Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Nelson, N., & Ben-Shem, A. (2004). The complex architecture of oxygenic photosynthesis. Nature Reviews Molecular Cell Biology, 5(12), 971–982.

Authors 2
  1. Nathan Nelson (first)
  2. Adam Ben-Shem (additional)
References 107 Referenced 534
  1. Whatley, F. R., Tagawa, K. & Arnon, D. I. Separation of the light and dark reactions in electron transfer during photosynthesis. Proc. Natl Acad. Sci. USA 49, 266–270 (1963). (10.1073/pnas.49.2.266) / Proc. Natl Acad. Sci. USA by FR Whatley (1963)
  2. Hill, R. & Bendall, F. Function of two cytochrome components in chloroplast: a working hypothesis. Nature 186, 136–137 (1960). (10.1038/186136a0) / Nature by R Hill (1960)
  3. Duysens, L. N. M., Amesz, J. & Kamp, B. M. Two photochemical systems in photosynthesis, Nature 190, 510–514 (1961). (10.1038/190510a0) / Nature by LNM Duysens (1961)
  4. Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148 (1961). (10.1038/191144a0) / Nature by P Mitchell (1961)
  5. McCarty, R. E. & Racker, E. Effect of a coupling factor and its antiserum on photophosphorylation and hydrogen ion transport. Brookhaven Symp. Biol. 19, 202–214 (1966). / Brookhaven Symp. Biol. by RE McCarty (1966)
  6. Jagendorf, A. T. Acid–base transitions and phosphorylation by chloroplasts. Fed. Proc. 26, 1361–1369 (1967). / Fed. Proc. by AT Jagendorf (1967)
  7. Cramer, W. A. & Butler, W. L. Light-induced absorbance changes of two cytochrome b components in the electron-transport system of spinach chloroplasts. Biochim. Biophys. Acta 143, 332–339 (1967). (10.1016/0005-2728(67)90087-4) / Biochim. Biophys. Acta by WA Cramer (1967)
  8. Weber, K. & Osborn, M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406–4412 (1969). (10.1016/S0021-9258(18)94333-4) / J. Biol. Chem. by K Weber (1969)
  9. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). (10.1038/227680a0) / Nature by UK Laemmli (1970)
  10. Bengis, C. & Nelson, N. Purification and properties of the photosystem I reaction center from chloroplasts. J. Biol. Chem. 250, 2783–2788 (1975). (10.1016/S0021-9258(19)41558-5) / J. Biol. Chem. by C Bengis (1975)
  11. Bengis, C. & Nelson, N. Subunit structure of chloroplast photosystem I reaction center. J. Biol. Chem. 252, 4564–4569 (1977). (10.1016/S0021-9258(17)40199-2) / J. Biol. Chem. by C Bengis (1977)
  12. Pick, U. & Racker, E. Purification and reconstitution of the N,N′ dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts. J. Biol. Chem. 254, 2793–2799 (1979). (10.1016/S0021-9258(17)30143-6) / J. Biol. Chem. by U Pick (1979)
  13. Berthold, D. A., Babcock, G. T. & Yocum, C. F. A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234 (1981). (10.1016/0014-5793(81)80608-4) / FEBS Lett. by DA Berthold (1981)
  14. Hurt, E. & Hauska, G. A cytochrome f/b6 complex of five polypeptides with plastoquinol–plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur. J. Biochem. 117, 591–595 (1981). (10.1111/j.1432-1033.1981.tb06379.x) / Eur. J. Biochem. by E Hurt (1981)
  15. McCarty, R. E., Evron, Y. & Johnson, E. A. The chloroplast ATP synthase: a rotary enzyme? Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 83–109 (2000). (10.1146/annurev.arplant.51.1.83) / Annu. Rev. Plant Physiol. Plant Mol. Biol. by RE McCarty (2000)
  16. Cramer, W. A. et al. Some new structural aspects and old controversies concerning the cytochrome b6f complex of oxygenic photosynthesis Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 477–508 (1996). (10.1146/annurev.arplant.47.1.477) / Annu. Rev. Plant Physiol. Plant Mol. Biol. by WA Cramer (1996)
  17. Junge, W. ATP synthase and other motor proteins. Proc. Natl Acad. Sci USA 96, 4735–4737 (1999). (10.1073/pnas.96.9.4735) / Proc. Natl Acad. Sci USA by W Junge (1999)
  18. Herrmann, R. G. Biogenesis and evolution of photosynthetic (thylakoid) membranes. Biosci. Rep. 19, 355–365 (1999). (10.1023/A:1020251903707) / Biosci. Rep. by RG Herrmann (1999)
  19. Kaftan, D., Brumfeld, V., Nevo, R., Scherz, A. & Reich, Z. From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes. EMBO J. 21, 6146–6153 (2002). (10.1093/emboj/cdf624) / EMBO J. by D Kaftan (2002)
  20. Trissl, H. -W. & Wilhelm, C. Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem. Sci. 18, 415–419 (1993). (10.1016/0968-0004(93)90136-B) / Trends Biochem. Sci. by H-W Trissl (1993)
  21. Barber, J. & Andersson, B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992). (10.1016/0968-0004(92)90503-2) / Trends Biochem. Sci. by J Barber (1992)
  22. Anderson, J. M. & Chow, W. S. Structural and functional dynamics of plant photosystem II. Phil. Trans. R. Soc. Lond. B 357, 1421–1430 (2002). (10.1098/rstb.2002.1138) / Phil. Trans. R. Soc. Lond. B by JM Anderson (2002)
  23. Barber, J. Photosystem II: a multisubunit membrane protein that oxidises water. Curr. Opin. Struct. Biol. 12, 523–530 (2002). (10.1016/S0959-440X(02)00357-3) / Curr. Opin. Struct. Biol. by J Barber (2002)
  24. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004). Describes a high-resolution structure of PSII, which provides a more precise description of the manganese cluster and identifies the position of the calcium ion within the cluster. (10.1126/science.1093087) / Science by KN Ferreira (2004)
  25. Kuhlbrandt, W., Wang, D. N. & Fujiyoshi, Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614–621 (1994). Reports the structure of LHCII at a resolution of 3.4–4.9 Å. The structure was obtained by electron crystallography and revealed the arrangement of the main helices, as well as the location of 12 chlorophylls and 2 carotenoids. (10.1038/367614a0) / Nature by W Kuhlbrandt (1994)
  26. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004). The first high-resolution structure of LHCII, which assigned almost all of the amino-acid side chains and revealed the arrangement and ligands of all 14 chlorophylls (8 chlorophyll-a and 6 chlorophyll-b molecules) and 4 carotenoids. (10.1038/nature02373) / Nature by Z Liu (2004)
  27. Boekema, E. J., van Roon, H., Calkoen, F., Bassi, R. & Dekker, J. P. Multiple types of association of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Biochemistry 38, 2233–2239 (1999). (10.1021/bi9827161) / Biochemistry by EJ Boekema (1999)
  28. Nield. J. et al. 3D map of the plant photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nature Struct. Biol. 7, 44–47 (2000). (10.1038/71242) / Nature Struct. Biol. by J Nield (2000)
  29. Hoganson, C. W. & Babcock, G. T. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277, 1953–1956 (1997). (10.1126/science.277.5334.1953) / Science by CW Hoganson (1997)
  30. Vrettos, J. S., Limburg, J. & Brudvig, G. W. Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim. Biophys. Acta 1503, 229–245 (2001). (10.1016/S0005-2728(00)00214-0) / Biochim. Biophys. Acta by JS Vrettos (2001)
  31. Junge, W., Haumann, M., Ahlbrink, R., Mulkidjanian, A. & Clausen, J. Electrostatics and proton transfer in photosynthetic water oxidation. Philos. Trans. R. Soc. Lond. B 357, 1407–1417 (2002). (10.1098/rstb.2002.1137) / Philos. Trans. R. Soc. Lond. B by W Junge (2002)
  32. Zouni, A. et al. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409, 739–743 (2001). The first crystal structure of PSII, which revealed the arrangement of its subunits and cofactors, and identified the location of the oxygen-evolving centre/manganese cluster. (10.1038/35055589) / Nature by A Zouni (2001)
  33. Kamiya, N. & Shen, J. R. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc. Natl Acad. Sci. USA 100, 98–103 (2003). (10.1073/pnas.0135651100) / Proc. Natl Acad. Sci. USA by N Kamiya (2003)
  34. Peloquin, J. M. & Britt, R. D. EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim. Biophys. Acta 1503, 96–111 (2001). (10.1016/S0005-2728(00)00219-X) / Biochim. Biophys. Acta by JM Peloquin (2001)
  35. Robblee, J. H. et al. The Mn cluster in the S0 state of the oxygen-evolving complex of photosystem II studied by EXAFS spectroscopy: are there three Di-μ-oxo-bridged Mn2 moieties in the tetranuclear Mn complex? J. Am. Chem. Soc. 124, 7459–7471 (2002). (10.1021/ja011621a) / J. Am. Chem. Soc. by JH Robblee (2002)
  36. Vander Meulen, K. A., Hobson, A. & Yocum, C. F. Calcium depletion modifies the structure of the photosystem II O2-evolving complex. Biochemistry 41, 958–966 (2002). (10.1021/bi0109414) / Biochemistry by KA Vander Meulen (2002)
  37. Vasil'ev, S., Brudvig, G. W. & Bruce, D. The X-ray structure of photosystem II reveals a novel electron transport pathway between P680, cytochrome b559 and the energy-quenching cation, ChlZ+. FEBS Lett. 543, 159–163 (2003). (10.1016/S0014-5793(03)00442-3) / FEBS Lett. by S Vasil'ev (2003)
  38. Baymann, F., Brugna, M., Muhlenhoff, U. & Nitschke, W. Daddy, where did (PS)I come from? Biochim. Biophys. Acta 1507, 291–310 (2001). (10.1016/S0005-2728(01)00209-2) / Biochim. Biophys. Acta by F Baymann (2001)
  39. Mitchell, P. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J. Theor. Biol. 62, 327–367 (1976). (10.1016/0022-5193(76)90124-7) / J. Theor. Biol. by P Mitchell (1976)
  40. Trumpower, B. L. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 265, 11409–11412 (1990). (10.1016/S0021-9258(19)38410-8) / J. Biol. Chem. by BL Trumpower (1990)
  41. Berry, E. A., Guergova-Kuras, M., Huang, L. -S. & Crofts, A. R. Structure and function of cytochrome bc complexes. Annu. Rev. Biochem. 69, 1005–1075 (2000). (10.1146/annurev.biochem.69.1.1005) / Annu. Rev. Biochem. by EA Berry (2000)
  42. Iwata, S. et al. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64–71 (1998). (10.1126/science.281.5373.64) / Science by S Iwata (1998)
  43. Kim, H. et al. Inhibitor binding changes domain mobility in the iron-sulfur protein of the mitochondrial bc1 complex from bovine heart. Proc. Natl Acad. Sci. USA 95, 8026–8033 (1998). (10.1073/pnas.95.14.8026) / Proc. Natl Acad. Sci. USA by H Kim (1998)
  44. Zhang, Z. et al. Electron transfer by domain movement in cytochrome bc1 . Nature 392, 677–684 (1998). (10.1038/33612) / Nature by Z Zhang (1998)
  45. Hunte, C., Koepke, J., Lange, C., Rossmanith, T. & Michel, H. Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure Fold Des. 8, 669–684 (2000). (10.1016/S0969-2126(00)00152-0) / Structure Fold Des. by C Hunte (2000)
  46. Kurisu, G., Zhang, H., Smith, J. L. & Cramer, W. A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302, 1009–1014 (2003). (10.1126/science.1090165) / Science by G Kurisu (2003)
  47. Stroebel, D., Choquet, Y., Popot, J. L. & Picot, D. An atypical haem in the cytochrome b6f complex. Nature 426, 413–418 (2003). References 46 and 47 describe the first crystal structure of the cytochrome- b 6 f complex from cyanobacteria and green algae, respectively, and reveal important differences compared with cytochrome- bc 1 complexes (in particular, a novel haem group that might participate in cyclic electron transfer around PSI). (10.1038/nature02155) / Nature by D Stroebel (2003)
  48. Carrell, C. J., Zhang, H., Cramer, W. A. & Smith, J. L. Biological identity and diversity in photosynthesis and respiration: structure of the lumen-side domain of the chloroplast Rieske protein. Structure 5, 1613–1625 (1997). (10.1016/S0969-2126(97)00309-2) / Structure by CJ Carrell (1997)
  49. Martinez, S. E., Huang, D., Szczepaniak, A., Cramer, W. A. & Smith, J. L. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2, 95–105 (1994). (10.1016/S0969-2126(00)00012-5) / Structure by SE Martinez (1994)
  50. Horton, P. & Black, M. T. Activation of adenosine 5′ triphosphate-induced quenching of chlorophyll fluorescence by reduced plastoquinone: the basis of state I–state II transitions in chloroplasts. FEBS Lett. 119, 141–144 (1980). (10.1016/0014-5793(80)81016-7) / FEBS Lett. by P Horton (1980)
  51. Allen, J. F., Bennett, J., Steinback, K. E. & Arntzen, C. J. Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291, 25–29 (1981). (10.1038/291025a0) / Nature by JF Allen (1981)
  52. Escoubas, J. M., Lomas, M., LaRoche, J. & Falkowski, P. G. Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. Proc. Natl Acad. Sci. USA 92, 10237–10241 (1995). (10.1073/pnas.92.22.10237) / Proc. Natl Acad. Sci. USA by JM Escoubas (1995)
  53. Pfannschmidt, T., Nilsson, A. & Allen, J. F. Photosynthetic control of chloroplast gene expression. Nature 397, 625–628 (1999). (10.1038/17624) / Nature by T Pfannschmidt (1999)
  54. Vener, A. V., Van Kan, P. J., Gal, A., Andersson, B. & Ohad, I. Activation/deactivation cycle of redox-controlled thylakoid protein phosphorylation. Role of plastoquinol bound to the reduced cytochrome bf complex. J. Biol. Chem. 270, 25225–25232 (1995). (10.1074/jbc.270.42.25225) / J. Biol. Chem. by AV Vener (1995)
  55. Zito, F. et al. The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J. 18, 2961–1969 (1999). (10.1093/emboj/18.11.2961) / EMBO J. by F Zito (1999)
  56. Depege, N., Bellafiore, S. & Rochaix, J. D. Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299, 1572–1575 (2003). (10.1126/science.1081397) / Science by N Depege (2003)
  57. Wollman, F. A. State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J. 20, 3623–3630 (2001). (10.1093/emboj/20.14.3623) / EMBO J. by FA Wollman (2001)
  58. Nelson, N. & Ben-Shem, A. Photosystem I reaction center: past and future. Photosyth. Res. 73, 193–206 (2002). (10.1023/A:1020403231100) / Photosyth. Res. by N Nelson (2002)
  59. Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001). The first high-resolution structure of cyanobacterial PSI, which shows almost all of the amino-acid side chains of its 12 subunits and reveals, in detail, the complete set of electron-transfer components and more than 100 antenna chlorophylls and carotenoids. (10.1038/35082000) / Nature by P Jordan (2001)
  60. Scheller, H. V., Jensen, P. E., Haldrup, A., Lunde, C. & Knoetzel, J. Role of subunits in eukaryotic photosystem I. Biochim. Biophys. Acta 1507, 41–60 (2001). (10.1016/S0005-2728(01)00196-7) / Biochim. Biophys. Acta by HV Scheller (2001)
  61. Xiong, J. & Bauer, C. E. Complex evolution of photosynthesis. Annu. Rev. Plant. Biol. 53, 503–521 (2002). (10.1146/annurev.arplant.53.100301.135212) / Annu. Rev. Plant. Biol. by J Xiong (2002)
  62. Ben-Shem, A., Frolow, F. & Nelson, N. The crystal structure of plant photosystem I. Nature 426, 630–635 (2003). The first crystal structure of plant PSI, which contains 16 subunits and 167 chlorophylls. The structure revealed the arrangement of the LHCI belt and its interaction with the reaction centre. It also shed light on the evolutionary forces that shaped plant PSI. (10.1038/nature02200) / Nature by A Ben-Shem (2003)
  63. Ben-Shem, A., Frolow, F. & Nelson, N. Evolution of photosystem I — from symmetry through pseudosymmetry to asymmetry. FEBS Lett. 564, 274–280 (2004). (10.1016/S0014-5793(04)00360-6) / FEBS Lett. by A Ben-Shem (2004)
  64. Büttner, M. et al. Photosynthetic reaction center genes in green sulfur bacteria and in photosystem 1 are related. Proc. Natl Acad. Sci. USA 89, 8135–8139 (1992). (10.1073/pnas.89.17.8135) / Proc. Natl Acad. Sci. USA by M Büttner (1992)
  65. Büttner, M. et al. The photosystem I-like P840-reaction center of green S-bacteria is a homodimer. Biochim. Biophys. Acta 1101, 154–156 (1992). (10.1016/0005-2728(92)90200-L) / Biochim. Biophys. Acta by M Büttner (1992)
  66. Hauska, G., Schoedl, T., Remigy, H. & Tsiotis, G. The reaction center of green sulfur bacteria. Biochim. Biophys. Acta 1507, 260–277 (2001). (10.1016/S0005-2728(01)00200-6) / Biochim. Biophys. Acta by G Hauska (2001)
  67. Raymond, J., Zhaxybayeva, O., Gogarten, J. P., Gerdes, S. Y. & Blankenship, R. E. Whole-genome analysis of photosynthetic prokaryotes. Science. 298, 1616–1620 (2002). (10.1126/science.1075558) / Science. by J Raymond (2002)
  68. Durnford, D. G. et al. A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J. Mol. Evol. 48, 59–68 (1999). (10.1007/PL00006445) / J. Mol. Evol. by DG Durnford (1999)
  69. Chitnis, V. P. et al. Targeted inactivation of the gene psaL encoding a subunit of photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. J. Biol. Chem. 268, 11678–11684 (1993). (10.1016/S0021-9258(19)50253-8) / J. Biol. Chem. by VP Chitnis (1993)
  70. Chitnis, P. R. Photosystem I: function and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 593–626 (2001). (10.1146/annurev.arplant.52.1.593) / Annu. Rev. Plant Physiol. Plant Mol. Biol. by PR Chitnis (2001)
  71. Ben-Shem, A., Frolow, F. & Nelson, N. Light harvesting by plant photosystem I. Photosynthesis Res. 81, 239–250 (2004). (10.1023/B:PRES.0000036881.23512.42) / Photosynthesis Res. by A Ben-Shem (2004)
  72. Bailey, S., Walters, R. G., Jansson, S. & Horton, P. Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low light and high light responses. Planta 213, 794–801 (2001). (10.1007/s004250100556) / Planta by S Bailey (2001)
  73. Storf, S., Stauber, E. J., Hippler, M. & Schmid, V. H. Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum). Biochemistry 43, 9214–9224 (2004). (10.1021/bi0498196) / Biochemistry by S Storf (2004)
  74. Jennings, R. C., Zucchelli, G., Croce, R. & Garlaschi, F. M. The photochemical trapping rate from red spectral states in PSI–LHCI is determined by thermal activation of energy transfer to bulk chlorophylls. Biochim. Biophys. Acta 1557, 91–98 (2003). (10.1016/S0005-2728(02)00399-7) / Biochim. Biophys. Acta by RC Jennings (2003)
  75. Morosinotto, T., Breton, J., Bassi, R. & Croce, R. The nature of a chlorophyll ligand in Lhca proteins determines the far red fluorescence emission typical of photosystem I. J. Biol. Chem. 278, 49223–49229 (2003). (10.1074/jbc.M309203200) / J. Biol. Chem. by T Morosinotto (2003)
  76. Bibby, T. S., Nield, J. & Barber, J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature 412, 743–745 (2001). (10.1038/35089098) / Nature by TS Bibby (2001)
  77. Boekema, E. J. et al. A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria. Nature 412, 745–748 (2001). (10.1038/35089104) / Nature by EJ Boekema (2001)
  78. Allen, J. F. & Forsberg, J. Molecular recognition in thylakoid structure and function. Trends Plant Sci. 6, 317–326 (2001). (10.1016/S1360-1385(01)02010-6) / Trends Plant Sci. by JF Allen (2001)
  79. Barber, J. Influence of surface charges on thylakoid structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 33, 261–295 (1982). (10.1146/annurev.pp.33.060182.001401) / Annu. Rev. Plant Physiol. Plant Mol. Biol. by J Barber (1982)
  80. Lunde, C. P., Jensen, P. E., Haldrup, A., Knoetzel, J. & Scheller, H. V. The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408, 613–615 (2000). (10.1038/35046121) / Nature by CP Lunde (2000)
  81. Zhang, S. & Scheller, H. V. Light-harvesting complex II binds to several small subunits of photosystem I. J. Biol. Chem. 279, 3180–3187 (2004). (10.1074/jbc.M311640200) / J. Biol. Chem. by S Zhang (2004)
  82. Binda, C., Coda, A., Aliverti, A., Zanetti, G. & Mattevi, A. Structure of the mutant E92K of [2Fe-2S] ferredoxin I from Spinacia oleracea at 1.7 Å resolution. Acta Crystallogr. D Biol. Crystallogr. 54, 1353–1358 (1998). (10.1107/S0907444998005137) / Acta Crystallogr. D Biol. Crystallogr. by C Binda (1998)
  83. Xue, Y., Okvist, M., Hansson, O. & Young, S. Crystal structure of spinach plastocyanin at 1.7 Å resolution. Protein Sci. 7, 2099–2105 (1998). (10.1002/pro.5560071006) / Protein Sci. by Y Xue (1998)
  84. Kurisu, G. et al. Structure of the electron transfer complex between ferredoxin and ferredoxin–NADP+ reductase. Nature Struct. Biol. 8, 117–121 (2001). (10.1038/84097) / Nature Struct. Biol. by G Kurisu (2001)
  85. Schubert, W. D. et al. A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. J. Mol. Biol. 280, 297–314 (1998). (10.1006/jmbi.1998.1824) / J. Mol. Biol. by WD Schubert (1998)
  86. Guergova-Kuras, M., Boudreaux, B., Joliot, A., Joliot, P. & Redding, K. Evidence for two active branches for electron transfer in photosystem I. Proc. Natl Acad. Sci. USA 98, 4437–4442 (2001). (10.1073/pnas.081078898) / Proc. Natl Acad. Sci. USA by M Guergova-Kuras (2001)
  87. Nelson, N., Sacher, A. & Nelson, H. The significance of molecular slips in transport systems. Nature Rev. Mol. Cell Biol. 3, 876–881 (2002). (10.1038/nrm955) / Nature Rev. Mol. Cell Biol. by N Nelson (2002)
  88. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994). The asymmetric structure of the mitochondrial F 1 -ATPase bound to ADP and a non-hydrolysable analogue of ATP. The structure supported the binding-change mechanism for ATP synthesis, which was proposed by Boyer and is reviewed in reference 89. (10.1038/370621a0) / Nature by JP Abrahams (1994)
  89. Boyer, P. D. The ATP synthase — a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997). (10.1146/annurev.biochem.66.1.717) / Annu. Rev. Biochem. by PD Boyer (1997)
  90. Gibbons, C., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nature Struct. Biol. 7, 1055–1061 (2000). (10.1038/80981) / Nature Struct. Biol. by C Gibbons (2000)
  91. Stock, D., Leslie, A. G. W. & Walker, J. E. Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705 (1999). The structure of the c-ring of the F 0 -ATPase associated with the F 1 -ATPase from yeast showed that the c-ring contains contained ten c-subunits — a number that, contrary to predictions, is not divisible by three. (10.1126/science.286.5445.1700) / Science by D Stock (1999)
  92. Engelbrecht, S. & Junge, W. ATP synthase: a tentative structural model. FEBS Lett. 414, 485–491 (1997). (10.1016/S0014-5793(97)00997-6) / FEBS Lett. by S Engelbrecht (1997)
  93. Elston, T., Wang, H. Y. & Oster, G. Energy transduction in ATP synthase. Nature 391, 510–513 (1998). (10.1038/35185) / Nature by T Elston (1998)
  94. Seelert, H. et al. Structural biology. Proton-powered turbine of a plant motor. Nature 405, 418–419 (2000). Imaging of the c/III-ring of plant chloroplast F-ATPase using atomic-force microscopy revealed 14 copies of subunit III (c), which indicates that the number of c/III-subunits might vary between organisms. (10.1038/35013148) / Nature by H Seelert (2000)
  95. Girvin, M. E., Rastogi, V. K., Abildgaard, F., Markley, J. L. & Fillingame, R. H. Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase. Biochemistry 37, 8817–8824 (1998). (10.1021/bi980511m) / Biochemistry by ME Girvin (1998)
  96. Joliot, P. & Joliot, A. Cyclic electron transfer in plant leaf. Proc. Natl Acad. Sci. USA 99, 10209–10214 (2002). (10.1073/pnas.102306999) / Proc. Natl Acad. Sci. USA by P Joliot (2002)
  97. Danielsson, R., Albertsson, P. A., Mamedov, F. & Styring, S. Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochim. Biophys. Acta 1608, 53–61 (2004). (10.1016/j.bbabio.2003.10.005) / Biochim. Biophys. Acta by R Danielsson (2004)
  98. Munekage, Y. et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110, 361–371 (2002). (10.1016/S0092-8674(02)00867-X) / Cell by Y Munekage (2002)
  99. Li, X. P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000). (10.1038/35000131) / Nature by XP Li (2000)
  100. Kulheim, C., Agren, J. & Jansson, S. Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93 (2002). (10.1126/science.1072359) / Science by C Kulheim (2002)
  101. Munekage. Y. et al. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature 429, 579–582 (2004). (10.1038/nature02598) / Nature by Y Munekage. (2004)
  102. Buchanan, B. B. & Wolosiuk, R. A. Photosynthetic regulatory protein found in animal and bacterial cells. Nature 264, 669–670 (1976). (10.1038/264669a0) / Nature by BB Buchanan (1976)
  103. Mills, J. D. & Mitchell, P. Modulation of coupling factor ATPase activity in intact chloroplasts: reversal of thiol modulation in the dark. Biochim. Biophys. Acta 679, 75–82 (1982). (10.1016/0005-2728(82)90257-2) / Biochim. Biophys. Acta by JD Mills (1982)
  104. Dann, M. S. & McCarty, R. E. Characterization of the activation of membrane-bound and soluble CF1 by thioredoxin. Plant Physiol. 99, 153–160 (1992). (10.1104/pp.99.1.153) / Plant Physiol. by MS Dann (1992)
  105. He, X., Miginiac-Maslow, M., Sigalat, C., Keryer, E. & Haraux, F. Mechanism of activation of the chloroplast ATP synthase. J. Biol. Chem. 275, 13250–13258 (2000). (10.1074/jbc.275.18.13250) / J. Biol. Chem. by X He (2000)
  106. Nelson, N., Nelson, H. & Racker, E. Partial resolution of the enzymes catalyzing photophosphorylation. XII. Purification and properties of an inhibitor isolated from chloroplast coupling factor I. J. Biol. Chem. 247, 7657–7662 (1972). (10.1016/S0021-9258(19)44575-4) / J. Biol. Chem. by N Nelson (1972)
  107. Anderson, J. M., Chow, W. S. & Park, Y. -I. The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosyn. Res. 46, 129–139 (1995). (10.1007/BF00020423) / Photosyn. Res. by JM Anderson (1995)
Dates
Type When
Created 20 years, 8 months ago (Dec. 1, 2004, 7:41 a.m.)
Deposited 3 years, 4 months ago (April 15, 2022, 9:21 p.m.)
Indexed 25 minutes ago (Aug. 26, 2025, 10:30 p.m.)
Issued 20 years, 8 months ago (Dec. 1, 2004)
Published 20 years, 8 months ago (Dec. 1, 2004)
Published Print 20 years, 8 months ago (Dec. 1, 2004)
Funders 0

None

@article{Nelson_2004, title={The complex architecture of oxygenic photosynthesis}, volume={5}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm1525}, DOI={10.1038/nrm1525}, number={12}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Nelson, Nathan and Ben-Shem, Adam}, year={2004}, month=dec, pages={971–982} }