Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Wadhams, G. H., & Armitage, J. P. (2004). Making sense of it all: bacterial chemotaxis. Nature Reviews Molecular Cell Biology, 5(12), 1024–1037.

Authors 2
  1. George H. Wadhams (first)
  2. Judith P. Armitage (additional)
References 144 Referenced 1,222
  1. West, A. H. & Stock, A. M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26, 369–376 (2001). A good review of the biochemical and structural aspects of chemotaxis and other two-component signalling systems. (10.1016/S0968-0004(01)01852-7) / Trends Biochem. Sci. by AH West (2001)
  2. Maeda, T., Wurglermurphy, S. M. & Saito, H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242–245 (1994). (10.1038/369242a0) / Nature by T Maeda (1994)
  3. Nagahashi, S. et al. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology 144, 425–432 (1998). (10.1099/00221287-144-2-425) / Microbiology by S Nagahashi (1998)
  4. Schuster, S. C., Noegel, A. A., Oehme, F., Gerisch, G. & Simon, M. I. The hybrid histidine kinase DokA is part of the osmotic response system of Dictyostelium. EMBO J. 15, 3880–3889 (1996). (10.1002/j.1460-2075.1996.tb00762.x) / EMBO J. by SC Schuster (1996)
  5. Wilkinson, J. Q., Lanahan, M. B., Yen, H. C., Giovannoni, J. J. & Klee, H. J. An ethylene-inducible component of signal transduction encoded by never-ripe. Science 270, 1807–1809 (1995). (10.1126/science.270.5243.1807) / Science by JQ Wilkinson (1995)
  6. Ashby, M. K. Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol. Lett. 231, 277–281 (2004). (10.1016/S0378-1097(04)00004-7) / FEMS Microbiol. Lett. by MK Ashby (2004)
  7. Stock, A. M., Robinson, V. L. & Goudreau, P. N. Two-component signal transduction. Annu. Rev. Biochem. 69, 183–215 (2000). (10.1146/annurev.biochem.69.1.183) / Annu. Rev. Biochem. by AM Stock (2000)
  8. Inouye, M. & Dutta, R. Histidine Kinases in Signal Transduction (Academic Press, London, UK, 2003). / Histidine Kinases in Signal Transduction by M Inouye (2003)
  9. Potter, C. A. et al. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides. J. Mol. Biol. 320, 201–213 (2002). (10.1016/S0022-2836(02)00424-2) / J. Mol. Biol. by CA Potter (2002)
  10. Armitage, J. P. Bacterial tactic responses. Adv. Microb. Physiol. 41, 229–289 (1999). (10.1016/S0065-2911(08)60168-X) / Adv. Microb. Physiol. by JP Armitage (1999)
  11. Bren, A. & Eisenbach, M. How signals are heard during bacterial chemotaxis: protein–protein interactions in sensory signal propagation. J. Bacteriol. 182, 6865–6873 (2000). (10.1128/JB.182.24.6865-6873.2000) / J. Bacteriol. by A Bren (2000)
  12. Faguy, D. M. & Jarrell, K. F. A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes. Microbiology 145, 279–281 (1999). (10.1099/13500872-145-2-279) / Microbiology by DM Faguy (1999)
  13. Schnitzer, M. J., Block, S. M., Berg, H. C. & Purcell, E. M. Biology of the Chemotactic Response (Armitage, J. P. & Lackie, J. M. eds) 15–34 (Cambridge Univ. Press, UK, 1990). / Biology of the Chemotactic Response by MJ Schnitzer (1990)
  14. Thar, R. & Kühl, M. Bacteria are not too small for spatial sensing of chemical gradients: an experimental evidence. Proc. Natl Acad. Sci. USA 100, 5748–5753 (2003). (10.1073/pnas.1030795100) / Proc. Natl Acad. Sci. USA by R Thar (2003)
  15. Turner, L., Ryu, W. S. & Berg, H. C. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182, 2793–2801 (2000). (10.1128/JB.182.10.2793-2801.2000) / J. Bacteriol. by L Turner (2000)
  16. Armitage, J. P. & Schmitt, R. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti — variations on a theme? Microbiology 143, 3671–3682 (1997). (10.1099/00221287-143-12-3671) / Microbiology by JP Armitage (1997)
  17. Adler, J. Chemoreceptors in bacteria. Science 166, 1588–1597 (1969). (10.1126/science.166.3913.1588) / Science by J Adler (1969)
  18. Levin, M. D., Morton, F. C., Abouhamad, W. N., Bourret, R. B. & Bray, D. Origins of individual swimming behavior in bacteria. Biophys. J. 74, 175–181 (1998). (10.1016/S0006-3495(98)77777-X) / Biophys. J. by MD Levin (1998)
  19. Alon, U., Surette, M. G., Barkai, N. & Leibler, S. Robustness in bacterial chemotaxis. Nature 397, 168–171 (1999). A mathematical consideration of the processes of adaptation and robustness in the bacterial chemotaxis pathway. (10.1038/16483) / Nature by U Alon (1999)
  20. Kim, S. H., Wang, W. R. & Kim, K. K. Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity. Proc. Natl Acad. Sci. USA 99, 11611–11615 (2002). (10.1073/pnas.132376499) / Proc. Natl Acad. Sci. USA by SH Kim (2002)
  21. Sourjik, V. & Berg, H. C. Functional interactions between receptors in bacterial chemotaxis. Nature 428, 437–441 (2004). (10.1038/nature02406) / Nature by V Sourjik (2004)
  22. Sourjik, V. & Berg, H. C. Receptor sensitivity in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 99, 123–127 (2002). References 21 and 22 use fluorescence resonance energy transfer to assay the interactions between chemoreceptors in E. coli and between CheY–P and CheZ to explain sensitivity and gain in the chemotaxis pathway. (10.1073/pnas.011589998) / Proc. Natl Acad. Sci. USA by V Sourjik (2002)
  23. Kim, C., Jackson, M., Lux, R. & Khan, S. Determinants of chemotactic signal amplification in Escherichia coli. J. Mol. Biol. 307, 119–135 (2001). (10.1006/jmbi.2000.4389) / J. Mol. Biol. by C Kim (2001)
  24. Hess, J. F., Oosawa, K., Kaplan, N. & Simon, M. I. Phosphorylation of three proteins in the signalling pathway of bacterial chemotaxis. Cell 53, 79–87 (1988). An early report showing that the phosphorylation of chemotaxis proteins is a mechanism for signal transduction. (10.1016/0092-8674(88)90489-8) / Cell by JF Hess (1988)
  25. Anand, G. S., Goudreau, P. N. & Stock, A. M. Activation of methylesterase CheB: evidence of a dual role for the regulatory domain. Biochemistry 37, 14038–14047 (1998). (10.1021/bi980865d) / Biochemistry by GS Anand (1998)
  26. Welch, M., Oosawa, K., Aizawa, S. -I. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl Acad. Sci. USA 90, 8787–8791 (1993). (10.1073/pnas.90.19.8787) / Proc. Natl Acad. Sci. USA by M Welch (1993)
  27. Toker, A. S. & Macnab, R. M. Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J. Mol. Biol. 273, 623–634 (1997). (10.1006/jmbi.1997.1335) / J. Mol. Biol. by AS Toker (1997)
  28. McEvoy, M. M., Bren, A., Eisenbach, M. & Dahlquist, F. W. Identification of the binding interfaces on CheY for two of its targets, the phosphatase CheZ and the flagellar switch protein FliM. J. Mol. Biol. 289, 1423–1433 (1999). (10.1006/jmbi.1999.2830) / J. Mol. Biol. by MM McEvoy (1999)
  29. Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 99, 12669–12674 (2002). (10.1073/pnas.192463199) / Proc. Natl Acad. Sci. USA by V Sourjik (2002)
  30. Morgan, D. G., Baumgartner, J. B. & Hazelbauer, G. L. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J. Bacteriol. 175, 133–140 (1993). (10.1128/jb.175.1.133-140.1993) / J. Bacteriol. by DG Morgan (1993)
  31. Falke, J. J. & Hazelbauer, G. L. Transmembrane signaling in bacterial chemoreceptors. Trends Biochem. Sci. 26, 257–265 (2001). (10.1016/S0968-0004(00)01770-9) / Trends Biochem. Sci. by JJ Falke (2001)
  32. Yeh, J. I. et al. High resolution structures of the ligand binding domain of the wild type aspartate receptor. J. Mol. Biol. 262, 186–201 (1996). (10.1006/jmbi.1996.0507) / J. Mol. Biol. by JI Yeh (1996)
  33. Kim, K. K., Yokota, H. & Kim, S. H. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–792 (1999). (10.1038/23512) / Nature by KK Kim (1999)
  34. Milburn, M. V. et al. Structural changes in a transmembrane receptor — crystal structures of the ligand domain of aspartate chemotaxis receptor with and without aspartate. Biochemistry 31, 2192 (1992). / Biochemistry by MV Milburn (1992)
  35. Mowbray, S. L. & Koshland, D. E. Jr. Additive and independent responses to a single receptor: aspartate and maltose stimuli on the Tar protein. Cell 50, 171–180 (1987). (10.1016/0092-8674(87)90213-3) / Cell by SL Mowbray (1987)
  36. Beel, B. D. & Hazelbauer, G. L. Substitutions in the periplasmic domain of low-abundance chemoreceptor Trg that induce or reduce transmembrane signaling: kinase activation and context effects. J. Bacteriol. 183, 671–679 (2001). (10.1128/JB.183.2.671-679.2001) / J. Bacteriol. by BD Beel (2001)
  37. Isaac, B., Gallagher, G. J., Balazs, Y. S. & Thompson, L. K. Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor. Biochemistry 41, 3025–3036 (2002). (10.1021/bi015759h) / Biochemistry by B Isaac (2002)
  38. Murphy, O. J., Kovacs, F. A., Sicard, E. L. & Thompson, L. K. Site-directed solid-state NMR measurement of a ligand-induced conformational change in the serine bacterial chemoreceptor. Biochemistry 40, 1358–1366 (2001). (10.1021/bi0015109) / Biochemistry by OJ Murphy (2001)
  39. Ottemann, K. M., Xiao, W., Shin, Y. K. & Koshland, D. E. Jr. A piston model for transmembrane signaling of the aspartate receptor. Science 285, 1751–1754 (1999). (10.1126/science.285.5434.1751) / Science by KM Ottemann (1999)
  40. Ames, P. & Parkinson, J. S. Transmembrane signaling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell 55, 817–826 (1988). (10.1016/0092-8674(88)90137-7) / Cell by P Ames (1988)
  41. Surette, M. G. & Stock, J. B. Role of α-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J. Biol. Chem. 271, 17966–17973 (1996). (10.1074/jbc.271.30.17966) / J. Biol. Chem. by MG Surette (1996)
  42. Storch, K. F., Rudolph, J. & Oesterhelt, D. Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum. EMBO J. 18, 1146–1158 (1999). (10.1093/emboj/18.5.1146) / EMBO J. by KF Storch (1999)
  43. Wadhams, G. H. et al. TlpC, a novel chemotaxis protein in Rhodobacter sphaeroides, localizes to a discrete region in the cytoplasm. Mol. Microbiol. 46, 1211–1221 (2002). (10.1046/j.1365-2958.2002.03252.x) / Mol. Microbiol. by GH Wadhams (2002)
  44. Nishiyama, S., Maruyama, I. N., Homma, M. & Kawagishi, I. Inversion of thermosensing property of the bacterial receptor Tar by mutations in the second transmembrane region. J. Mol. Biol. 286, 1275–1284 (1999). (10.1006/jmbi.1999.2555) / J. Mol. Biol. by S Nishiyama (1999)
  45. Appleman, J. A., Chen, L. L. & Stewart, V. Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J. Bacteriol. 185, 4872–4882 (2003). (10.1128/JB.185.16.4872-4882.2003) / J. Bacteriol. by JA Appleman (2003)
  46. Aravind, L. & Ponting, C. P. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins. FEMS Microbiol. Lett. 176, 111–116 (1999). (10.1111/j.1574-6968.1999.tb13650.x) / FEMS Microbiol. Lett. by L Aravind (1999)
  47. Weis, R. M. & Koshland, D. E. Jr. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid. Proc. Natl Acad. Sci. USA 85, 83–87 (1988). (10.1073/pnas.85.1.83) / Proc. Natl Acad. Sci. USA by RM Weis (1988)
  48. Kehry, M. R., Bond, M. W., Hunkapiller, M. W. & Dahlquist, F. W. Enzymatic deamidation of methyl-accepting chemotaxis proteins in Escherichia coli catalyzed by the cheB gene product. Proc. Natl Acad. Sci. USA 80, 3599–3603 (1983). (10.1073/pnas.80.12.3599) / Proc. Natl Acad. Sci. USA by MR Kehry (1983)
  49. Wu, J. G., Li, J. Y., Li, G. Y., Long, D. G. & Weis, R. M. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry 35, 4984–4993 (1996). (10.1021/bi9530189) / Biochemistry by JG Wu (1996)
  50. Barnakov, A. N., Barnakova, L. A. & Hazelbauer, G. L. Comparison in vitro of a high- and a low-abundance chemoreceptor of Escherichia coli: similar kinase activation but different methyl-accepting activities. J. Bacteriol. 180, 6713–6718 (1998). (10.1128/JB.180.24.6713-6718.1998) / J. Bacteriol. by AN Barnakov (1998)
  51. Le Moual, H., Quang, T. & Koshland, D. E. Jr. Methylation of the Escherichia coli chemotaxis receptors: intra- and interdimer mechanisms. Biochemistry 36, 13441–13448 (1997). (10.1021/bi9713207) / Biochemistry by H Le Moual (1997)
  52. Maddock, J. R. & Shapiro, L. Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723 (1993). The use of immunogold electron microscopy to show for the first time that chemoreceptors cluster at the poles of bacterial cells. (10.1126/science.8456299) / Science by JR Maddock (1993)
  53. Wadhams, G. H., Martin, A. C. & Armitage, J. P. Identification and localization of a methyl-accepting chemotaxis protein in Rhodobacter sphaeroides. Mol. Microbiol. 36, 1222–1233 (2000). (10.1046/j.1365-2958.2000.01936.x) / Mol. Microbiol. by GH Wadhams (2000)
  54. Thomason, P. A., Wolanin, P. M. & Stock, J. B. Signal transduction: receptor clusters as information processing arrays. Curr. Biol. 12, R399–R401 (2002). (10.1016/S0960-9822(02)00885-0) / Curr. Biol. by PA Thomason (2002)
  55. Sourjik, V. & Berg, H. C. Localization of components of the chemotaxis machinery of Escherichia coli using fluorescent protein fusions. Mol. Microbiol. 37, 740–751 (2000). (10.1046/j.1365-2958.2000.02044.x) / Mol. Microbiol. by V Sourjik (2000)
  56. Martin, A. C., Wadhams, G. H. & Armitage, J. P. The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides. Mol. Microbiol. 40, 1261–1272 (2001). (10.1046/j.1365-2958.2001.02468.x) / Mol. Microbiol. by AC Martin (2001)
  57. Homma, M., Shiomi, D., Homma, M. & Kawagishi, I. Attractant binding alters arrangement of chemoreceptor dimers within its cluster at a cell pole. Proc. Natl Acad. Sci. USA 101, 3462–3467 (2004). (10.1073/pnas.0306660101) / Proc. Natl Acad. Sci. USA by M Homma (2004)
  58. Studdert, C. A. & Parkinson, J. S. Crosslinking snapshots of bacterial chemoreceptor squads. Proc. Natl Acad. Sci. USA 101, 2117–2122 (2004). (10.1073/pnas.0308622100) / Proc. Natl Acad. Sci. USA by CA Studdert (2004)
  59. Wolanin, P. M. & Stock, J. B. Bacterial chemosensing: cooperative molecular logic. Curr. Biol. 14, R486–R487 (2004). (10.1016/j.cub.2004.06.018) / Curr. Biol. by PM Wolanin (2004)
  60. Bray, D., Levin, M. D. & Morton, F. C. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393, 85–88 (1998). One of the first papers to propose that chemoreceptor clustering could explain the sensitivity and gain in the chemotaxis pathway. (10.1038/30018) / Nature by D Bray (1998)
  61. Levit, M. N., Grebe, T. W. & Stock, J. B. Organization of the receptor-kinase signaling array that regulates Escherichia coli chemotaxis. J. Biol. Chem. 277, 36748–36754 (2002). (10.1074/jbc.M204317200) / J. Biol. Chem. by MN Levit (2002)
  62. Lamanna, A. C. et al. Conserved amplification of chemotactic responses through chemoreceptor interactions. J. Bacteriol. 184, 4981–4987 (2002). (10.1128/JB.184.18.4981-4987.2002) / J. Bacteriol. by AC Lamanna (2002)
  63. Ames, P., Studdert, C. A., Reiser, R. H. & Parkinson, J. S. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl Acad. Sci. USA 99, 7060–7065 (2002). (10.1073/pnas.092071899) / Proc. Natl Acad. Sci. USA by P Ames (2002)
  64. Li, M. & Hazelbauer, G. L. Cellular stoichiometries of the components of the chemotaxis signaling complex. J. Bacteriol 186, 3687–3694 (2004). A quantitative western-blot analysis of chemotaxis proteins in cells that were grown under different growth conditions, which showed that although the absolute numbers of the signalling components vary, the stoichiometry between them remains relatively constant. (10.1128/JB.186.12.3687-3694.2004) / J. Bacteriol by M Li (2004)
  65. Shimizu, T. S. et al. Molecular model of a lattice of signalling proteins involved in bacterial chemotaxis. Nature Cell Biol. 2, 792–796 (2000). (10.1038/35041030) / Nature Cell Biol. by TS Shimizu (2000)
  66. Rebbapragada, A. et al. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl Acad. Sci. USA 94, 10541–10546 (1997). (10.1073/pnas.94.20.10541) / Proc. Natl Acad. Sci. USA by A Rebbapragada (1997)
  67. Bibikov, S. I., Barnes, L. A., Gitin, Y. & Parkinson, J. S. Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5830–5835 (2000). (10.1073/pnas.100118697) / Proc. Natl Acad. Sci. USA by SI Bibikov (2000)
  68. Fu, R., Wall, J. D. & Voordouw, G. DcrA, a c-type heme-containing methyl-accepting chemotaxis protein from Desulfovibrio vulgaris Hildenborough, senses the oxygen concentration or redox potential of the environment. J. Bacteriol. 176, 344–350 (1994). (10.1128/jb.176.2.344-350.1994) / J. Bacteriol. by R Fu (1994)
  69. Hou, S. et al. Myoglobin-like aerotaxis transducers in Archaea and bacteria. Nature 403, 540–544 (2000). (10.1038/35000570) / Nature by S Hou (2000)
  70. Lux, R. et al. Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol. Biol. Cell 10, 1133–1146 (1999). (10.1091/mbc.10.4.1133) / Mol. Biol. Cell by R Lux (1999)
  71. Boukhvalova, M., VanBruggen, R. & Stewart, R. C. CheA kinase and chemoreceptor interaction surfaces on CheW. J. Biol. Chem. 277, 23596–23603 (2002). (10.1074/jbc.M202288200) / J. Biol. Chem. by M Boukhvalova (2002)
  72. Griswold, I. J. et al. The solution structure and interactions of CheW from Thermotoga maritima. Nature Struct. Biol. 9, 121–125 (2002). (10.1038/nsb753) / Nature Struct. Biol. by IJ Griswold (2002)
  73. Shah, D. S. et al. Identification of a fourth cheY gene in Rhodobacter sphaeroides and interspecies interaction within the bacterial chemotaxis signal transduction pathway. Mol. Microbiol. 35, 101–112 (2000). (10.1046/j.1365-2958.2000.01680.x) / Mol. Microbiol. by DS Shah (2000)
  74. Hamblin, P. A., Bourne, N. A. & Armitage, J. P. Characterization of the chemotaxis protein CheW from Rhodobacter sphaeroides and its effect on the behaviour of Escherichia coli. Mol. Microbiol. 24, 41–51 (1997). (10.1046/j.1365-2958.1997.3241682.x) / Mol. Microbiol. by PA Hamblin (1997)
  75. Morrison, T. B. & Parkinson, J. S. A fragment liberated from the Escherichia coli CheA kinase that blocks stimulatory, but not inhibitory, chemoreceptor signaling. J. Bacteriol. 179, 5543–5550 (1997). (10.1128/jb.179.17.5543-5550.1997) / J. Bacteriol. by TB Morrison (1997)
  76. Mourey, L. et al. Crystal structure of the CheA histidine phosphotransfer domain that mediates response regulator phosphorylation in bacterial chemotaxis. J. Biol. Chem. 276, 31074–31082 (2001). (10.1074/jbc.M101943200) / J. Biol. Chem. by L Mourey (2001)
  77. Bilwes, A. M., Alex, L. A., Crane, B. R. & Simon, M. I. Structure of CheA, a signal-transducing histidine kinase. Cell 96, 131–141 (1999). (10.1016/S0092-8674(00)80966-6) / Cell by AM Bilwes (1999)
  78. Bourret, R. B., Davagnino, J. & Simon, M. I. The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW. J. Bacteriol. 175, 2097–2101 (1993). (10.1128/jb.175.7.2097-2101.1993) / J. Bacteriol. by RB Bourret (1993)
  79. Levit, M. N., Liu, Y. & Stock, J. B. Mechanism of CheA protein kinase activation in receptor signaling complexes. Biochemistry 38, 6651–6658 (1999). (10.1021/bi982839l) / Biochemistry by MN Levit (1999)
  80. Li, J. Y., Swanson, R. V., Simon, M. I. & Weis, R. M. The response regulators CheB and CheY exhibit competitive binding to the kinase CheA. Biochemistry 34, 14626–14636 (1995). (10.1021/bi00045a003) / Biochemistry by JY Li (1995)
  81. Welch, M., Chinardet, N., Mourey, L., Birck, C. & Samama, J. P. Structure of the CheY-binding domain of histidine kinase CheA in complex with CheY. Nature Struct. Biol. 5, 25–29 (1998). (10.1038/nsb0198-25) / Nature Struct. Biol. by M Welch (1998)
  82. Stewart, R. C., Jahreis, K. & Parkinson, J. S. Rapid phosphotransfer to CheY from a CheA protein lacking the CheY-binding domain. Biochemistry 39, 13157–13165 (2000). (10.1021/bi001100k) / Biochemistry by RC Stewart (2000)
  83. Hess, J. F., Bourret, R. B. & Simon, M. I. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336, 139–143 (1988). (10.1038/336139a0) / Nature by JF Hess (1988)
  84. Halkides, C. J. et al. The 1.9 Å resolution crystal structure of phosphono-CheY, an analogue of the active form of the response regulator, CheY. Biochemistry 39, 5280–5286 (2000). (10.1021/bi9925524) / Biochemistry by CJ Halkides (2000)
  85. Lee, S. Y. et al. Crystal structure of activated CheY — comparison with other activated receiver domains. J. Biol. Chem. 276, 16425–16431 (2001). (10.1074/jbc.M101002200) / J. Biol. Chem. by SY Lee (2001)
  86. Cho, H. S. et al. NMR structure of activated CheY. J. Mol. Biol. 297, 543–551 (2000). (10.1006/jmbi.2000.3595) / J. Mol. Biol. by HS Cho (2000)
  87. Bren, A. & Eisenbach, M. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J. Mol. Biol. 278, 507–514 (1998). (10.1006/jmbi.1998.1730) / J. Mol. Biol. by A Bren (1998)
  88. Sagi, Y., Khan, S. & Eisenbach, M. Binding of the chemotaxis response regulator CheY to the isolated, intact switch complex of the bacterial flagellar motor — lack of cooperativity. J. Biol. Chem. 278, 25867–25871 (2003). Showed that CheY–P binds to the switch component of the bacterial flagellar motor in a non-cooperative manner, which indicates that any amplification that occurs at the motor occurs after CheY–P binding. (10.1074/jbc.M303201200) / J. Biol. Chem. by Y Sagi (2003)
  89. Lee, S. Y. et al. Crystal structure of an activated response regulator bound to its target. Nature Struct. Biol. 8, 52–56 (2001). (10.1038/83053) / Nature Struct. Biol. by SY Lee (2001)
  90. Da Re, S. S., Deville-Bonne, D., Tolstykh, T., Veron, M. & Stock, J. B. Kinetics of CheY phosphorylation by small molecule phosphodonors. FEBS Lett. 457, 323–326 (1999). (10.1016/S0014-5793(99)01057-1) / FEBS Lett. by SS Da Re (1999)
  91. Barak, R. & Eisenbach, M. Acetylation of the response regulator, CheY, is involved in bacterial chemotaxis. Mol. Microbiol. 40, 731–743 (2001). (10.1046/j.1365-2958.2001.02425.x) / Mol. Microbiol. by R Barak (2001)
  92. Blat, Y. & Eisenbach, M. Oligomerization of the phosphatase CheZ upon interaction with the phosphorylated form of CheY — the signal protein of bacterial chemotaxis. J. Biol. Chem. 271, 1226–1231 (1996). (10.1074/jbc.271.2.1226) / J. Biol. Chem. by Y Blat (1996)
  93. Blat, Y. & Eisenbach, M. Mutants with defective phosphatase activity show no phosphorylation-dependent oligomerization of CheZ. The phosphatase of bacterial chemotaxis. J. Biol. Chem. 271, 1232–1236 (1996). (10.1074/jbc.271.2.1232) / J. Biol. Chem. by Y Blat (1996)
  94. Zhao, R., Collins, E. J., Bourret, R. B. & Silversmith, R. E. Structure and catalytic mechanism of the E. coli chemotaxis phosphatase CheZ. Nature Struct. Biol. 9, 570–575 (2002). / Nature Struct. Biol. by R Zhao (2002)
  95. Sourjik, V. & Schmitt, R. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37, 2327–2335 (1998). Identified an alternative signal-termination mechanism, which uses a phosphate sink in a bacterial species that lacks CheZ. (10.1021/bi972330a) / Biochemistry by V Sourjik (1998)
  96. Karatan, E., Saulmon, M. M., Bunn, M. W. & Ordal, G. W. Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J. Biol. Chem. 276, 43618–43626 (2001). (10.1074/jbc.M104955200) / J. Biol. Chem. by E Karatan (2001)
  97. Pittman, M. S., Goodwin, M. & Kelly, D. J. Chemotaxis in the human gastric pathogen Helicobacter pylori: different roles for CheW and the three CheV paralogues, and evidence for CheV2 phosphorylation. Microbiology 147, 2493–2504 (2001). (10.1099/00221287-147-9-2493) / Microbiology by MS Pittman (2001)
  98. Jiang, Z. Y. & Bauer, C. E. Analysis of a chemotaxis operon from Rhodospirillum centenum. J. Bacteriol. 179, 5712–5719 (1997). (10.1128/jb.179.18.5712-5719.1997) / J. Bacteriol. by ZY Jiang (1997)
  99. Porter, S. L. & Armitage, J. P. Phosphotransfer in Rhodobacter sphaeroides chemotaxis. J. Mol. Biol. 324, 35–45 (2002). Showed that different CheA proteins from R. sphaeroides differentially phosphorylate specific RRs. (10.1016/S0022-2836(02)01031-8) / J. Mol. Biol. by SL Porter (2002)
  100. Springer, W. R. & Koshland, D. E. Jr. Identification of a protein methyltransferase as the cheR gene product in the bacterial sensing system. Proc. Natl Acad. Sci. USA 74, 533–537 (1977). (10.1073/pnas.74.2.533) / Proc. Natl Acad. Sci. USA by WR Springer (1977)
  101. Kehry, M. R. & Dahlquist, F. W. Adaptation in bacterial chemotaxis: CheB-dependent modification permits additional methylations of sensory transducing proteins. Cell 29, 761–772 (1982). (10.1016/0092-8674(82)90438-X) / Cell by MR Kehry (1982)
  102. Kehry, M. R., Doak, T. G. & Dahlquist, F. W. Sensory adaptation in bacterial chemotaxis — regulation of demethylation. J. Bacteriol. 163, 983–990 (1985). (10.1128/JB.163.3.983-990.1985) / J. Bacteriol. by MR Kehry (1985)
  103. Djordjevic, S. & Stock, A. M. Chemotaxis receptor recognition by protein methyltransferase CheR. Nature Struct. Biol. 5, 446–450 (1998). (10.1038/nsb0698-446) / Nature Struct. Biol. by S Djordjevic (1998)
  104. Djordjevic, S. & Stock, A. M. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Structure 5, 545–558 (1997). (10.1016/S0969-2126(97)00210-4) / Structure by S Djordjevic (1997)
  105. Shiomi, D., Zhulin, I. B., Homma, M. & Kawagishi, I. Dual recognition of the bacterial chemoreceptor by chemotaxis-specific domains of the CheR methyltransferase. J. Biol. Chem. 277, 42325–42333 (2002). (10.1074/jbc.M202001200) / J. Biol. Chem. by D Shiomi (2002)
  106. Djordjevic, S., Goudreau, P. N., Xu, Q., Stock, A. M. & West, A. H. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain. Proc. Natl Acad. Sci. USA 95, 1381–1386 (1998). (10.1073/pnas.95.4.1381) / Proc. Natl Acad. Sci. USA by S Djordjevic (1998)
  107. Anand, G. S. & Stock, A. M. Kinetic basis for the stimulatory effect of phosphorylation on the methylesterase activity of CheB. Biochemistry 41, 6752–6760 (2002). (10.1021/bi012102n) / Biochemistry by GS Anand (2002)
  108. Levit, M. N., Liu, Y. & Stock, J. B. Stimulus response coupling in bacterial chemotaxis: receptor dimers in signalling arrays. Mol. Microbiol. 30, 459–466 (1998). (10.1046/j.1365-2958.1998.01066.x) / Mol. Microbiol. by MN Levit (1998)
  109. Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and Archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004). (10.1128/MMBR.68.2.301-319.2004) / Microbiol. Mol. Biol. Rev. by H Szurmant (2004)
  110. Bischoff, D. S., Bourret, R. B., Kirsch, M. L. & Ordal, G. W. Purification and characterization of Bacillus subtilis CheY. Biochemistry 32, 9256–9261 (1993). (10.1021/bi00086a035) / Biochemistry by DS Bischoff (1993)
  111. Zimmer, M. A., Tiu, J., Collins, M. A. & Ordal, G. W. Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J. Biol. Chemistry 275, 24264–24272 (2000). (10.1074/jbc.M004001200) / J. Biol. Chemistry by MA Zimmer (2000)
  112. Nordmann, B. et al. Identification of volatile forms of methyl groups released by Halobacterium salinarium. J. Biol. Chem. 269, 16449–16454 (1994). (10.1016/S0021-9258(17)34027-9) / J. Biol. Chem. by B Nordmann (1994)
  113. Thoelke, M. S., Kirby, J. R. & Ordal, G. W. Novel methyl transfer during chemotaxis in Bacillus subtilis. Biochemistry 28, 5585–5589 (1989). (10.1021/bi00439a037) / Biochemistry by MS Thoelke (1989)
  114. Kirby, J. R., Kristich, C. J., Feinberg, S. L. & Ordal, G. W. Methanol production during chemotaxis to amino acids in Bacillus subtilis. Mol. Microbiol. 24, 869–878 (1997). (10.1046/j.1365-2958.1997.3941759.x) / Mol. Microbiol. by JR Kirby (1997)
  115. Kirsch, M. L., Peters, P. D., Hanlon, D. W., Kirby, J. R. & Ordal, G. W. Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis. J. Biol. Chem. 268, 18610–18616 (1993). (10.1016/S0021-9258(17)46672-5) / J. Biol. Chem. by ML Kirsch (1993)
  116. Rosario, M. M. & Ordal, G. W. CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol. Microbiol. 21, 511–518 (1996). (10.1111/j.1365-2958.1996.tb02560.x) / Mol. Microbiol. by MM Rosario (1996)
  117. Szurmant, H., Muff, T. J. & Ordal, G. W. Bacillus subtilis CheC and FliY are members of a novel class of CheY–P-hydrolyzing proteins in the chemotactic signal transduction cascade. J. Biol. Chem. 279, 21787–21792 (2004). Identified roles for extra chemotaxis proteins in B. subtilis. (10.1074/jbc.M311497200) / J. Biol. Chem. by H Szurmant (2004)
  118. Porter, S. L., Warren, A. V., Martin, A. C. & Armitage, J. P. The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol. Microbiol. 46, 1081–1094 (2002). (10.1046/j.1365-2958.2002.03218.x) / Mol. Microbiol. by SL Porter (2002)
  119. Wadhams, G. H., Warren, A. V., Martin, A. C. & Armitage, J. P. Targeting of two signal transduction pathways to different regions of the bacterial cell. Mol. Microbiol. 50, 763–770 (2003). Showed for the first time that the components of two chemotaxis pathways are physically separated within a bacterial cell. (10.1046/j.1365-2958.2003.03716.x) / Mol. Microbiol. by GH Wadhams (2003)
  120. Porter, S. L. & Armitage, J. P. Chemotaxis in Rhodobacter sphaeroides requires an atypical histidine protein kinase. J. Biol. Chem. 12 Oct 2004 (doi:10.1074/jbc.M408855200). (10.1074/jbc.M408855200)
  121. O'Toole, R. et al. The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J. Bacteriol. 181, 4308–4317 (1999). (10.1128/JB.181.14.4308-4317.1999) / J. Bacteriol. by R O'Toole (1999)
  122. Kim, H. & Farrand, S. K. Opine catabolic loci from Agrobacterium plasmids confer chemotaxis to their cognate substrates. Mol. Plant Microbe Interact. 11, 131–143 (1998). (10.1094/MPMI.1998.11.2.131) / Mol. Plant Microbe Interact. by H Kim (1998)
  123. Zhu, J. & Mekalanos, J. J. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5, 647–656 (2003). (10.1016/S1534-5807(03)00295-8) / Dev. Cell by J Zhu (2003)
  124. Butler, S. M. & Camilli, A. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl Acad. Sci. USA 101, 5018–5023 (2004). (10.1073/pnas.0308052101) / Proc. Natl Acad. Sci. USA by SM Butler (2004)
  125. Pandya, S., Iyer, P., Gaitonde, V., Parekh, T. & Desai, A. Chemotaxis of Rhizobium SP.S2 towards Cajanus cajan root exudate and its major components. Curr. Microbiol. 38, 205–209 (1999). (10.1007/PL00006788) / Curr. Microbiol. by S Pandya (1999)
  126. Millikan, D. S. & Ruby, E. G. FlrA, a σ54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003). (10.1128/JB.185.12.3547-3557.2003) / J. Bacteriol. by DS Millikan (2003)
  127. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002). (10.1146/annurev.micro.56.012302.160705) / Annu. Rev. Microbiol. by P Stoodley (2002)
  128. Costerton, J. W. Anaerobic biofilm infections in cystic fibrosis. Mol. Cell 10, 699–700 (2002). (10.1016/S1097-2765(02)00698-6) / Mol. Cell by JW Costerton (2002)
  129. Taga, M. E. & Bassler, B. L. Chemical communication among bacteria. Proc. Natl Acad. Sci. USA 100, 14549–14554 (2003). (10.1073/pnas.1934514100) / Proc. Natl Acad. Sci. USA by ME Taga (2003)
  130. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003). A comprehensive review of the mechanism of rotation of the bacterial flagellar motor. (10.1146/annurev.biochem.72.121801.161737) / Annu. Rev. Biochem. by HC Berg (2003)
  131. Atsumi, T., McCarter, L. & Imae, Y. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355, 182–184 (1992). (10.1038/355182a0) / Nature by T Atsumi (1992)
  132. Mattick, J. S. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56, 289–314 (2002). (10.1146/annurev.micro.56.012302.160938) / Annu. Rev. Microbiol. by JS Mattick (2002)
  133. Kaiser, D. Coupling cell movement to multicellular development in Myxobacteria. Nature Rev. Microbiol. 1, 45–54 (2003). (10.1038/nrmicro733) / Nature Rev. Microbiol. by D Kaiser (2003)
  134. McBride, M. J. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55, 49–75 (2001). (10.1146/annurev.micro.55.1.49) / Annu. Rev. Microbiol. by MJ McBride (2001)
  135. Wolgemuth, C. W., Igoshin, O. & Oster, G. The motility of mollicutes. Biophys. J. 85, 828–842 (2003). (10.1016/S0006-3495(03)74523-8) / Biophys. J. by CW Wolgemuth (2003)
  136. Armitage, J. P., Pitta, T. P., Vigeant, M. A., Packer, H. L. & Ford, R. M. Transformations in flagellar structure of Rhodobacter sphaeroides and possible relationship to changes in swimming speed. J. Bacteriol. 181, 4825–4833 (1999). (10.1128/JB.181.16.4825-4833.1999) / J. Bacteriol. by JP Armitage (1999)
  137. Macnab, R. M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003). A review of the process of bacterial flagella assembly. (10.1146/annurev.micro.57.030502.090832) / Annu. Rev. Microbiol. by RM Macnab (2003)
  138. Hueck, C. J. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433 (1998). (10.1128/MMBR.62.2.379-433.1998) / Microbiol. Mol. Biol. Rev. by CJ Hueck (1998)
  139. Oster, G. & Wang, H. Rotary protein motors. Trends Cell Biol. 13, 114–121 (2003). (10.1016/S0962-8924(03)00004-7) / Trends Cell Biol. by G Oster (2003)
  140. Shi, W., Kohler, T. & Zusman, D. R. Chemotaxis plays a role in the social behaviour of Myxococcus xanthus. Mol. Microbiol. 9, 601–611 (1993). (10.1111/j.1365-2958.1993.tb01720.x) / Mol. Microbiol. by W Shi (1993)
  141. Shi, W. Y., Yang, Z. M., Sun, H., Lancero, H. & Tong, L. M. Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus. FEMS Microbiol. Lett. 192, 211–215 (2000). (10.1111/j.1574-6968.2000.tb09384.x) / FEMS Microbiol. Lett. by WY Shi (2000)
  142. Kirby, J. R. & Zusman, D. R. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl Acad. Sci. USA 100, 2008–2013 (2003). Provides an example of an operon that encodes chemotaxis-protein homologues that are not involved in the regulation of bacterial motility. (10.1073/pnas.0330944100) / Proc. Natl Acad. Sci. USA by JR Kirby (2003)
  143. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–61 (1996). (10.1016/0263-7855(96)00009-4) / J. Mol. Graph. by R Koradi (1996)
  144. Bray, D. Genomics: molecular prodigality. Science 299, 1189–1190 (2003). (10.1126/science.1080010) / Science by D Bray (2003)
Dates
Type When
Created 20 years, 8 months ago (Dec. 1, 2004, 7:41 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 11:48 p.m.)
Indexed 2 weeks, 2 days ago (Aug. 6, 2025, 9:53 a.m.)
Issued 20 years, 8 months ago (Dec. 1, 2004)
Published 20 years, 8 months ago (Dec. 1, 2004)
Published Print 20 years, 8 months ago (Dec. 1, 2004)
Funders 0

None

@article{Wadhams_2004, title={Making sense of it all: bacterial chemotaxis}, volume={5}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm1524}, DOI={10.1038/nrm1524}, number={12}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Wadhams, George H. and Armitage, Judith P.}, year={2004}, month=dec, pages={1024–1037} }