 361–392 (2002).
(
10.1146/annurev.biophys.31.101101.140858
) / Annu. Rev. Biophys. Biomol. Struct. by JC Hansen (2002) -
Carruthers, L. M. & Hansen, J. C. The core histone N termini function independently of linker histones during chromatin condensation. J. Biol. Chem. 275, 37285–37290 (2000).
(
10.1074/jbc.M006801200
) / J. Biol. Chem. by LM Carruthers (2000) -
Turner, B. M. Histone acetylation and an epigenetic code. Bioessays 22, 836–845 (2000).
(
10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X
) / Bioessays by BM Turner (2000) -
Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).
(
10.1038/47412
) / Nature by BD Strahl (2000) -
Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
(
10.1126/science.1063127
) / Science by T Jenuwein (2001) -
Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).
(
10.1038/20974
) / Nature by C Dhalluin (1999) -
Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).
(
10.1126/science.288.5470.1422
) / Science by RH Jacobson (2000) -
Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
(
10.1038/35065138
) / Nature by AJ Bannister (2001) -
Fischle, W. et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17, 1870–1881 (2003).
(
10.1101/gad.1110503
) / Genes Dev. by W Fischle (2003) -
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).
(
10.1038/35065132
) / Nature by M Lachner (2001) -
Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).
(
10.1101/gad.269603
) / Genes Dev. by J Min (2003) -
Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R., 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005). The first demonstration of a protein capable of binding directly to methyl-H3-K4.
(
10.1038/nature03242
) / Nature by MG Pray-Grant (2005) -
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004). Established the tudor domain as a methyl-lysine binding motif and a link between H3-K79 methylation and DNA repair processes.
(
10.1038/nature03114
) / Nature by Y Huyen (2004) -
Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).
(
10.1016/j.cell.2004.11.009
) / Cell by SL Sanders (2004) -
Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3-K4 methylation and vertebrate development. Cell 121, 859–872 (2005). Shows that the WD40-repeat domain within WDR5 binds specifically to dimethyl-H3-K4 and that this interaction is important for H3-K4 methylation.
(
10.1016/j.cell.2005.03.036
) / Cell by J Wysocka (2005) -
Kurdistani, S. K. & Grunstein, M. Histone acetylation and deacetylation in yeast. Nature Rev. Mol.Cell Biol. 4, 276–284 (2003).
(
10.1038/nrm1075
) / Nature Rev. Mol.Cell Biol. by SK Kurdistani (2003) -
Henikoff, S. Histone modifications: combinatorial complexity or cumulative simplicity? Proc. Natl Acad. Sci. USA 102, 5308–5309 (2005).
(
10.1073/pnas.0501853102
) / Proc. Natl Acad. Sci. USA by S Henikoff (2005) -
Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).
(
10.1101/gad.1198204
) / Genes Dev. by D Schubeler (2004) -
Bernstein, B. E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).
(
10.1016/j.cell.2005.01.001
) / Cell by BE Bernstein (2005) -
Lindroth, A. M. et al. Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO J. 23, 4286–4296 (2004).
(
10.1038/sj.emboj.7600430
) / EMBO J. by AM Lindroth (2004) -
Mateescu, B., England, P., Halgand, F., Yaniv, M. & Muchardt, C. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep. 5, 490–496 (2004).
(
10.1038/sj.embor.7400139
) / EMBO Rep. by B Mateescu (2004) -
Sun, Z. W. & Allis, C. D. Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418, 104–108 (2002).
(
10.1038/nature00883
) / Nature by ZW Sun (2002) -
Grunstein, M. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93, 325–328 (1998).
(
10.1016/S0092-8674(00)81160-5
) / Cell by M Grunstein (1998) -
Pidoux, A. L. & Allshire, R. C. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 569–579 (2005).
(
10.1098/rstb.2004.1611
) / Philos. Trans. R. Soc. Lond. B Biol. Sci. by AL Pidoux (2005) -
Jia, S., Yamada, T. & Grewal, S. I. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119, 469–480 (2004). Demonstrates the role of heterochromatin and H3-K9 methylation in cell-type-specific spreading of proteins involved in recombination.
(
10.1016/j.cell.2004.10.020
) / Cell by S Jia (2004) -
Wakimoto, B. T. Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93, 321–324 (1998).
(
10.1016/S0092-8674(00)81159-9
) / Cell by BT Wakimoto (1998) -
Tschiersch, B. et al. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13, 3822–3831 (1994).
(
10.1002/j.1460-2075.1994.tb06693.x
) / EMBO J. by B Tschiersch (1994) -
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).
(
10.1038/35020506
) / Nature by S Rea (2000) -
Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).
(
10.1093/emboj/18.7.1923
) / EMBO J. by L Aagaard (1999) -
Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).
(
10.1126/science.1060118
) / Science by J Nakayama (2001) -
Ekwall, K. et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109, 2637–2648 (1996).
(
10.1242/jcs.109.11.2637
) / J. Cell Sci. by K Ekwall (1996) -
Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).
(
10.1126/science.1074973
) / Science by TA Volpe (2002) -
Hall, I. M. et al. Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237 (2002).
(
10.1126/science.1076466
) / Science by IM Hall (2002) -
Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).
(
10.1126/science.1093686
) / Science by A Verdel (2004) -
Motamedi, M. R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).
(
10.1016/j.cell.2004.11.034
) / Cell by MR Motamedi (2004) -
Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S. I. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl Acad. Sci. USA 102, 152–157 (2005). This paper showed the interdependence between complexes that mediate heterochromatin formation.
(
10.1073/pnas.0407641102
) / Proc. Natl Acad. Sci. USA by T Sugiyama (2005) -
Noma, K. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nature Genet. 36, 1174–1180 (2004).
(
10.1038/ng1452
) / Nature Genet. by K Noma (2004) -
Partridge, J. F., Scott, K. S., Bannister, A. J., Kouzarides, T. & Allshire, R. C. cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr. Biol. 12, 1652–1660 (2002).
(
10.1016/S0960-9822(02)01177-6
) / Curr. Biol. by JF Partridge (2002) -
Partridge, J. F., Borgstrom, B. & Allshire, R. C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).
(
10.1101/gad.14.7.783
) / Genes Dev. by JF Partridge (2000) -
Peters, A. H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).
(
10.1016/S1097-2765(03)00477-5
) / Mol. Cell by AH Peters (2003) -
Rice, J. C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol.Cell 12, 1591–1598 (2003).
(
10.1016/S1097-2765(03)00479-9
) / Mol.Cell by JC Rice (2003) -
Schotta, G. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).
(
10.1101/gad.300704
) / Genes Dev. by G Schotta (2004) -
Eissenberg, J. C. & Elgin, S. C. The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210 (2000).
(
10.1016/S0959-437X(00)00058-7
) / Curr. Opin. Genet. Dev. by JC Eissenberg (2000) -
Tachibana, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 19, 815–826 (2005). Shows that two methyltransferases cooperate to mediate the bulk of euchromatic H3-K9 methylation.
(
10.1101/gad.1284005
) / Genes Dev. by M Tachibana (2005) -
Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).
(
10.1101/gad.989402
) / Genes Dev. by M Tachibana (2002) -
Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).
(
10.1038/35087620
) / Nature by SJ Nielsen (2001) -
Ait-Si-Ali, S. et al. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells. EMBO J. 23, 605–615 (2004).
(
10.1038/sj.emboj.7600074
) / EMBO J. by S Ait-Si-Ali (2004) -
Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 Lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).
(
10.1016/j.molcel.2005.06.011
) / Mol. Cell by CR Vakoc (2005) -
Weiler, K. S. & Wakimoto, B. T. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577–605 (1995).
(
10.1146/annurev.ge.29.120195.003045
) / Annu. Rev. Genet. by KS Weiler (1995) -
Cao, R. & Zhang, Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr. Opin. Genet. Dev. 14, 155–164 (2004).
(
10.1016/j.gde.2004.02.001
) / Curr. Opin. Genet. Dev. by R Cao (2004) -
Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).
(
10.1146/annurev.genet.38.072902.091907
) / Annu. Rev. Genet. by L Ringrose (2004) -
Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).
(
10.1126/science.1076997
) / Science by R Cao (2002) -
Czermin, B. et al. Drosophila Enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111, 185–196 (2002).
(
10.1016/S0092-8674(02)00975-3
) / Cell by B Czermin (2002) -
Muller, J. et al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex. Cell 111, 197–208 (2002).
(
10.1016/S0092-8674(02)00976-5
) / Cell by J Muller (2002) -
Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).
(
10.1101/gad.1035902
) / Genes Dev. by A Kuzmichev (2002) -
Wang, L. et al. Hierarchical recruitment of polycomb group silencing complexes. Mol. Cell 14, 637–646 (2004).
(
10.1016/j.molcel.2004.05.009
) / Mol. Cell by L Wang (2004) -
Shao, Z. et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37–46 (1999).
(
10.1016/S0092-8674(00)80604-2
) / Cell by Z Shao (1999) -
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004). Identifies the enzyme responsible for H2A ubiquitylation and shows that this modification is required for Polycomb gene silencing.
(
10.1038/nature02985
) / Nature by H Wang (2004) -
Heard, E. Recent advances in X-chromosome inactivation. Curr. Opin. Cell Biol. 16, 247–255 (2004).
(
10.1016/j.ceb.2004.03.005
) / Curr. Opin. Cell Biol. by E Heard (2004) - Mak, W. et al. Reactivation of the paternal X chromosome in early mouse embryos. Science 303, 666–669 (2004). References 68 and 69 demonstrate that X-inactivation is dynamic in that imprinted X inactivation is reversed in the developing embryo followed by random X inactivation. / Science by W Mak (2004)
-
Okamoto, I., Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science 303, 644–649 (2004).
(
10.1126/science.1092727
) / Science by I Okamoto (2004) -
de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).
(
10.1016/j.devcel.2004.10.005
) / Dev. Cell by M de Napoles (2004) -
Fang, J., Chen, T., Chadwick, B., Li, E. & Zhang, Y. Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J. Biol. Chem. 279, 52812–52815 (2004).
(
10.1074/jbc.C400493200
) / J. Biol. Chem. by J Fang (2004) -
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).
(
10.1126/science.1084274
) / Science by K Plath (2003) -
Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003).
(
10.1016/S1534-5807(03)00068-6
) / Dev. Cell by J Silva (2003) -
Wang, J. et al. Imprinted X inactivation maintained by a mouse Polycomb group gene. Nature Genet. 28, 371–375 (2001).
(
10.1038/ng574
) / Nature Genet. by J Wang (2001) -
Mager, J., Montgomery, N. D., de Villena, F. P. & Magnuson, T. Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genet. 33, 502–507 (2003). Establishes a connection between Polycomb proteins and imprinting.
(
10.1038/ng1125
) / Nature Genet. by J Mager (2003) -
Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet. 36, 1291–1295 (2004).
(
10.1038/ng1468
) / Nature Genet. by A Lewis (2004) -
Umlauf, D. et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nature Genet. 36, 1296–1300 (2004).
(
10.1038/ng1467
) / Nature Genet. by D Umlauf (2004) -
Schmitt, S., Prestel, M. & Paro, R. Intergenic transcription through a polycomb group response element counteracts silencing. Genes Dev. 19, 697–708 (2005).
(
10.1101/gad.326205
) / Genes Dev. by S Schmitt (2005) -
Montgomery, N. D. et al. The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr. Biol. 15, 942–947 (2005).
(
10.1016/j.cub.2005.04.051
) / Curr. Biol. by ND Montgomery (2005) -
Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED–EZH2 complex. Mol. Cell 15, 57–67 (2004).
(
10.1016/j.molcel.2004.06.020
) / Mol. Cell by R Cao (2004) -
Pasini, D., Bracken, A. P., Jensen, M. R., Lazzerini Denchi, E. & Helin, K. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J. 23, 4061–4071 (2004).
(
10.1038/sj.emboj.7600402
) / EMBO J. by D Pasini (2004) -
Kuzmichev, A., Jenuwein, T., Tempst, P. & Reinberg, D. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14, 183–193 (2004).
(
10.1016/S1097-2765(04)00185-6
) / Mol. Cell by A Kuzmichev (2004) -
Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).
(
10.1016/S1097-2765(03)00092-3
) / Mol. Cell by HH Ng (2003) -
Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).
(
10.1101/gad.1055503
) / Genes Dev. by T Xiao (2003) -
Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).
(
10.1128/MCB.23.12.4207-4218.2003
) / Mol. Cell. Biol. by NJ Krogan (2003) -
Li, B., Howe, L., Anderson, S., Yates, J. R., 3rd & Workman, J. L. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 8897–8903 (2003).
(
10.1074/jbc.M212134200
) / J. Biol. Chem. by B Li (2003) -
Xiao, T. et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol. Cell. Biol. 25, 637–651 (2005).
(
10.1128/MCB.25.2.637-651.2005
) / Mol. Cell. Biol. by T Xiao (2005) -
Briggs, S. D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).
(
10.1038/nature00970
) / Nature by SD Briggs (2002) -
Dover, J. et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J. Biol Chem. 277, 28368–28371 (2002).
(
10.1074/jbc.C200348200
) / J. Biol Chem. by J Dover (2002) -
Ng, H. H., Xu, R. M., Zhang, Y. & Struhl, K. Ubiquitination of histone H2B by Rad6 is required for efficient Dot1-mediated methylation of histone H3 lysine 79. J. Biol. Chem. 277, 34655–34657 (2002).
(
10.1074/jbc.C200433200
) / J. Biol. Chem. by HH Ng (2002) -
Henry, K. W. et al. Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev. 17, 2648–2663 (2003).
(
10.1101/gad.1144003
) / Genes Dev. by KW Henry (2003) -
Daniel, J. A. et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J. Biol. Chem. 279, 1867–1871 (2004).
(
10.1074/jbc.C300494200
) / J. Biol. Chem. by JA Daniel (2004) -
Kao, C. F. et al. Rad6 plays a role in transcriptional activation through ubiquitylation of histone H2B. Genes Dev. 18, 184–195 (2004).
(
10.1101/gad.1149604
) / Genes Dev. by CF Kao (2004) -
Henry, K. W. & Berger, S. L. Trans-tail histone modifications: wedge or bridge? Nature Struct. Biol. 9, 565–566 (2002).
(
10.1038/nsb0802-565
) / Nature Struct. Biol. by KW Henry (2002) -
Ezhkova, E. & Tansey, W. P. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13, 435–442 (2004).
(
10.1016/S1097-2765(04)00026-7
) / Mol. Cell by E Ezhkova (2004) -
Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).
(
10.1038/nature01080
) / Nature by H Santos-Rosa (2002) -
Bernstein, B. E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl Acad. Sci. USA 99, 8695–8700 (2002).
(
10.1073/pnas.082249499
) / Proc. Natl Acad. Sci. USA by BE Bernstein (2002) -
Pokholok, D. K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005). Demonstrates the generality of previous work investigating the distribution of histone modifications at active and silent genes.
(
10.1016/j.cell.2005.06.026
) / Cell by DK Pokholok (2005) -
Briggs, S. D. et al. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev. 15, 3286–3295 (2001).
(
10.1101/gad.940201
) / Genes Dev. by SD Briggs (2001) -
Nagy, P. L., Griesenbeck, J., Kornberg, R. D. & Cleary, M. L. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc. Natl Acad. Sci. USA 99, 90–94 (2002).
(
10.1073/pnas.221596698
) / Proc. Natl Acad. Sci. USA by PL Nagy (2002) -
Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12, 475–487 (2003).
(
10.1016/j.molcel.2003.08.007
) / Mol. Cell by H Wang (2003) -
Schlichter, A. & Cairns, B. R. Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. EMBO J. 24, 1222–1231 (2005).
(
10.1038/sj.emboj.7600607
) / EMBO J. by A Schlichter (2005) -
Laribee, R. N. et al. BUR kinase selectively regulates H3-K4 trimethylation and H2B ubiquitylation through recruitment of the PAF elongation complex. Curr. Biol. 15, 1487–1493 (2005). Identifies a regulatory pathway that regulates methylation status.
(
10.1016/j.cub.2005.07.028
) / Curr. Biol. by RN Laribee (2005) -
Santos-Rosa, H. et al. Methylation of histone H3-K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).
(
10.1016/S1097-2765(03)00438-6
) / Mol. Cell by H Santos-Rosa (2003) -
Timmers, H. T. & Tora, L. SAGA unveiled. Trends Biochem. Sci. 30, 7–10 (2005).
(
10.1016/j.tibs.2004.11.007
) / Trends Biochem. Sci. by HT Timmers (2005) -
Dou, Y. et al. Physical association and coordinate function of the H3-K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121, 873–885 (2005).
(
10.1016/j.cell.2005.04.031
) / Cell by Y Dou (2005) -
Feng, Q. et al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058 (2002).
(
10.1016/S0960-9822(02)00901-6
) / Curr. Biol. by Q Feng (2002) -
van Leeuwen, F., Gafken, P. R. & Gottschling, D. E. Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745–756. (2002).
(
10.1016/S0092-8674(02)00759-6
) / Cell by F van Leeuwen (2002) -
Ng, H. H. et al. Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527 (2002).
(
10.1101/gad.1001502
) / Genes Dev. by HH Ng (2002) -
Lacoste, N., Utley, R. T., Hunter, J. M., Poirier, G. G. & Cote, J. Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J. Biol. Chem. 277, 30421–30424 (2002).
(
10.1074/jbc.C200366200
) / J. Biol. Chem. by N Lacoste (2002) -
Ng, H. H., Ciccone, D. N., Morshead, K. B., Oettinger, M. A. & Struhl, K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells: a potential mechanism for position-effect variegation. Proc. Natl Acad. Sci. USA 100, 1820–1825 (2003).
(
10.1073/pnas.0437846100
) / Proc. Natl Acad. Sci. USA by HH Ng (2003) -
Okada, Y. et al. hDOT1L links histone methylation to leukemogenesis. Cell 121, 167–178 (2005). This study provides evidence that MLL–AF10 fusion proteins induce leukaemia through the recruitment of DOT1L and H3-K79 methylation to target genes.
(
10.1016/j.cell.2005.02.020
) / Cell by Y Okada (2005) -
Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).
(
10.1016/S0092-8674(02)00798-5
) / Cell by AJ Bannister (2002) -
Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004). References 114 and 115 are the first demonstrations of an enzyme capable of reversing histone methylation.
(
10.1016/j.cell.2004.08.020
) / Cell by GL Cuthbert (2004) -
Wang, Y. et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306, 279–283 (2004).
(
10.1126/science.1101400
) / Science by Y Wang (2004) -
Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004). Identifies the first histone lysine demethylase.
(
10.1016/j.cell.2004.12.012
) / Cell by Y Shi (2004) -
Lee, M. G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).
(
10.1038/nature04021
) / Nature by MG Lee (2005) -
Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).
(
10.1038/nature04020
) / Nature by E Metzger (2005) -
Clissold, P. M. & Ponting, C. P. JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2β. Trends Biochem. Sci. 26, 7–9 (2001).
(
10.1016/S0968-0004(00)01700-X
) / Trends Biochem. Sci. by PM Clissold (2001) -
Trewick, S. C., McLaughlin, P. J. & Allshire, R. C. Methylation: lost in hydroxylation? EMBO Rep. 6, 315–320 (2005).
(
10.1038/sj.embor.7400379
) / EMBO Rep. by SC Trewick (2005) -
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).
(
10.1038/nature01075
) / Nature by S Varambally (2002) -
Fang, J. et al. Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr. Biol. 12, 1086–1099 (2002).
(
10.1016/S0960-9822(02)00924-7
) / Curr. Biol. by J Fang (2002) -
Nishioka, K. et al. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213 (2002).
(
10.1016/S1097-2765(02)00548-8
) / Mol. Cell by K Nishioka (2002) -
Xiao, B. et al. Specificity and mechanism of the histone methyltransferase Pr-Set7. Genes Dev. 19, 1444–1454 (2005).
(
10.1101/gad.1315905
) / Genes Dev. by B Xiao (2005) -
Karachentsev, D., Sarma, K., Reinberg, D. & Steward, R. PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Genes Dev. 19, 431–435 (2005).
(
10.1101/gad.1263005
) / Genes Dev. by D Karachentsev (2005) -
Julien, E. & Herr, W. A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Mol. Cell 14, 713–725 (2004).
(
10.1016/j.molcel.2004.06.008
) / Mol. Cell by E Julien (2004) -
Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).
(
10.1101/gad.947102
) / Genes Dev. by A Bird (2002) -
Tamaru, H. & Selker, E. U. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283 (2001).
(
10.1038/35104508
) / Nature by H Tamaru (2001) -
Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).
(
10.1038/nature731
) / Nature by JP Jackson (2002) -
Lehnertz, B. et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192–1200 (2003).
(
10.1016/S0960-9822(03)00432-9
) / Curr. Biol. by B Lehnertz (2003) -
Freitag, M., Hickey, P. C., Khlafallah, T. K., Read, N. D. & Selker, E. U. HP1 is essential for DNA methylation in neurospora. Mol. Cell 13, 427–434 (2004).
(
10.1016/S1097-2765(04)00024-3
) / Mol. Cell by M Freitag (2004) -
Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell 3, 89–95 (2003).
(
10.1016/S1535-6108(02)00234-9
) / Cancer Cell by KE Bachman (2003) -
Sarraf, S. A. & Stancheva, I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol.Cell 15, 595–605 (2004). Demonstrates that DNA methylation can direct histone methylation during DNA replication.
(
10.1016/j.molcel.2004.06.043
) / Mol.Cell by SA Sarraf (2004)
Dates
Type | When |
---|---|
Created | 19 years, 9 months ago (Nov. 1, 2005, 7:01 a.m.) |
Deposited | 1 year, 7 months ago (Jan. 31, 2024, 5:05 a.m.) |
Indexed | 3 hours, 33 minutes ago (Aug. 31, 2025, 6:34 a.m.) |
Issued | 19 years, 9 months ago (Nov. 1, 2005) |
Published | 19 years, 9 months ago (Nov. 1, 2005) |
Published Print | 19 years, 9 months ago (Nov. 1, 2005) |
@article{Martin_2005, title={The diverse functions of histone lysine methylation}, volume={6}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm1761}, DOI={10.1038/nrm1761}, number={11}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Martin, Cyrus and Zhang, Yi}, year={2005}, month=nov, pages={838–849} }