Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Gumbiner, B. M. (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nature Reviews Molecular Cell Biology, 6(8), 622–634.

Authors 1
  1. Barry M. Gumbiner (first)
References 131 Referenced 1,255
  1. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996). (10.1016/S0092-8674(00)81279-9) / Cell by BM Gumbiner (1996)
  2. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell. Biol. 7, 619–627 (1995). (10.1016/0955-0674(95)80102-2) / Curr. Opin. Cell. Biol. by M Takeichi (1995)
  3. Kim, S. H., Jen, W. C., De Robertis, E. M. & Kintner, C. The protocadherin PAPC establishes segmental boundaries during somitogenesis in Xenopus embryos. Curr. Biol. 10, 821–830 (2000). (10.1016/S0960-9822(00)00580-7) / Curr. Biol. by SH Kim (2000)
  4. Tepass, U., Godt, D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002). (10.1016/S0959-437X(02)00342-8) / Curr. Opin. Genet. Dev. by U Tepass (2002)
  5. Keller, R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science 298, 1950–1954 (2002). Describes how polarized cell movements, controlled by the planar cell-polarity pathway and dynamic cell adhesion, mediate morphogenetic processes that shape the vertebrate embryo. (10.1126/science.1079478) / Science by R Keller (2002)
  6. Zhong, Y., Brieher, W. M. & Gumbiner, B. M. Analysis of C-cadherin regulation during tissue morphogenesis with an activating antibody. J. Cell Biol. 144, 351–359 (1999). Provides some of the most direct evidence that the dynamic regulation of cadherins is required for cell rearrangements in morphogenesis and that changes in the state or conformation of the extracellular cadherin domain are involved in regulation. (10.1083/jcb.144.2.351) / J. Cell Biol. by Y Zhong (1999)
  7. Hay, E. D. & Zuk, A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am. J. Kidney Dis. 26, 678–690 (1995). (10.1016/0272-6386(95)90610-X) / Am. J. Kidney Dis. by ED Hay (1995)
  8. Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol. 2, 76–83 (2000). (10.1038/35000025) / Nature Cell Biol. by A Cano (2000)
  9. Matsunaga, M., Hatta, K., Nagafuchi, A. & Takeichi, M. Guidance of optic nerve fibres by N-cadherin adhesion molecules. Nature 334, 62–64 (1988). (10.1038/334062a0) / Nature by M Matsunaga (1988)
  10. Geisbrecht, E. R. & Montell, D. J. Myosin VI is required for E-cadherin-mediated border cell migration. Nature Cell Biol. 4, 616–620 (2002). Striking in vivo genetic evidence that E-cadherin and associated cytoskeletal proteins drive cell movements rather than holding cells in place. (10.1038/ncb830) / Nature Cell Biol. by ER Geisbrecht (2002)
  11. Uchida, N., Honjo, Y., Johnson, K. R., Wheelock, M. J. & Takeichi, M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell Biol. 135, 767–779 (1996). (10.1083/jcb.135.3.767) / J. Cell Biol. by N Uchida (1996)
  12. Hermiston, M. L., Wong, M. H. & Gordon, J. I. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 10, 985–996 (1996). (10.1101/gad.10.8.985) / Genes Dev. by ML Hermiston (1996)
  13. Tinkle, C. L., Lechler, T., Pasolli, H. A. & Fuchs, E. Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proc. Natl Acad. Sci. USA 101, 552–557 (2004). (10.1073/pnas.0307437100) / Proc. Natl Acad. Sci. USA by CL Tinkle (2004)
  14. Kobielak, A. & Fuchs, E. α-catenin: at the junction of intercellular adhesion and actin dynamics. Nature Rev. Mol. Cell Biol. 5, 614–626 (2004). (10.1038/nrm1433) / Nature Rev. Mol. Cell Biol. by A Kobielak (2004)
  15. Murase, S., Mosser, E. & Schuman, E. M. Depolarization drives β-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35, 91–105 (2002). (10.1016/S0896-6273(02)00764-X) / Neuron by S Murase (2002)
  16. Togashi, H. et al. Cadherin regulates dendritic spine morphogenesis. Neuron 35, 77–89 (2002). (10.1016/S0896-6273(02)00748-1) / Neuron by H Togashi (2002)
  17. Nusrat, A., Turner, J. R. & Madara, J. L. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G851–G857 (2000). (10.1152/ajpgi.2000.279.5.G851) / Am. J. Physiol. Gastrointest. Liver Physiol. by A Nusrat (2000)
  18. Venkiteswaran, K. et al. Regulation of endothelial barrier function and growth by VE-cadherin, plakoglobin, and β-catenin. Am. J. Physiol. Cell Physiol. 283, C811–C821 (2002). (10.1152/ajpcell.00417.2001) / Am. J. Physiol. Cell Physiol. by K Venkiteswaran (2002)
  19. Berx, G., Nollet, F. & van Roy, F. Dysregulation of the E-cadherin/catenin complex by irreversible mutations in human carcinomas. Cell Adhes. Comm. 6, 171–184 (1998). (10.3109/15419069809004474) / Cell Adhes. Comm. by G Berx (1998)
  20. Gumbiner, B., Stevenson, B. & Grimaldi, A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107, 1575–1587 (1988). (10.1083/jcb.107.4.1575) / J. Cell Biol. by B Gumbiner (1988)
  21. Palacios, F., Schweitzer, J. K., Boshans, R. L. & D'Souza-Schorey, C. ARF6–GTP recruits Nm23–H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nature Cell Biol. 4, 929–936 (2002). (10.1038/ncb881) / Nature Cell Biol. by F Palacios (2002)
  22. Le, T. L., Yap, A. S. & Stow, J. L. Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 146, 219–232 (1999). / J. Cell Biol. by TL Le (1999)
  23. Adams, C. L., Nelson, W. J. & Smith, S. J. Quantitative analysis of cadherin–catenin–actin reorganization during development of cell–cell adhesion. J. Cell Biol. 135, 1899–1911 (1996). (10.1083/jcb.135.6.1899) / J. Cell Biol. by CL Adams (1996)
  24. Mary, S. et al. Biogenesis of N-cadherin-dependent cell–cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol. Biol. Cell 13, 285–301 (2002). (10.1091/mbc.01-07-0337) / Mol. Biol. Cell by S Mary (2002)
  25. Fujita, Y. et al. Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nature Cell Biol. 4, 222–231 (2002). (10.1038/ncb758) / Nature Cell Biol. by Y Fujita (2002)
  26. Chen, X., Kojima, S., Borisy, G. G. & Green, K. J. p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J. Cell Biol. 163, 547–557 (2003). (10.1083/jcb.200305137) / J. Cell Biol. by X Chen (2003)
  27. Marsden, M. & DeSimone, D. W. Integrin–ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus. Curr. Biol. 13, 1182–1191 (2003). Provides evidence that integrin signalling regulates cadherins in vivo to control morphogenetic cell movements. (10.1016/S0960-9822(03)00433-0) / Curr. Biol. by M Marsden (2003)
  28. Brieher, W. M. & Gumbiner, B. M. Regulation of C-cadherin function during activin induced morphogenesis of Xenopus animal caps. J. Cell Biol. 126, 519–527 (1994). (10.1083/jcb.126.2.519) / J. Cell Biol. by WM Brieher (1994)
  29. Shibamoto, S. et al. Tyrosine phosphorylation of β-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes. Comm. 1, 295–305 (1994). (10.3109/15419069409097261) / Cell Adhes. Comm. by S Shibamoto (1994)
  30. Gumbiner, B. M. Regulation of cadherin adhesive activity. J. Cell Biol. 148, 399–404 (2000). (10.1083/jcb.148.3.399) / J. Cell Biol. by BM Gumbiner (2000)
  31. Winning, R. S., Scales, J. B. & Sargent, T. D. Disruption of cell adhesion in Xenopus embryos by Pagliaccio, an Eph-class receptor tyrosine kinase. Dev. Biol. 179, 309–319 (1996). (10.1006/dbio.1996.0262) / Dev. Biol. by RS Winning (1996)
  32. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002). Excellent in-depth review that covers the mechanisms that regulate integrin-mediated adhesion, in particular the transmembrane conformational changes that control the adhesive bond at the cell surface and signalling events in the cytoplasm. (10.1016/S0092-8674(02)00971-6) / Cell by RO Hynes (2002)
  33. Calderwood, D. A. & Ginsberg, M. H. Talin forges the links between integrins and actin. Nature Cell Biol. 5, 694–697 (2003). Brief review that describes the three distinct roles of the cytoskeletal protein talin in the regulation of integrin function (linkage, signalling and control of integrin conformation). (10.1038/ncb0803-694) / Nature Cell Biol. by DA Calderwood (2003)
  34. Yagi, T. & Takeichi, M. Cadherin superfamily genes: functions, genomic organization, and neurologic diversity. Genes Dev. 14, 1169–1180 (2000). (10.1101/gad.14.10.1169) / Genes Dev. by T Yagi (2000)
  35. Nollet, F., Kools, P. & van Roy, F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J. Mol. Biol. 299, 551–572 (2000). (10.1006/jmbi.2000.3777) / J. Mol. Biol. by F Nollet (2000)
  36. Suzuki, S. C., Inoue, T., Kimura, Y., Tanaka, T. & Takeichi, M. Neuronal circuits are subdivided by differential expression of type-II classic cadherins in postnatal mouse brains. Mol. Cell Neurosci. 9, 433–447 (1997). (10.1006/mcne.1997.0626) / Mol. Cell Neurosci. by SC Suzuki (1997)
  37. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999). (10.1016/S0092-8674(00)81010-7) / Cell by P Carmeliet (1999)
  38. Garrod, D. R., Merritt, A. J. & Nie, Z. Desmosomal cadherins. Curr. Opin. Cell Biol. 14, 537–545 (2002). (10.1016/S0955-0674(02)00366-6) / Curr. Opin. Cell Biol. by DR Garrod (2002)
  39. He, W., Cowin, P. & Stokes, D. L. Untangling desmosomal knots with electron tomography. Science 302, 109–113 (2003). (10.1126/science.1086957) / Science by W He (2003)
  40. Reynolds, A. B. et al. Identification of a new catenin: the tryosine kinase substrate p120cas associates with E-cadherin complexes. Mol. Cell. Biol. 14, 8333–8342 (1994). (10.1128/MCB.14.12.8333) / Mol. Cell. Biol. by AB Reynolds (1994)
  41. Shibamoto, S. et al. Association of p120, a tyrosine kinase substrate, with E-cadherin/catenin complexes. J. Cell Biol. 128, 949–957 (1995). (10.1083/jcb.128.5.949) / J. Cell Biol. by S Shibamoto (1995)
  42. Yap, A. S., Niessen, C. M. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol. 141, 779–789 (1998). (10.1083/jcb.141.3.779) / J. Cell Biol. by AS Yap (1998)
  43. Rimm, D. L., Koslov, E. R., Kebriaei, P., Cianci, C. D. & Morrow, J. S. α1(E)-Catenin is an actin-binding and-bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc. Natl Acad. Sci. USA 92, 8813–8817 (1995). (10.1073/pnas.92.19.8813) / Proc. Natl Acad. Sci. USA by DL Rimm (1995)
  44. Itoh, M., Nagafuchi, A., Moroi, S. & Tsukita, S. Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to a catenin and actin filaments. J. Cell Biol. 138, 181–192 (1997). (10.1083/jcb.138.1.181) / J. Cell Biol. by M Itoh (1997)
  45. Watabe-Uchida, M. et al. α-Catenin–vinculin interaction functions to organize the apical junctional complex in epithelial cells. J. Cell Biol. 142, 847–857 (1998). (10.1083/jcb.142.3.847) / J. Cell Biol. by M Watabe-Uchida (1998)
  46. Knudsen, K. A., Soler, A. P., Johnson, K. R. & Wheelock, M. J. Interaction of α-actinin with the cadherin/catenin cell–cell adhesion complex via α-catenin. J. Cell Biol. 130, 67–77 (1995). (10.1083/jcb.130.1.67) / J. Cell Biol. by KA Knudsen (1995)
  47. Pokutta, S., Herrenknecht, K., Kemler, R. & Engel, J. Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur. J. Biochem. 223, 1019–1026 (1994). (10.1111/j.1432-1033.1994.tb19080.x) / Eur. J. Biochem. by S Pokutta (1994)
  48. Boggon, T. J. et al. C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296, 1308–1313 (2002). (10.1126/science.1071559) / Science by TJ Boggon (2002)
  49. Nose, A., Tsuji, K. & Takeichi, M. Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61, 147–155 (1990). (10.1016/0092-8674(90)90222-Z) / Cell by A Nose (1990)
  50. Niessen, C. M. & Gumbiner, B. M. Cadherin-mediated cell sorting not determined by binding or adhesion specificity. J. Cell Biol. 156, 389–399 (2002). (10.1083/jcb.200108040) / J. Cell Biol. by CM Niessen (2002)
  51. Duguay, D., Foty, R. A. & Steinberg, M. S. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev. Biol. 253, 309–323 (2003). Provides evidence that the levels of cadherin expression, and therefore the strength of adhesion, have a more important role than cadherin specificity in determining the pattern of cell sorting. (10.1016/S0012-1606(02)00016-7) / Dev. Biol. by D Duguay (2003)
  52. Godt, D. & Tepass, U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391 (1998). (10.1038/26493) / Nature by D Godt (1998)
  53. Price, S. R., De Marco Garcia, N. V., Ranscht, B. & Jessell, T. M. Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109, 205–216 (2002). (10.1016/S0092-8674(02)00695-5) / Cell by SR Price (2002)
  54. Wacker, S., Grimm, K., Joos, T. & Winklbauer, R. Development and control of tissue separation at gastrulation in Xenopus. Dev. Biol. 224, 428–439 (2000). (10.1006/dbio.2000.9794) / Dev. Biol. by S Wacker (2000)
  55. Dahmann, C. & Basler, K. Opposing transcriptional outputs of Hedgehog signaling and engrailed control compartmental cell sorting at the Drosophila A/P boundary. Cell 100, 411–422 (2000). Describes an in vivo situation in which signalling pathways control not only the patterning of gene expression in a developing tissue but also the adhesive sorting of cells into compartments. (10.1016/S0092-8674(00)80677-7) / Cell by C Dahmann (2000)
  56. Wizenmann, A. & Lumsden, A. Segregation of rhombomeres by differential chemoaffinity. Mol. Cell Neurosci. 9, 448–459 (1997). (10.1006/mcne.1997.0642) / Mol. Cell Neurosci. by A Wizenmann (1997)
  57. Lumsden, A. Closing in on rhombomere boundaries. Nature Cell Biol. 1, E83–E85 (1999). (10.1038/12078) / Nature Cell Biol. by A Lumsden (1999)
  58. Wada, N., Tanaka, H., Ide, H. & Nohno, T. Ephrin-A2 regulates position-specific cell affinity and is involved in cartilage morphogenesis in the chick limb bud. Dev. Biol. 264, 550–563 (2003). (10.1016/j.ydbio.2003.08.019) / Dev. Biol. by N Wada (2003)
  59. Yajima, H., Hara, K., Ide, H. & Tamura, K. Cell adhesiveness and affinity for limb pattern formation. Int. J. Dev. Biol. 46, 897–904 (2002). / Int. J. Dev. Biol. by H Yajima (2002)
  60. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. G. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271 (1999). (10.1038/20452) / Nature by Q Xu (1999)
  61. Cooke, J. E., Kemp, H. A. & Moens, C. B. EphA4 is required for cell adhesion and rhombomere-boundary formation in the zebrafish. Curr. Biol. 15, 536–542 (2005). Provides evidence that ephrins and Eph receptors contribute to boundary formation in vivo by controlling adhesive cell sorting in addition to cell repulsion. (10.1016/j.cub.2005.02.019) / Curr. Biol. by JE Cooke (2005)
  62. Yajima, H., Yoneitamura, S., Watanabe, N., Tamura, K. & Ide, H. Role of N-cadherin in the sorting-out of mesenchymal cells and in the positional identity along the proximodistal axis of the chick limb bud. Dev. Dyn. 216, 274–284 (1999). (10.1002/(SICI)1097-0177(199911)216:3<274::AID-DVDY6>3.0.CO;2-S) / Dev. Dyn. by H Yajima (1999)
  63. Rhee, J. et al. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nature Cell Biol. 4, 798–805 (2002). (10.1038/ncb858) / Nature Cell Biol. by J Rhee (2002)
  64. Gumbiner, B. M. Epithelial morphogenesis. Cell 69, 385–387 (1992). (10.1016/0092-8674(92)90440-N) / Cell by BM Gumbiner (1992)
  65. Koch, A. W., Manzur, K. L. & Shan, W. Structure-based models of cadherin-mediated cell adhesion: the evolution continues. Cell. Mol. Life Sci. 61, 1884–1895 (2004). (10.1007/s00018-004-4006-2) / Cell. Mol. Life Sci. by AW Koch (2004)
  66. Shapiro, L. et al. Structural basis of cell–cell adhesion by cadherins. Nature 374, 327–337 (1995). (10.1038/374327a0) / Nature by L Shapiro (1995)
  67. Shan, W. -S. et al. Functional cis-heterodimers of N- and R-cadherins. J. Cell Biol. 148, 579–590 (2000). (10.1083/jcb.148.3.579) / J. Cell Biol. by W-S Shan (2000)
  68. Ozawa, M. & Kemler, R. The membrane-proximal region of the E-cadherin cytoplasmic domain prevents dimerization and negatively regulates adhesion activity. J. Cell Biol. 142, 1605–1613 (1998). (10.1083/jcb.142.6.1605) / J. Cell Biol. by M Ozawa (1998)
  69. Brieher, W. M., Yap, A. S. & Gumbiner, B. M. Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487–496 (1996). (10.1083/jcb.135.2.487) / J. Cell Biol. by WM Brieher (1996)
  70. Takeda, H., Shimoyama, Y., Nagafuchi, A. & Hirohashi, S. E-cadherin functions as a cis-dimer at the cell–cell adhesive interface in vivo. Nature Struct. Biol. 6, 310–312 (1999). (10.1038/7542) / Nature Struct. Biol. by H Takeda (1999)
  71. Klingelhofer, J., Laur, O. Y., Troyanovsky, R. B. & Troyanovsky, S. M. Dynamic interplay between adhesive and lateral E-cadherin dimers. Mol. Cell. Biol. 22, 7449–7458 (2002). (10.1128/MCB.22.21.7449-7458.2002) / Mol. Cell. Biol. by J Klingelhofer (2002)
  72. Tamura, K., Shan, W. S., Hendrickson, W. A., Colman, D. R. & Shapiro, L. Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20, 1153–1163 (1998). (10.1016/S0896-6273(00)80496-1) / Neuron by K Tamura (1998)
  73. Ozawa, M. Lateral dimerization of the E-cadherin extracellular domain is necessary but not sufficient for adhesive activity. J. Biol. Chem. 277, 19600–19608 (2002). (10.1074/jbc.M202029200) / J. Biol. Chem. by M Ozawa (2002)
  74. Kitagawa, M. et al. Mutation analysis of cadherin-4 reveals amino acid residues of EC1 important for the structure and function. Biochem. Biophys. Res. Comm. 271, 358–363 (2000). (10.1006/bbrc.2000.2636) / Biochem. Biophys. Res. Comm. by M Kitagawa (2000)
  75. Laur, O. Y., Klingelhofer, J., Troyanovsky, R. B. & Troyanovsky, S. M. Both the dimerization and immunochemical properties of E-cadherin EC1 domain depend on Trp156 residue. Arch. Biochem. Biophys. 400, 141–147 (2002). (10.1006/abbi.2002.2774) / Arch. Biochem. Biophys. by OY Laur (2002)
  76. Renaud-Young, M. & Gallin, W. J. In the first extracellular domain of E-cadherin, heterophilic interactions, but not the conserved His–Ala–Val motif, are required for adhesion. J. Biol. Chem. 277, 39609–39616 (2002). (10.1074/jbc.M201256200) / J. Biol. Chem. by M Renaud-Young (2002)
  77. Pertz, O. et al. A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of e-cadherin homoassociation. EMBO J. 18, 1738–1747 (1999). (10.1093/emboj/18.7.1738) / EMBO J. by O Pertz (1999)
  78. Sivasankar, S., Brieher, W., Lavrik, N., Gumbiner, B. & Leckband, D. Direct molecular force measurements of multiple adhesive interactions between cadherin ectodomains. Proc. Natl Acad. Sci. USA 96, 11820–11824 (1999). (10.1073/pnas.96.21.11820) / Proc. Natl Acad. Sci. USA by S Sivasankar (1999)
  79. Chappuis-Flament, S., Wong, E., Hicks, L. D., Kay, C. M. & Gumbiner, B. M. Multiple cadherin extracellular repeats mediate homophilic binding and adhesion. J. Cell Biol. 154, 231–243 (2001). (10.1083/jcb.200103143) / J. Cell Biol. by S Chappuis-Flament (2001)
  80. Zhu, B. et al. Functional analysis of the structural basis of homophilic cadherin adhesion. Biophysical J. 84, 4033–4042 (2003). (10.1016/S0006-3495(03)75129-7) / Biophysical J. by B Zhu (2003)
  81. Baumgartner, W. et al. Cadherin interaction probed by atomic force microscopy. Proc. Natl Acad. Sci. USA 97, 4005–4010 (2000). (10.1073/pnas.070052697) / Proc. Natl Acad. Sci. USA by W Baumgartner (2000)
  82. Perret, E. et al. Fast dissociation kinetics between individual E-cadherin fragments revealed by flow chamber analysis. EMBO J. 21, 2537–2546 (2002). (10.1093/emboj/21.11.2537) / EMBO J. by E Perret (2002)
  83. Bazzoni, G. & Hemler, M. E. Are changes in integrin affinity and conformation overemphasized? Trends Biochem. Sci. 23, 30–34 (1998). (10.1016/S0968-0004(97)01141-9) / Trends Biochem. Sci. by G Bazzoni (1998)
  84. Giancotti, F. G. A structural view of integrin activation and signaling. Dev. Cell 4, 149–151 (2003). (10.1016/S1534-5807(03)00034-0) / Dev. Cell by FG Giancotti (2003)
  85. Yap, A. S., Brieher, W. M., Pruschy, M. & Gumbiner, B. M. Lateral clustering of the adhesive ectodomain: a fundamental determinant of cadherin function. Curr. Biol. 7, 308–315 (1997). (10.1016/S0960-9822(06)00154-0) / Curr. Biol. by AS Yap (1997)
  86. Perez-Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003). (10.1016/S0092-8674(03)00108-9) / Cell by M Perez-Moreno (2003)
  87. Webb, D. J., Parsons, J. T. & Horwitz, A. F. Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nature Cell Biol. 4, E97–E100 (2002). (10.1038/ncb0402-e97) / Nature Cell Biol. by DJ Webb (2002)
  88. Vestal, D. J. & Ranscht, B. Glycosyl phosphatidylinositol–anchored T-cadherin mediates calcium-dependent, homophilic cell adhesion. J. Cell Biol. 119, 451–461 (1992). (10.1083/jcb.119.2.451) / J. Cell Biol. by DJ Vestal (1992)
  89. Kreft, B. et al. LI-cadherin-mediated cell–cell adhesion does not require cytoplasmic interactions. J. Cell Biol. 136, 1109–1121 (1997). (10.1083/jcb.136.5.1109) / J. Cell Biol. by B Kreft (1997)
  90. Ozawa, M. p120-independent modulation of E-cadherin adhesion activity by the membrane-proximal region of the cytoplasmic domain. J. Biol. Chem. 278, 46014–46020 (2003). (10.1074/jbc.M307778200) / J. Biol. Chem. by M Ozawa (2003)
  91. Fagotto, F. & Gumbiner, B. M. β-Catenin localization during Xenopus embryogenesis: accumulation at tissue and somite boundaries. Development 120, 3667–3679 (1994). (10.1242/dev.120.12.3667) / Development by F Fagotto (1994)
  92. Levi, G., Gumbiner, B. & Thiery, J. P. The distribution of E-cadherin during Xenopus laevis development. Development 111, 159–169 (1991). (10.1242/dev.111.1.159) / Development by G Levi (1991)
  93. Thiery, J. P., Delouvee, A., Gallin, W. J., Cunningham, B. A. & Edelman, G. M. Ontogenetic expression of cell adhesion molecules: L-CAM is found in epithelia derived from the three primary germ layers. Dev. Biol. 102, 61–78 (1984). (10.1016/0012-1606(84)90175-1) / Dev. Biol. by JP Thiery (1984)
  94. Takahashi, K. et al. Nectin/PRR: an immunoglobulin-like cell adhesion molecule recruited to cadherin-based adherens junctions through interaction with Afadin, a PDZ domain-containing protein. J. Cell Biol. 145, 539–549 (1999). (10.1083/jcb.145.3.539) / J. Cell Biol. by K Takahashi (1999)
  95. Tanaka, Y. et al. Role of Nectin in formation of E-cadherin-based adherens junctions in keratinocytes: analysis with the N-cadherin dominant negative mutant. Mol. Biol. Cell 14, 1597–1609 (2003). (10.1091/mbc.e02-10-0632) / Mol. Biol. Cell by Y Tanaka (2003)
  96. Ooshio, T. et al. Involvement of LMO7 in the association of two cell–cell adhesion molecules, nectin and E-cadherin, through Afadin and α-actinin in epithelial cells. J. Biol. Chem. 31365–31373 (2004). (10.1074/jbc.M401957200)
  97. Moon, R. T., Bowerman, B., Boutros, M. & Perrimon, N. The promise and perils of Wnt signaling through β-catenin. Science 296, 1644–1646 (2002). (10.1126/science.1071549) / Science by RT Moon (2002)
  98. Noren, N. K., Niessen, C. M., Gumbiner, B. M. & Burridge, K. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276, 33305–33308 (2001). (10.1074/jbc.C100306200) / J. Biol. Chem. by NK Noren (2001)
  99. Goodwin, M., Kovacs, E. M., Thoreson, M. A., Reynolds, A. B. & Yap, A. S. Minimal mutation of the cytoplasmic tail inhibits the ability of E-cadherin to activate rac but not phosphatidylinositol 3-kinase: Direct evidence of a role for cadherin-activated Rac signaling in adhesion and contact formation. J. Biol. Chem. 278, 20533–20539 (2003). (10.1074/jbc.M213171200) / J. Biol. Chem. by M Goodwin (2003)
  100. Woodfield, R. J. et al. The p85 subunit of phosphoinositide 3-kinase is associated with β-catenin in the cadherin-based adhesion complex. Biochem J. 360, 335–344 (2001). (10.1042/bj3600335) / Biochem J. by RJ Woodfield (2001)
  101. Kobielak, A., Pasolli, H. A. & Fuchs, E. Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nature Cell Biol. 6, 21–30 (2004). Describes an excellent example of how catenins control the actin cytoskeleton by recruitment and binding of a protein that regulates actin polymerization. (10.1038/ncb1075) / Nature Cell Biol. by A Kobielak (2004)
  102. Aono, S., Nakagawa, S., Reynolds, A. B. & Takeichi, M. p120ctn acts as an inhibitory regulator of cadherin function in colon carcinoma cells. J. Cell Biol. 145, 551–562 (1999). (10.1083/jcb.145.3.551) / J. Cell Biol. by S Aono (1999)
  103. Thoreson, M. A. et al. Selective uncoupling of p120ctnfrom E-cadherin disrupts strong adhesion. J. Cell Biol. 148, 189–201 (2000). (10.1083/jcb.148.1.189) / J. Cell Biol. by MA Thoreson (2000)
  104. Pettitt, J., Cox, E. A., Broadbent, I. D., Flett, A. & Hardin, J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin–catenin function during epidermal morphogenesis. J. Cell Biol. 162, 15–22 (2003). (10.1083/jcb.200212136) / J. Cell Biol. by J Pettitt (2003)
  105. Myster, S. H., Cavallo, R., Anderson, C. T., Fox, D. T. & Peifer, M. Drosophila p120catenin plays a supporting role in cell adhesion but is not an essential adherens junction component. J. Cell Biol. 160, 433–449 (2003). (10.1083/jcb.200211083) / J. Cell Biol. by SH Myster (2003)
  106. Pacquelet, A., Lin, L. & Rorth, P. Binding site for 120/δ-catenin is not required for Drosophila E-cadherin function in vivo. J. Cell Biol. 160, 313–319 (2003). (10.1083/jcb.200207160) / J. Cell Biol. by A Pacquelet (2003)
  107. Davis, M. A., Ireton, R. C. & Reynolds, A. B. A core function for p120-catenin in cadherin turnover. J. Cell Biol. 163, 525–534 (2003). (10.1083/jcb.200307111) / J. Cell Biol. by MA Davis (2003)
  108. Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nature Cell Biol. 2, 637–644 (2000). (10.1038/35023588) / Nature Cell Biol. by PZ Anastasiadis (2000)
  109. Fang, X. et al. Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac. J. Cell Biol. 165, 87–98 (2004). (10.1083/jcb.200307109) / J. Cell Biol. by X Fang (2004)
  110. Magie, C. R., Pinto-Santini, D. & Parkhurst, S. M. Rho1 interacts with p120ctn and α-catenin, and regulates cadherin-based adherens junction components in Drosophila. Development 129, 3771–3782 (2002). (10.1242/dev.129.16.3771) / Development by CR Magie (2002)
  111. Behrens, J. et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J. Cell Biol. 120, 757–766 (1993). (10.1083/jcb.120.3.757) / J. Cell Biol. by J Behrens (1993)
  112. Piedra, J. et al. Regulation of β-catenin structure and activity by tyrosine phosphorylation. J. Biol. Chem. 276, 20436–20443 (2001). (10.1074/jbc.M100194200) / J. Biol. Chem. by J Piedra (2001)
  113. Takeda, H. et al. V-src kinase shifts the cadherin-based cell adhesion from the strong to the weak state and β catenin is not required for the shift. J. Cell Biol. 131, 1839–1847 (1995). (10.1083/jcb.131.6.1839) / J. Cell Biol. by H Takeda (1995)
  114. Birchmeier, W. et al. Role of HGF/SF and c-Met in morphogenesis and metastasis of epithelial cells. Ciba Found. Symp. 212, 230–240; discussion 240–246 (1997). Describes the finding that β-catenin was not involved in the regulation of cadherin-mediated adhesion by tyrosine phosphorylation in one cell type, which shows that other tyrosine kinase substrates are involved in regulating adhesion. / Ciba Found. Symp. by W Birchmeier (1997)
  115. Roura, S., Miravet, S., Piedra, J., Garcia de Herreros, A. & Dunach, M. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J. Biol. Chem. 274, 36734–36740 (1999). (10.1074/jbc.274.51.36734) / J. Biol. Chem. by S Roura (1999)
  116. Brady-Kalnay, S. M., Rimm, D. L. & Tonks, N. K. Receptor protein tyrosine phosphatase PTPμ associated with cadherins and catenins in vivo. J. Cell Biol. 130, 977–986 (1995). (10.1083/jcb.130.4.977) / J. Cell Biol. by SM Brady-Kalnay (1995)
  117. Nawroth, R. et al. VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J. 21, 4885–4895 (2002). (10.1093/emboj/cdf497) / EMBO J. by R Nawroth (2002)
  118. Wadham, C., Gamble, J. R., Vadas, M. A. & Khew-Goodall, Y. The protein tyrosine phosphatase Pez is a major phosphatase of adherens junctions and dephosphorylates b-catenin. Mol. Biol. Cell 14, 2520–2529 (2003). (10.1091/mbc.e02-09-0577) / Mol. Biol. Cell by C Wadham (2003)
  119. Huber, A. H. & Weis, W. I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001). (10.1016/S0092-8674(01)00330-0) / Cell by AH Huber (2001)
  120. Fukata, M. & Kaibuchi, K. Rho-family GTPases in cadherin-mediated cell–cell adhesion. Nature Rev. Mol. Cell Biol. 2, 887–897 (2001). (10.1038/35103068) / Nature Rev. Mol. Cell Biol. by M Fukata (2001)
  121. Van Aelst, L. & Symons, M. Role of Rho family GTPases in epithelial morphogenesis. Genes Dev. 16, 1032–1054 (2002). An in-depth review of the many functions of the Rho family GTPases in epithelial morphogenesis, including their roles in membrane biogenesis, adherens junction formation, cell adhesion, cell motility, cell polarization and the control of cell shape. (10.1101/gad.978802) / Genes Dev. by L Van Aelst (2002)
  122. Price, L. S. et al. Rap1 regulates E-cadherin-mediated cell–cell adhesion. J. Biol. Chem. 279, 35127–35132 (2004). (10.1074/jbc.M404917200) / J. Biol. Chem. by LS Price (2004)
  123. Knox, A. L. & Brown, N. H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285–1288 (2002). (10.1126/science.1067549) / Science by AL Knox (2002)
  124. Rangarajan, S. et al. Cyclic AMP induces integrin-mediated cell adhesion through Epac and Rap1 upon stimulation of the β2-adrenergic receptor. J. Cell Biol. 160, 487–493 (2003). (10.1083/jcb.200209105) / J. Cell Biol. by S Rangarajan (2003)
  125. Kuroda, S. et al. Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell–cell adhesion. Science 291, 832–835 (1998). (10.1126/science.281.5378.832) / Science by S Kuroda (1998)
  126. Ginsberg, M. H., Du, X. & Plow, E. F. Inside-out integrin signalling. Curr. Opin. Cell Biol. 4, 766–771 (1992). (10.1016/0955-0674(92)90099-X) / Curr. Opin. Cell Biol. by MH Ginsberg (1992)
  127. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002). (10.1016/S0092-8674(02)00935-2) / Cell by J Takagi (2002)
  128. Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 'inside-out' activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002). (10.1016/S0092-8674(02)00906-6) / Cell by O Vinogradova (2002)
  129. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003). (10.1126/science.1086652) / Science by S Tadokoro (2003)
  130. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003). (10.1126/science.1084174) / Science by M Kim (2003)
  131. Li, R. et al. Activation of integrin αIIbβ3 by modulation of transmembrane helix associations. Science 300, 795–798 (2003). (10.1126/science.1079441) / Science by R Li (2003)
Dates
Type When
Created 20 years, 1 month ago (July 15, 2005, 1:12 p.m.)
Deposited 1 year, 7 months ago (Jan. 27, 2024, 5:32 p.m.)
Indexed 9 hours, 52 minutes ago (Sept. 3, 2025, 7:02 a.m.)
Issued 20 years, 1 month ago (July 15, 2005)
Published 20 years, 1 month ago (July 15, 2005)
Published Online 20 years, 1 month ago (July 15, 2005)
Published Print 20 years, 1 month ago (Aug. 1, 2005)
Funders 0

None

@article{Gumbiner_2005, title={Regulation of cadherin-mediated adhesion in morphogenesis}, volume={6}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm1699}, DOI={10.1038/nrm1699}, number={8}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Gumbiner, Barry M.}, year={2005}, month=jul, pages={622–634} }