Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Sengupta, S., & Harris, C. C. (2005). p53: traffic cop at the crossroads of DNA repair and recombination. Nature Reviews Molecular Cell Biology, 6(1), 44–55.

Authors 2
  1. Sagar Sengupta (first)
  2. Curtis C. Harris (additional)
References 144 Referenced 416
  1. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000). (10.1101/gad.827700) / Genes Dev. by R Zhao (2000)
  2. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000). (10.1038/35042675) / Nature by B Vogelstein (2000)
  3. Mirza, A. et al. Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22, 3645–3654 (2003). (10.1038/sj.onc.1206477) / Oncogene by A Mirza (2003)
  4. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997). (10.1038/38525) / Nature by K Polyak (1997)
  5. Levine, A. J., Momand, J. & Finlay, C. A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991). (10.1038/351453a0) / Nature by AJ Levine (1991)
  6. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991). (10.1126/science.1905840) / Science by M Hollstein (1991)
  7. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996). (10.1101/gad.10.9.1054) / Genes Dev. by LJ Ko (1996)
  8. Liu, Y. & Kulesz-Martin, M. p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding. Carcinogenesis 22, 851–860 (2001). (10.1093/carcin/22.6.851) / Carcinogenesis by Y Liu (2001)
  9. Lee, S., Elenbaas, B., Levine, A. & Griffith, J. p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81, 1013–1020 (1995). A key study that shows the in vitro binding of wild-type p53 to abnormal DNA structures. (10.1016/S0092-8674(05)80006-6) / Cell by S Lee (1995)
  10. Jiang, M. et al. p53 binds the nuclear matrix in normal cells: binding involves the proline-rich domain of p53 and increases following genotoxic stress. Oncogene 20, 5449–5458 (2001). (10.1038/sj.onc.1204705) / Oncogene by M Jiang (2001)
  11. Aranda-Anzaldo, A., Orozco-Velasco, F., Garcia-Villa, E. & Gariglio, P. p53 is a rate-limiting factor in the repair of higher-order DNA structure. Biochim. Biophys. Acta 1446, 181–192 (1999). (10.1016/S0167-4781(99)00086-X) / Biochim. Biophys. Acta by A Aranda-Anzaldo (1999)
  12. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374 (2001). (10.1038/35077232) / Nature by JH Hoeijmakers (2001)
  13. Friedberg, E. C. How nucleotide excision repair protects against cancer. Nature Rev. Cancer 1, 22–33 (2001). (10.1038/35094000) / Nature Rev. Cancer by EC Friedberg (2001)
  14. Dianov, G. L., Sleeth, K. M., Dianova, I. I. & Allinson, S. L. Repair of abasic sites in DNA. Mutat. Res. 531, 157–163 (2003). (10.1016/j.mrfmmm.2003.09.003) / Mutat. Res. by GL Dianov (2003)
  15. Lieber, M. R., Ma, Y., Pannicke, U. & Schwarz, K. Mechanism and regulation of human non-homologous DNA end-joining. Nature Rev. Mol. Cell Biol. 4, 712–720 (2003). (10.1038/nrm1202) / Nature Rev. Mol. Cell Biol. by MR Lieber (2003)
  16. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaccmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004). (10.1146/annurev.biochem.73.011303.073723) / Annu. Rev. Biochem. by A Sancar (2004)
  17. Tang, J. & Chu, G. Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair (Amst.) 1, 601–616 (2002). (10.1016/S1568-7864(02)00052-6) / DNA Repair (Amst.) by J Tang (2002)
  18. Smith, M. L., Chen, I. T., Zhan, Q., O'Connor, P. M. & Fornace, A. J. Jr. Involvement of the p53 tumor suppressor in repair of u.v.-type DNA damage. Oncogene 10, 1053–1059 (1995). / Oncogene by ML Smith (1995)
  19. Ford, J. M. & Hanawalt, P. C. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J. Biol. Chem. 272, 28073–28080 (1997). (10.1074/jbc.272.44.28073) / J. Biol. Chem. by JM Ford (1997)
  20. Wang, X. W. et al. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nature Genet. 10, 188–195 (1995). (10.1038/ng0695-188) / Nature Genet. by XW Wang (1995)
  21. Hwang, B. J., Ford, J. M., Hanawalt, P. C. & Chu, G. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl Acad. Sci. USA 96, 424–428 (1999). (10.1073/pnas.96.2.424) / Proc. Natl Acad. Sci. USA by BJ Hwang (1999)
  22. Adimoolam, S. & Ford, J. M. p53 and DNA damage-inducible expression of the xeroderma pigmentosum group C gene. Proc. Natl Acad. Sci. USA 99, 12985–12990 (2002). References 21 and 22 show how wild-type p53 facilitates NER by acting as a sequence-dependent transactivator of genes that encode DNA-repair proteins. (10.1073/pnas.202485699) / Proc. Natl Acad. Sci. USA by S Adimoolam (2002)
  23. Itoh, T., O'Shea, C. & Linn, S. Impaired regulation of tumor suppressor p53 caused by mutations in the xeroderma pigmentosum DDB2 gene: mutual regulatory interactions between p48DDB2 and p53. Mol. Cell. Biol. 23, 7540–7553 (2003). (10.1128/MCB.23.21.7540-7553.2003) / Mol. Cell. Biol. by T Itoh (2003)
  24. Wang, Q. E. et al. Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage. DNA Repair (Amst.) 2, 483–499 (2003). (10.1016/S1568-7864(03)00002-8) / DNA Repair (Amst.) by QE Wang (2003)
  25. Fitch, M. E., Nakajima, S., Yasui, A. & Ford, J. M. In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product. J. Biol. Chem. 278, 46906–46910 (2003). (10.1074/jbc.M307254200) / J. Biol. Chem. by ME Fitch (2003)
  26. Wang, Q. E., Zhu, Q., Wani, G., Chen, J. & Wani, A. A. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2. Carcinogenesis 25, 1033–1043 (2004). (10.1093/carcin/bgh085) / Carcinogenesis by QE Wang (2004)
  27. Fitch, M. E., Cross, I. V. & Ford, J. M. p53 responsive nucleotide excision repair gene products p48 and XPC, but not p53, localize to sites of UV-irradiation-induced DNA damage, in vivo. Carcinogenesis 24, 843–850 (2003). (10.1093/carcin/bgg031) / Carcinogenesis by ME Fitch (2003)
  28. Sancar, A. DNA repair in humans. Annu. Rev. Genet. 29, 69–105 (1995). (10.1146/annurev.ge.29.120195.000441) / Annu. Rev. Genet. by A Sancar (1995)
  29. Leveillard, T. et al. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J. 15, 1615–1624 (1996). (10.1002/j.1460-2075.1996.tb00506.x) / EMBO J. by T Leveillard (1996)
  30. Wang, X. W. et al. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10, 1219–1232 (1996). (10.1101/gad.10.10.1219) / Genes Dev. by XW Wang (1996)
  31. Rubbi, C. P. & Milner, J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J. 22, 975–986 (2003). Proposes that wild-type p53 can facilitate access of the DNA-repair complex to the sites of DNA damage. (10.1093/emboj/cdg082) / EMBO J. by CP Rubbi (2003)
  32. Adimoolam, S. & Ford, J. M. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair (Amst.) 2, 947–954 (2003). (10.1016/S1568-7864(03)00087-9) / DNA Repair (Amst.) by S Adimoolam (2003)
  33. Therrien, J. P., Drouin, R., Baril, C. & Drobetsky, E. A. Human cells compromised for p53 function exhibit defective global and transcription-coupled nucleotide excision repair, whereas cells compromised for pRb function are defective only in global repair. Proc. Natl Acad. Sci. USA 96, 15038–15043 (1999). (10.1073/pnas.96.26.15038) / Proc. Natl Acad. Sci. USA by JP Therrien (1999)
  34. Ljungman, M. & Lane, D. P. Transcription — guarding the genome by sensing DNA damage. Nature Rev. Cancer 4, 727–737 (2004). (10.1038/nrc1435) / Nature Rev. Cancer by M Ljungman (2004)
  35. Ford, J. M. & Hanawalt, P. C. Li-Fraumeni syndrome fibroblasts homozygous for p53 mutations are deficient in global DNA repair but exhibit normal transcription-coupled repair and enhanced UV resistance. Proc. Natl Acad. Sci. USA 92, 8876–8880 (1995). (10.1073/pnas.92.19.8876) / Proc. Natl Acad. Sci. USA by JM Ford (1995)
  36. Adimoolam, S., Lin, C. X. & Ford, J. M. The p53-regulated cyclin-dependent kinase inhibitor, p21 (cip1, waf1, sdi1), is not required for global genomic and transcription-coupled nucleotide excision repair of UV-induced DNA photoproducts. J. Biol. Chem. 276, 25813–25822 (2001). (10.1074/jbc.M102240200) / J. Biol. Chem. by S Adimoolam (2001)
  37. Wani, M. A., Zhu, Q., El-Mahdy, M., Venkatachalam, S. & Wani, A. A. Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells. Cancer Res. 60, 2273–2280 (2000). / Cancer Res. by MA Wani (2000)
  38. Mathonnet, G. et al. UV wavelength-dependent regulation of transcription-coupled nucleotide excision repair in p53-deficient human cells. Proc. Natl Acad. Sci. USA 100, 7219–7224 (2003). (10.1073/pnas.1232161100) / Proc. Natl Acad. Sci. USA by G Mathonnet (2003)
  39. Yu, A., Fan, H. Y., Liao, D., Bailey, A. D. & Weiner, A. M. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol. Cell 5, 801–810 (2000). (10.1016/S1097-2765(00)80320-2) / Mol. Cell by A Yu (2000)
  40. Gaiddon, C., Moorthy, N. C. & Prives, C. Ref-1 regulates the transactivation and pro-apoptotic functions of p53 in vivo. EMBO J. 18, 5609–5621 (1999). (10.1093/emboj/18.20.5609) / EMBO J. by C Gaiddon (1999)
  41. Offer, H. et al. Direct involvement of p53 in the base excision repair pathway of the DNA repair machinery. FEBS Lett. 450, 197–204 (1999). The initial observation of BER modulation by wild-type p53. (10.1016/S0014-5793(99)00505-0) / FEBS Lett. by H Offer (1999)
  42. Offer, H. et al. The onset of p53-dependent DNA repair or apoptosis is determined by the level of accumulated damaged DNA. Carcinogenesis 23, 1025–1032 (2002). (10.1093/carcin/23.6.1025) / Carcinogenesis by H Offer (2002)
  43. Offer, H. et al. p53 modulates base excision repair activity in a cell cycle-specific manner after genotoxic stress. Cancer Res. 61, 88–96 (2001). / Cancer Res. by H Offer (2001)
  44. Zurer, I. et al. The role of p53 in base excision repair following genotoxic stress. Carcinogenesis 25, 11–19 (2004). (10.1093/carcin/bgg186) / Carcinogenesis by I Zurer (2004)
  45. Achanta, G. & Huang, P. Role of p53 in sensing oxidative DNA damage in response to reactive oxygen species-generating agents. Cancer Res. 64, 6233–6239 (2004). (10.1158/0008-5472.CAN-04-0494) / Cancer Res. by G Achanta (2004)
  46. Sobol, R. W. et al. Base excision repair intermediates induce p53-independent cytotoxic and genotoxic responses. J. Biol. Chem. 278, 39951–39959 (2003). (10.1074/jbc.M306592200) / J. Biol. Chem. by RW Sobol (2003)
  47. Zhou, J., Ahn, J., Wilson, S. H. & Prives, C. A role for p53 in base excision repair. EMBO J. 20, 914–923 (2001). References 44 and 47 show the in vivo involvement of p53 in BER. (10.1093/emboj/20.4.914) / EMBO J. by J Zhou (2001)
  48. Seo, Y. R., Fishel, M. L., Amundson, S., Kelley, M. R. & Smith, M. L. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 21, 731–737 (2002). (10.1038/sj.onc.1205129) / Oncogene by YR Seo (2002)
  49. Offer, H. et al. Structural and functional involvement of p53 in BER in vitro and in vivo. Oncogene 20, 581–589 (2001). (10.1038/sj.onc.1204120) / Oncogene by H Offer (2001)
  50. Seo, Y. R., Kelley, M. R. & Smith, M. L. Selenomethionine regulation of p53 by a ref1-dependent redox mechanism. Proc. Natl Acad. Sci. USA 99, 14548–14553 (2002). (10.1073/pnas.212319799) / Proc. Natl Acad. Sci. USA by YR Seo (2002)
  51. Peltomaki, P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J. Clin. Oncol. 21, 1174–1179 (2003). (10.1200/JCO.2003.04.060) / J. Clin. Oncol. by P Peltomaki (2003)
  52. Luo, Y., Lin, F. T. & Lin, W. C. ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol. Cell. Biol. 24, 6430–6444 (2004). (10.1128/MCB.24.14.6430-6444.2004) / Mol. Cell. Biol. by Y Luo (2004)
  53. Cranston, A. et al. Female embryonic lethality in mice nullizygous for both Msh2 and p53. Nature Genet. 17, 114–118 (1997). (10.1038/ng0997-114) / Nature Genet. by A Cranston (1997)
  54. Scherer, S. J. et al. p53 and c-Jun functionally synergize in the regulation of the DNA repair gene hMSH2 in response to UV. J. Biol. Chem. 275, 37469–37473 (2000). (10.1074/jbc.M006990200) / J. Biol. Chem. by SJ Scherer (2000)
  55. Subramanian, D. & Griffith, J. D. Interactions between p53, hMSH2–hMSH6 and HMG I(Y) on Holliday junctions and bulged bases. Nucleic Acids Res. 30, 2427–2434 (2002). (10.1093/nar/30.11.2427) / Nucleic Acids Res. by D Subramanian (2002)
  56. Lin, X. et al. p53 modulates the effect of loss of DNA mismatch repair on the sensitivity of human colon cancer cells to the cytotoxic and mutagenic effects of cisplatin. Cancer Res. 61, 1508–1516 (2001). / Cancer Res. by X Lin (2001)
  57. Zink, D., Mayr, C., Janz, C. & Wiesmuller, L. Association of p53 and MSH2 with recombinative repair complexes during S phase. Oncogene 21, 4788–4800 (2002). (10.1038/sj.onc.1205614) / Oncogene by D Zink (2002)
  58. Xinarianos, G. et al. p53 status correlates with the differential expression of the DNA mismatch repair protein MSH2 in non-small cell lung carcinoma. Int. J. Cancer 101, 248–252 (2002). (10.1002/ijc.10598) / Int. J. Cancer by G Xinarianos (2002)
  59. Saito, T. et al. Possible association between tumor-suppressor gene mutations and hMSH2/hMLH1 inactivation in alveolar soft part sarcoma. Hum. Pathol. 34, 841–849 (2003). (10.1016/S0046-8177(03)00343-5) / Hum. Pathol. by T Saito (2003)
  60. Staibano, S. et al. p53 and hMSH2 expression in basal cell carcinomas and malignant melanomas from photoexposed areas of head and neck region. Int. J. Oncol. 19, 551–559 (2001). / Int. J. Oncol. by S Staibano (2001)
  61. Yano, M. et al. Close correlation between a p53 or hMSH2 gene mutation in the tumor and survival of hepatocellular carcinoma patients. Int. J. Oncol. 14, 447–451 (1999). / Int. J. Oncol. by M Yano (1999)
  62. Zhu, Y. M., Das-Gupta, E. P. & Russell, N. H. Microsatellite instability and p53 mutations are associated with abnormal expression of the MSH2 gene in adult acute leukemia. Blood 94, 733–740 (1999). (10.1182/blood.V94.2.733) / Blood by YM Zhu (1999)
  63. Leung, S. Y. et al. Chromosomal instability and p53 inactivation are required for genesis of glioblastoma but not for colorectal cancer in patients with germline mismatch repair gene mutation. Oncogene 19, 4079–4083 (2000). (10.1038/sj.onc.1203740) / Oncogene by SY Leung (2000)
  64. Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23, 5706–5715 (2003). (10.1128/MCB.23.16.5706-5715.2003) / Mol. Cell. Biol. by K Rothkamm (2003)
  65. Shieh, S. Y., Ikeda, M., Taya, Y. & Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334 (1997). (10.1016/S0092-8674(00)80416-X) / Cell by SY Shieh (1997)
  66. Wang, S. et al. The catalytic subunit of DNA-dependent protein kinase selectively regulates p53-dependent apoptosis but not cell-cycle arrest. Proc. Natl Acad. Sci. USA 97, 1584–1588 (2000). (10.1073/pnas.97.4.1584) / Proc. Natl Acad. Sci. USA by S Wang (2000)
  67. Jhappan, C., Yusufzai, T. M., Anderson, S., Anver, M. R. & Merlino, G. The p53 response to DNA damage in vivo is independent of DNA-dependent protein kinase. Mol. Cell. Biol. 20, 4075–4083 (2000). (10.1128/MCB.20.11.4075-4083.2000) / Mol. Cell. Biol. by C Jhappan (2000)
  68. Jimenez, G. S. et al. DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400, 81–83 (1999). (10.1038/21913) / Nature by GS Jimenez (1999)
  69. Achanta, G., Pelicano, H., Feng, L., Plunkett, W. & Huang, P. Interaction of p53 and DNA-PK in response to nucleoside analogues: potential role as a sensor complex for DNA damage. Cancer Res. 61, 8723–8729 (2001). / Cancer Res. by G Achanta (2001)
  70. Yang, T. et al. p53 induced by ionizing radiation mediates DNA end-jointing activity, but not apoptosis of thyroid cells. Oncogene 14, 1511–1519 (1997). (10.1038/sj.onc.1200979) / Oncogene by T Yang (1997)
  71. Tang, W., Willers, H. & Powell, S. N. p53 directly enhances rejoining of DNA double-strand breaks with cohesive ends in γ-irradiated mouse fibroblasts. Cancer Res. 59, 2562–2565 (1999). / Cancer Res. by W Tang (1999)
  72. Lin, Y., Waldman, B. C. & Waldman, A. S. Suppression of high-fidelity double-strand break repair in mammalian chromosomes by pifithrin-α, a chemical inhibitor of p53. DNA Repair (Amst.) 2, 1–11 (2003). (10.1016/S1568-7864(02)00183-0) / DNA Repair (Amst.) by Y Lin (2003)
  73. Bristow, R. G. et al. Radioresistant MTp53-expressing rat embryo cell transformants exhibit increased DNA-dsb rejoining during exposure to ionizing radiation. Oncogene 16, 1789–1802 (1998). (10.1038/sj.onc.1201935) / Oncogene by RG Bristow (1998)
  74. Bill, C. A., Yu, Y., Miselis, N. R., Little, J. B. & Nickoloff, J. A. A role for p53 in DNA end rejoining by human cell extracts. Mutat. Res. 385, 21–29 (1997). (10.1016/S0921-8777(97)00040-2) / Mutat. Res. by CA Bill (1997)
  75. Akyuz, N. et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair. Mol. Cell. Biol. 22, 6306–6317 (2002). (10.1128/MCB.22.17.6306-6317.2002) / Mol. Cell. Biol. by N Akyuz (2002)
  76. Lee, H., Sun, D., Larner, J. M. & Wu, F. S. The tumor suppressor p53 can reduce stable transfection in the presence of irradiation. J. Biomed. Sci. 6, 285–292 (1999). (10.1007/BF02253570) / J. Biomed. Sci. by H Lee (1999)
  77. Okorokov, A. L., Warnock, L. & Milner, J. Effect of wild-type, S15D and R175H p53 proteins on DNA end joining in vitro: potential mechanism of DNA double-strand break repair modulation. Carcinogenesis 23, 549–557 (2002). (10.1093/carcin/23.4.549) / Carcinogenesis by AL Okorokov (2002)
  78. Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7, 653–665 (1997). (10.1016/S1074-7613(00)80386-6) / Immunity by Y Gu (1997)
  79. Frank, K. M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998). (10.1038/24172) / Nature by KM Frank (1998)
  80. Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891–902 (1998). (10.1016/S0092-8674(00)81714-6) / Cell by Y Gao (1998)
  81. Gao, Y. et al. Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature 404, 897–900 (2000). (10.1038/35009138) / Nature by Y Gao (2000)
  82. Frank, K. M. et al. DNA ligase IV deficiency in mice leads to defective neurogenesis and embryonic lethality via the p53 pathway. Mol. Cell 5, 993–1002 (2000). (10.1016/S1097-2765(00)80264-6) / Mol. Cell by KM Frank (2000)
  83. Zhu, C. et al. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 109, 811–821 (2002). (10.1016/S0092-8674(02)00770-5) / Cell by C Zhu (2002)
  84. Rooney, S. et al. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc. Natl Acad. Sci. USA 101, 2410–2415 (2004). (10.1073/pnas.0308757101) / Proc. Natl Acad. Sci. USA by S Rooney (2004)
  85. Mazin, A. V., Alexeev, A. A. & Kowalczykowski, S. C. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J. Biol. Chem. 278, 14029–14036 (2003). (10.1074/jbc.M212779200) / J. Biol. Chem. by AV Mazin (2003)
  86. Dudenhoffer, C., Rohaly, G., Will, K., Deppert, W. & Wiesmuller, L. Specific mismatch recognition in heteroduplex intermediates by p53 suggests a role in fidelity control of homologous recombination. Mol. Cell. Biol. 18, 5332–5342 (1998). The first study that indicates a fidelity-control function of p53 in homologous recombination. (10.1128/MCB.18.9.5332) / Mol. Cell. Biol. by C Dudenhoffer (1998)
  87. Xia, F., Amundson, S. A., Nickoloff, J. A. & Liber, H. L. Different capacities for recombination in closely related human lymphoblastoid cell lines with different mutational responses to X-irradiation. Mol. Cell. Biol. 14, 5850–5857 (1994). (10.1128/MCB.14.9.5850) / Mol. Cell. Biol. by F Xia (1994)
  88. Wiesmuller, L., Cammenga, J. & Deppert, W. W. In vivo assay of p53 function in homologous recombination between simian virus 40 chromosomes. J. Virol. 70, 737–744 (1996). (10.1128/JVI.70.2.737-744.1996) / J. Virol. by L Wiesmuller (1996)
  89. Dudenhoffer, C., Kurth, M., Janus, F., Deppert, W. & Wiesmuller, L. Dissociation of the recombination Control and the sequence-specific transactivation function of p53. Oncogene 18, 5773–5784 (1999). References 89 and 98 are key studies that showed the transactivation-independent role of p53 during the modulation of HR. (10.1038/sj.onc.1202964) / Oncogene by C Dudenhoffer (1999)
  90. Bertrand, P. et al. Increase of spontaneous intrachromosomal homologous recombination in mammalian cells expressing a mutant p53 protein. Oncogene 14, 1117–1122 (1997). (10.1038/sj.onc.1200931) / Oncogene by P Bertrand (1997)
  91. Saintigny, Y. & Lopez, B. S. Homologous recombination induced by replication inhibition, is stimulated by expression of mutant p53. Oncogene 21, 488–492 (2002). (10.1038/sj.onc.1205040) / Oncogene by Y Saintigny (2002)
  92. Mekeel, K. L. et al. Inactivation of p53 results in high rates of homologous recombination. Oncogene 14, 1847–1857 (1997). (10.1038/sj.onc.1201143) / Oncogene by KL Mekeel (1997)
  93. Saintigny, Y., Rouillard, D., Chaput, B., Soussi, T. & Lopez, B. S. Mutant p53 proteins stimulate spontaneous and radiation-induced intrachromosomal homologous recombination independently of the alteration of the transactivation activity and of the G1 checkpoint. Oncogene 18, 3553–3563 (1999). (10.1038/sj.onc.1202941) / Oncogene by Y Saintigny (1999)
  94. Bishop, A. J. et al. Atm-, p53-, and Gadd45a-deficient mice show an increased frequency of homologous recombination at different stages during development. Cancer Res. 63, 5335–5343 (2003). / Cancer Res. by AJ Bishop (2003)
  95. Janz, C., Susse, S. & Wiesmuller, L. p53 and recombination intermediates: role of tetramerization at DNA junctions in complex formation and exonucleolytic degradation. Oncogene 21, 2130–2140 (2002). (10.1038/sj.onc.1205292) / Oncogene by C Janz (2002)
  96. Lin, J., Chen, J., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994). (10.1101/gad.8.10.1235) / Genes Dev. by J Lin (1994)
  97. Sengupta, S. et al. BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO J. 22, 1210–1222 (2003). References 97, 113 and 115 indicate the functional relationship between wild-type p53 and BLM helicase. (10.1093/emboj/cdg114) / EMBO J. by S Sengupta (2003)
  98. Willers, H. et al. Dissociation of p53-mediated suppression of homologous recombination from G1/S cell cycle checkpoint control. Oncogene 19, 632–639 (2000). (10.1038/sj.onc.1203142) / Oncogene by H Willers (2000)
  99. Boehden, G. S., Akyuz, N., Roemer, K. & Wiesmuller, L. p53 mutated in the transactivation domain retains regulatory functions in homology-directed double-strand break repair. Oncogene 22, 4111–4117 (2003). (10.1038/sj.onc.1206632) / Oncogene by GS Boehden (2003)
  100. Linke, S. P. et al. p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res. 63, 2596–2605 (2003). / Cancer Res. by SP Linke (2003)
  101. Sturzbecher, H. W., Donzelmann, B., Henning, W., Knippschild, U. & Buchhop, S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J. 15, 1992–2002 (1996). (10.1002/j.1460-2075.1996.tb00550.x) / EMBO J. by HW Sturzbecher (1996)
  102. Buchhop, S. et al. Interaction of p53 with the human Rad51 protein. Nucleic Acids Res. 25, 3868–3874 (1997). (10.1093/nar/25.19.3868) / Nucleic Acids Res. by S Buchhop (1997)
  103. Susse, S., Janz, C., Janus, F., Deppert, W. & Wiesmuller, L. Role of heteroduplex joints in the functional interactions between human Rad51 and wild-type p53. Oncogene 19, 4500–4512 (2000). (10.1038/sj.onc.1203809) / Oncogene by S Susse (2000)
  104. Yoon, Y., Wang, Y., Stapleford, K., Wiesmuller, L. & Chen, C. p53 inhibits strand exchange and replication fork regression promoted by Rad51. J. Mol. Biol. 336, 639–654 (2004). (10.1016/j.jmb.2003.12.050) / J. Mol. Biol. by Y Yoon (2004)
  105. Willers, H., McCarthy, E. E., Hubbe, P., Dahm-Daphi, J. & Powell, S. N. Homologous recombination in extrachromosomal plasmid substrates is not suppressed by p53. Carcinogenesis 22, 1757–1763 (2001). (10.1093/carcin/22.11.1757) / Carcinogenesis by H Willers (2001)
  106. Kumari, A., Schultz, N. & Helleday, T. p53 protects from replication-associated DNA double-strand breaks in mammalian cells. Oncogene 23, 2324–2329 (2004). (10.1038/sj.onc.1207379) / Oncogene by A Kumari (2004)
  107. Hickson, I. D. RecQ helicases: caretakers of the genome. Nature Rev. Cancer 3, 169–178 (2003). (10.1038/nrc1012) / Nature Rev. Cancer by ID Hickson (2003)
  108. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003). (10.1038/nature02253) / Nature by L Wu (2003)
  109. Saintigny, Y., Makienko, K., Swanson, C., Emond, M. J. & Monnat, R. J. Jr. Homologous recombination resolution defect in werner syndrome. Mol. Cell. Biol. 22, 6971–6978 (2002). (10.1128/MCB.22.20.6971-6978.2002) / Mol. Cell. Biol. by Y Saintigny (2002)
  110. Yamabe, Y. et al. Sp1-mediated transcription of the Werner helicase gene is modulated by Rb and p53. Mol. Cell. Biol. 18, 6191–6200 (1998). (10.1128/MCB.18.11.6191) / Mol. Cell. Biol. by Y Yamabe (1998)
  111. Garkavtsev, I. V., Kley, N., Grigorian, I. A. & Gudkov, A. V. The Bloom syndrome protein interacts and cooperates with p53 in regulation of transcription and cell growth control. Oncogene 20, 8276–8280 (2001). (10.1038/sj.onc.1205120) / Oncogene by IV Garkavtsev (2001)
  112. Spillare, E. A. et al. p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev. 13, 1355–1360 (1999). (10.1101/gad.13.11.1355) / Genes Dev. by EA Spillare (1999)
  113. Wang, X. W. et al. Functional interaction of p53 and BLM DNA helicase in apoptosis. J. Biol. Chem. 276, 32948–32955 (2001). (10.1074/jbc.M103298200) / J. Biol. Chem. by XW Wang (2001)
  114. Blander, G. et al. Physical and functional interaction between p53 and the Werner's syndrome protein. J. Biol. Chem. 274, 29463–29469 (1999). (10.1074/jbc.274.41.29463) / J. Biol. Chem. by G Blander (1999)
  115. Yang, Q. et al. The processing of Holliday junctions by BLM and WRN helicases is regulated by p53. J. Biol. Chem. 277, 31980–31987 (2002). (10.1074/jbc.M204111200) / J. Biol. Chem. by Q Yang (2002)
  116. Blander, G. et al. The Werner syndrome protein contributes to induction of p53 by DNA damage. FASEB J. 14, 2138–2140 (2000). (10.1096/fj.00-0171fje) / FASEB J. by G Blander (2000)
  117. Brosh, R. M. Jr. et al. p53 modulates the exonuclease activity of Werner syndrome protein. J. Biol. Chem. 276, 35093–35102 (2001). (10.1074/jbc.M103332200) / J. Biol. Chem. by RM Brosh Jr. (2001)
  118. Waterman, M. J., Stavridi, E. S., Waterman, J. L. & Halazonetis, T. D. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nature Genet. 19, 175–178 (1998). (10.1038/542) / Nature Genet. by MJ Waterman (1998)
  119. Sanz, M. M., Proytcheva, M., Ellis, N. A., Holloman, W. K. & German, J. BLM, the Bloom's syndrome protein, varies during the cell cycle in its amount, distribution, and co-localization with other nuclear proteins. Cytogenet. Cell Genet. 91, 217–223 (2000). (10.1159/000056848) / Cytogenet. Cell Genet. by MM Sanz (2000)
  120. Yankiwski, V., Marciniak, R. A., Guarente, L. & Neff, N. F. Nuclear structure in normal and Bloom syndrome cells. Proc. Natl Acad. Sci. USA 97, 5214–5219 (2000). (10.1073/pnas.090525897) / Proc. Natl Acad. Sci. USA by V Yankiwski (2000)
  121. Maacke, H. et al. DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene 19, 2791–2795 (2000). (10.1038/sj.onc.1203578) / Oncogene by H Maacke (2000)
  122. Xia, S. J., Shammas, M. A. & Shmookler Reis, R. J. Elevated recombination in immortal human cells is mediated by HsRAD51 recombinase. Mol. Cell. Biol. 17, 7151–7158 (1997). (10.1128/MCB.17.12.7151) / Mol. Cell. Biol. by SJ Xia (1997)
  123. Lebel, M. & Leder, P. A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc. Natl Acad. Sci. USA 95, 13097–13102 (1998). (10.1073/pnas.95.22.13097) / Proc. Natl Acad. Sci. USA by M Lebel (1998)
  124. Lebel, M., Cardiff, R. D. & Leder, P. Tumorigenic effect of nonfunctional p53 or p21 in mice mutant in the Werner syndrome helicase. Cancer Res. 61, 1816–1819 (2001). / Cancer Res. by M Lebel (2001)
  125. Chang, S. et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nature Genet. 36, 877–882 (2004). (10.1038/ng1389) / Nature Genet. by S Chang (2004)
  126. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744–1747 (1996). (10.1126/science.271.5256.1744) / Science by K Fukasawa (1996)
  127. Cross, S. M. et al. A p53-dependent mouse spindle checkpoint. Science 267, 1353–1356 (1995). References 126 and 127 show the effect of mutant p53 on chromosomal aberrations. (10.1126/science.7871434) / Science by SM Cross (1995)
  128. Bouffler, S. D., Kemp, C. J., Balmain, A. & Cox, R. Spontaneous and ionizing radiation-induced chromosomal abnormalities in p53-deficient mice. Cancer Res. 55, 3883–3889 (1995). / Cancer Res. by SD Bouffler (1995)
  129. Bunz, F. et al. Targeted inactivation of p53 in human cells does not result in aneuploidy. Cancer Res. 62, 1129–1133 (2002). Argues that the inactivation of wild-type p53 does not result in aneuploidy. / Cancer Res. by F Bunz (2002)
  130. Shiloh, Y. ATM: ready, set, go. Cell Cycle 2, 116–117 (2003). (10.4161/cc.2.2.342) / Cell Cycle by Y Shiloh (2003)
  131. Abraham, R. T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001). (10.1101/gad.914401) / Genes Dev. by RT Abraham (2001)
  132. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003). (10.1016/S1535-6108(03)00110-7) / Cancer Cell by J Bartek (2003)
  133. Rogakou, E. P., Boon, C., Redon, C. & Bonner, W. M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999). (10.1083/jcb.146.5.905) / J. Cell Biol. by EP Rogakou (1999)
  134. Motoyama, N. & Naka, K. DNA damage tumor suppressor genes and genomic instability. Curr. Opin. Genet. Dev. 14, 11–16 (2004). (10.1016/j.gde.2003.12.003) / Curr. Opin. Genet. Dev. by N Motoyama (2004)
  135. Ahn, J., Urist, M. & Prives, C. Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J. Biol. Chem. 278, 20480–20489 (2003). (10.1074/jbc.M213185200) / J. Biol. Chem. by J Ahn (2003)
  136. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA–ssDNA complexes. Science 300, 1542–1548 (2003). (10.1126/science.1083430) / Science by L Zou (2003)
  137. Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759–47762 (2001). (10.1074/jbc.C100569200) / J. Biol. Chem. by IM Ward (2001)
  138. Davies, S. L., North, P. S., Dart, A., Lakin, N. D. & Hickson, I. D. Phosphorylation of the Bloom's syndrome helicase and its role in recovery from S-phase arrest. Mol. Cell. Biol. 24, 1279–1291 (2004). (10.1128/MCB.24.3.1279-1291.2004) / Mol. Cell. Biol. by SL Davies (2004)
  139. Sengupta, S. et al. Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest. J. Cell Biol. 166, 801–813 (2004). (10.1083/jcb.200405128) / J. Cell Biol. by S Sengupta (2004)
  140. Tibbetts, R. S. et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13, 152–157 (1999). (10.1101/gad.13.2.152) / Genes Dev. by RS Tibbetts (1999)
  141. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y. & Prives, C. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14, 289–300 (2000). (10.1101/gad.14.3.289) / Genes Dev. by SY Shieh (2000)
  142. Gottifredi, V., Shieh, S., Taya, Y. & Prives, C. p53 accumulates but is functionally impaired when DNA synthesis is blocked. Proc. Natl Acad. Sci. USA 98, 1036–1041 (2001). An important study that suggests the S-phase accumulation of transactivation-deficient p53. (10.1073/pnas.98.3.1036) / Proc. Natl Acad. Sci. USA by V Gottifredi (2001)
  143. Lane, D. P. p53, guardian of the genome. Nature 358, 15–16 (1992). (10.1038/358015a0) / Nature by DP Lane (1992)
  144. Baptiste, N. & Prives, C. p53 in the cytoplasm: a question of overkill? Cell 116, 487–489 (2004). (10.1016/S0092-8674(04)00164-3) / Cell by N Baptiste (2004)
Dates
Type When
Created 20 years, 8 months ago (Jan. 4, 2005, 6:14 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 11:49 p.m.)
Indexed 2 days, 21 hours ago (Sept. 3, 2025, 6:35 a.m.)
Issued 20 years, 8 months ago (Jan. 1, 2005)
Published 20 years, 8 months ago (Jan. 1, 2005)
Published Print 20 years, 8 months ago (Jan. 1, 2005)
Funders 0

None

@article{Sengupta_2005, title={p53: traffic cop at the crossroads of DNA repair and recombination}, volume={6}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm1546}, DOI={10.1038/nrm1546}, number={1}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Sengupta, Sagar and Harris, Curtis C.}, year={2005}, month=jan, pages={44–55} }