Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
References
168
Referenced
356
-
Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977).
(
10.1073/pnas.74.8.3171
) / Proc. Natl Acad. Sci. USA by SM Berget (1977) -
Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977).
(
10.1016/0092-8674(77)90180-5
) / Cell by LT Chow (1977) -
Lerner, M. R. & Steitz, J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 76, 5495–5499 (1979).
(
10.1073/pnas.76.11.5495
) / Proc. Natl Acad. Sci. USA by MR Lerner (1979) -
Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Are snRNPs involved in splicing? Nature 283, 220–224 (1980).
(
10.1038/283220a0
) / Nature by MR Lerner (1980) -
Rogers, J. & Wall, R. A mechanism for RNA splicing. Proc. Natl Acad. Sci. USA 77, 1877–1879 (1980).
(
10.1073/pnas.77.4.1877
) / Proc. Natl Acad. Sci. USA by J Rogers (1980) -
Hinterberger, M., Pettersson, I. & Steitz, J. A. Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. J. Biol. Chem. 258, 2604–2613 (1983).
(
10.1016/S0021-9258(18)32969-7
) / J. Biol. Chem. by M Hinterberger (1983) -
Mount, S. M., Pettersson, I., Hinterberger, M., Karmas, A. & Steitz, J. A. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33, 509–518 (1983).
(
10.1016/0092-8674(83)90432-4
) / Cell by SM Mount (1983) -
Padgett, R. A., Mount, S. M., Steitz, J. A. & Sharp, P. A. Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101–107 (1983).
(
10.1016/0092-8674(83)90212-X
) / Cell by RA Padgett (1983) -
Yang, V. W., Lerner, M. R., Steitz, J. A. & Flint, S. J. A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc. Natl Acad. Sci. USA 78, 1371–1375 (1981).
(
10.1073/pnas.78.3.1371
) / Proc. Natl Acad. Sci. USA by VW Yang (1981) -
DiMaria, P. R., Kaltwasser, G. & Goldenberg, C. J. Partial purification and properties of a pre-mRNA splicing activity. J. Biol. Chem. 260, 1096–1102 (1985).
(
10.1016/S0021-9258(20)71212-3
) / J. Biol. Chem. by PR DiMaria (1985) -
Kramer, A., Keller, W., Appel, B. & Luhrmann, R. The 5′ terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38, 299–307 (1984).
(
10.1016/0092-8674(84)90551-8
) / Cell by A Kramer (1984) -
Black, D. L., Chabot, B. & Steitz, J. A. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42, 737–750 (1985).
(
10.1016/0092-8674(85)90270-3
) / Cell by DL Black (1985) -
Krainer, A. R. & Maniatis, T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736 (1985).
(
10.1016/0092-8674(85)90269-7
) / Cell by AR Krainer (1985) -
Berget, S. M. & Robberson, B. L. U1, U2, and U4/U6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell 46, 691–696 (1986).
(
10.1016/0092-8674(86)90344-2
) / Cell by SM Berget (1986) -
Grabowski, P. J. & Sharp, P. A. Affinity chromatography of splicing complexes: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles in the spliceosome. Science 233, 1294–1299 (1986).
(
10.1126/science.3638792
) / Science by PJ Grabowski (1986) -
Pikielny, C. W. & Rosbash, M. Specific small nuclear RNAs are associated with yeast spliceosomes. Cell 45, 869–877 (1986).
(
10.1016/0092-8674(86)90561-1
) / Cell by CW Pikielny (1986) -
Goldenberg, C. J. & Hauser, S. D. Accurate and efficient in vitro splicing of purified precursor RNAs specified by early region 2 of the adenovirus 2 genome. Nucleic Acids Res. 11, 1337–1348 (1983).
(
10.1093/nar/11.5.1337
) / Nucleic Acids Res. by CJ Goldenberg (1983) -
Hernandez, N. & Keller, W. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell 35, 89–99 (1983).
(
10.1016/0092-8674(83)90211-8
) / Cell by N Hernandez (1983) -
Kole, R. & Weissman, S. M. Accurate in vitro splicing of human beta-globin RNA. Nucleic Acids Res. 10, 5429–5445 (1982).
(
10.1093/nar/10.18.5429
) / Nucleic Acids Res. by R Kole (1982) -
Padgett, R. A., Hardy, S. F. & Sharp, P. A. Splicing of adenovirus RNA in a cell-free transcription system. Proc. Natl Acad. Sci. USA 80, 5230–5234 (1983).
(
10.1073/pnas.80.17.5230
) / Proc. Natl Acad. Sci. USA by RA Padgett (1983) -
Hardy, S. F., Grabowski, P. J., Padgett, R. A. & Sharp, P. A. Cofactor requirements of splicing of purified messenger RNA precursors. Nature 308, 375–377 (1984).
(
10.1038/308375a0
) / Nature by SF Hardy (1984) -
Krainer, A. R., Maniatis, T., Ruskin, B. & Green, M. R. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36, 993–1005 (1984).
(
10.1016/0092-8674(84)90049-7
) / Cell by AR Krainer (1984) -
Grabowski, P. J., Padgett, R. A. & Sharp, P. A. Messenger RNA splicing in vitro: an excised intervening sequence and a potential intermediate. Cell 37, 415–427 (1984).
(
10.1016/0092-8674(84)90372-6
) / Cell by PJ Grabowski (1984) -
Padgett, R. A., Konarska, M. M., Grabowski, P. J., Hardy, S. F. & Sharp, P. A. Lariat RNA's as intermediates and products in the splicing of messenger RNA precursors. Science 225, 898–903 (1984).
(
10.1126/science.6206566
) / Science by RA Padgett (1984) -
Ruskin, B., Krainer, A. R., Maniatis, T. & Green, M. R. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331 (1984).
(
10.1016/0092-8674(84)90553-1
) / Cell by B Ruskin (1984) -
Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993).
(
10.1073/pnas.90.14.6498
) / Proc. Natl Acad. Sci. USA by TA Steitz (1993) -
Sontheimer, E. J., Sun, S. & Piccirilli, J. A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997).
(
10.1038/42068
) / Nature by EJ Sontheimer (1997) -
Yean, S. L., Wuenschell, G., Termini, J. & Lin, R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000).
(
10.1038/35048617
) / Nature by SL Yean (2000) -
Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013).
(
10.1038/nature12734
) / Nature by SM Fica (2013) -
Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008).
(
10.1126/science.1153803
) / Science by N Toor (2008) -
Keating, K. S., Toor, N., Perlman, P. S. & Pyle, A. M. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16, 1–9 (2010).
(
10.1261/rna.1791310
) / RNA by KS Keating (2010) -
Brody, E. & Abelson, J. The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963–967 (1985).
(
10.1126/science.3890181
) / Science by E Brody (1985) -
Grabowski, P. J., Seiler, S. R. & Sharp, P. A. A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42, 345–353 (1985).
(
10.1016/S0092-8674(85)80130-6
) / Cell by PJ Grabowski (1985) -
Frendewey, D. & Keller, W. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367 (1985).
(
10.1016/S0092-8674(85)80131-8
) / Cell by D Frendewey (1985) -
Aebi, M., Hornig, H., Padgett, R. A., Reiser, J. & Weissmann, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986).
(
10.1016/0092-8674(86)90620-3
) / Cell by M Aebi (1986) -
Vijayraghavan, U. et al. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J. 5, 1683–1695 (1986).
(
10.1002/j.1460-2075.1986.tb04412.x
) / EMBO J. by U Vijayraghavan (1986) -
Newman, A. J., Lin, R. J., Cheng, S. C. & Abelson, J. Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro. Cell 42, 335–344 (1985).
(
10.1016/S0092-8674(85)80129-X
) / Cell by AJ Newman (1985) -
Lamond, A. I., Konarska, M. M. & Sharp, P. A. A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Dev. 1, 532–543 (1987).
(
10.1101/gad.1.6.532
) / Genes Dev. by AI Lamond (1987) -
Konarska, M. M. & Sharp, P. A. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46, 845–855 (1986).
(
10.1016/0092-8674(86)90066-8
) / Cell by MM Konarska (1986) -
Pikielny, C. W., Rymond, B. C. & Rosbash, M. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 324, 341–345 (1986).
(
10.1038/324341a0
) / Nature by CW Pikielny (1986) -
Konarska, M. M. & Sharp, P. A. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49, 763–774 (1987).
(
10.1016/0092-8674(87)90614-3
) / Cell by MM Konarska (1987) -
Cheng, S. C. & Abelson, J. Spliceosome assembly in yeast. Genes Dev. 1, 1014–1027 (1987).
(
10.1101/gad.1.9.1014
) / Genes Dev. by SC Cheng (1987) -
Bindereif, A. & Green, M. R. An ordered pathway of snRNP binding during mammalian pre-mRNA splicing complex assembly. EMBO J. 6, 2415–2424 (1987).
(
10.1002/j.1460-2075.1987.tb02520.x
) / EMBO J. by A Bindereif (1987) -
Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009).
(
10.1016/j.cell.2009.02.009
) / Cell by MC Wahl (2009) -
Guthrie, C. & Patterson, B. Spliceosomal snRNAs. Annu. Rev. Genet. 22, 387–419 (1988).
(
10.1146/annurev.ge.22.120188.002131
) / Annu. Rev. Genet. by C Guthrie (1988) -
Bringmann, P. & Luhrmann, R. Purification of the individual snRNPs U1, U2, U5 and U4/U6 from HeLa cells and characterization of their protein constituents. EMBO J. 5, 3509–3516 (1986).
(
10.1002/j.1460-2075.1986.tb04676.x
) / EMBO J. by P Bringmann (1986) -
Lossky, M., Anderson, G. J., Jackson, S. P. & Beggs, J. Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell 51, 1019–1026 (1987).
(
10.1016/0092-8674(87)90588-5
) / Cell by M Lossky (1987) -
Jackson, S. P., Lossky, M. & Beggs, J. D. Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. Mol. Cell. Biol. 8, 1067–1075 (1988).
(
10.1128/MCB.8.3.1067
) / Mol. Cell. Biol. by SP Jackson (1988) -
Tarn, W. Y. et al. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 13, 2421–2431 (1994).
(
10.1002/j.1460-2075.1994.tb06527.x
) / EMBO J. by WY Tarn (1994) -
Chan, S. P., Kao, D. I., Tsai, W. Y. & Cheng, S. C. The Prp19p-associated complex in spliceosome activation. Science 302, 279–282 (2003).
(
10.1126/science.1086602
) / Science by SP Chan (2003) -
Chabot, B. & Steitz, J. A. Multiple interactions between the splicing substrate and small nuclear ribonucleoproteins in spliceosomes. Mol. Cell. Biol. 7, 281–293 (1987).
(
10.1128/MCB.7.1.281
) / Mol. Cell. Biol. by B Chabot (1987) -
Parker, R., Siliciano, P. G. & Guthrie, C. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49, 229–239 (1987).
(
10.1016/0092-8674(87)90564-2
) / Cell by R Parker (1987) -
Newman, A. & Norman, C. Mutations in yeast U5 snRNA alter the specificity of 5′ splice-site cleavage. Cell 65, 115–123 (1991).
(
10.1016/0092-8674(91)90413-S
) / Cell by A Newman (1991) -
Newman, A. J. & Norman, C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68, 743–754 (1992).
(
10.1016/0092-8674(92)90149-7
) / Cell by AJ Newman (1992) -
Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992).
(
10.1016/0092-8674(92)90556-R
) / Cell by HD Madhani (1992) -
Wassarman, D. A. & Steitz, J. A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science 257, 1918–1925 (1992).
(
10.1126/science.1411506
) / Science by DA Wassarman (1992) -
Wyatt, J. R., Sontheimer, E. J. & Steitz, J. A. Site-specific cross-linking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Dev. 6, 2542–2553 (1992).
(
10.1101/gad.6.12b.2542
) / Genes Dev. by JR Wyatt (1992) -
Lesser, C. F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 (1993).
(
10.1126/science.8266093
) / Science by CF Lesser (1993) -
Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993).
(
10.1126/science.8266094
) / Science by EJ Sontheimer (1993) -
Kandels-Lewis, S. & Seraphin, B. Involvement of U6 snRNA in 5′ splice site selection. Science 262, 2035–2039 (1993).
(
10.1126/science.8266100
) / Science by S Kandels-Lewis (1993) - Newman, A. J., Teigelkamp, S. & Beggs, J. D. snRNA interactions at 5′ and 3′ splice sites monitored by photoactivated crosslinking in yeast spliceosomes. RNA 1, 968–980 (1995). / RNA by AJ Newman (1995)
-
Anokhina, M. et al. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J. 32, 2804–2818 (2013).
(
10.1038/emboj.2013.198
) / EMBO J. by M Anokhina (2013) -
Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29 (2011).
(
10.1016/j.tibs.2010.07.008
) / Trends Biochem. Sci. by E Jankowsky (2011) -
Cordin, O., Hahn, D. & Beggs, J. D. Structure, function and regulation of spliceosomal RNA helicases. Curr. Opin. Cell Biol. 24, 431–438 (2012).
(
10.1016/j.ceb.2012.03.004
) / Curr. Opin. Cell Biol. by O Cordin (2012) -
Staley, J. P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998).
(
10.1016/S0092-8674(00)80925-3
) / Cell by JP Staley (1998) -
Raghunathan, P. L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998).
(
10.1016/S0960-9822(07)00345-4
) / Curr. Biol. by PL Raghunathan (1998) -
Laggerbauer, B., Achsel, T. & Luhrmann, R. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl Acad. Sci. USA 95, 4188–4192 (1998).
(
10.1073/pnas.95.8.4188
) / Proc. Natl Acad. Sci. USA by B Laggerbauer (1998) -
Chen, J. H. & Lin, R. J. The yeast PRP2 protein, a putative RNA-dependent ATPase, shares extensive sequence homology with two other pre-mRNA splicing factors. Nucleic Acids Res. 18, 6447 (1990).
(
10.1093/nar/18.21.6447
) / Nucleic Acids Res. by JH Chen (1990) -
King, D. S. & Beggs, J. D. Interactions of PRP2 protein with pre-mRNA splicing complexes in Saccharomyces cerevisiae. Nucleic Acids Res. 18, 6559–6564 (1990).
(
10.1093/nar/18.22.6559
) / Nucleic Acids Res. by DS King (1990) -
Kim, S. H. & Lin, R. J. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell. Biol. 16, 6810–6819 (1996).
(
10.1128/MCB.16.12.6810
) / Mol. Cell. Biol. by SH Kim (1996) -
Kim, S. H., Smith, J., Claude, A. & Lin, R. J. The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase. EMBO J. 11, 2319–2326 (1992).
(
10.1002/j.1460-2075.1992.tb05291.x
) / EMBO J. by SH Kim (1992) -
Burgess, S., Couto, J. R. & Guthrie, C. A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 60, 705–717 (1990).
(
10.1016/0092-8674(90)90086-T
) / Cell by S Burgess (1990) -
Schwer, B. & Guthrie, C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349, 494–499 (1991).
(
10.1038/349494a0
) / Nature by B Schwer (1991) -
Company, M., Arenas, J. & Abelson, J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349, 487–493 (1991).
(
10.1038/349487a0
) / Nature by M Company (1991) -
Semlow, D. R., Blanco, M. R., Walter, N. G. & Staley, J. P. Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell 164, 985–998 (2016).
(
10.1016/j.cell.2016.01.025
) / Cell by DR Semlow (2016) -
Semlow, D. R. & Staley, J. P. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem. Sci. 37, 263–273 (2012).
(
10.1016/j.tibs.2012.04.001
) / Trends Biochem. Sci. by DR Semlow (2012) -
Weber, G., Trowitzsch, S., Kastner, B., Luhrmann, R. & Wahl, M. C. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 29, 4172–4184 (2010).
(
10.1038/emboj.2010.295
) / EMBO J. by G Weber (2010) -
Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458, 475–480 (2009).
(
10.1038/nature07851
) / Nature by DA Pomeranz Krummel (2009) -
Kondo, Y., Oubridge, C., van Roon, A. M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. Elife http://dx.doi.org/10.7554/eLife.04986 (2015).
(
10.7554/eLife.04986
) -
Price, S. R., Evans, P. R. & Nagai, K. Crystal structure of the spliceosomal U2B”-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–650 (1998).
(
10.1038/29234
) / Nature by SR Price (1998) -
Sickmier, E. A. et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol. Cell 23, 49–59 (2006).
(
10.1016/j.molcel.2006.05.025
) / Mol. Cell by EA Sickmier (2006) -
Lin, P. C. & Xu, R. M. Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J. 31, 1579–1590 (2012).
(
10.1038/emboj.2012.7
) / EMBO J. by PC Lin (2012) -
Jenkins, J. L., Agrawal, A. A., Gupta, A., Green, M. R. & Kielkopf, C. L. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res. 41, 3859–3873 (2013).
(
10.1093/nar/gkt046
) / Nucleic Acids Res. by JL Jenkins (2013) -
Yoshida, H. et al. A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit. Genes Dev. 29, 1649–1660 (2015).
(
10.1101/gad.267104.115
) / Genes Dev. by H Yoshida (2015) -
Leung, A. K., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011).
(
10.1038/nature09956
) / Nature by AK Leung (2011) -
Zhou, L. et al. Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature 506, 116–120 (2014).
(
10.1038/nature12803
) / Nature by L Zhou (2014) -
Montemayor, E. J. et al. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-A resolution. Nat. Struct. Mol. Biol. 21, 544–551 (2014).
(
10.1038/nsmb.2832
) / Nat. Struct. Mol. Biol. by EJ Montemayor (2014) -
Galej, W. P., Oubridge, C., Newman, A. J. & Nagai, K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493, 638–643 (2013).
(
10.1038/nature11843
) / Nature by WP Galej (2013) -
Mozaffari-Jovin, S. et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341, 80–84 (2013).
(
10.1126/science.1237515
) / Science by S Mozaffari-Jovin (2013) -
Nguyen, T. H. et al. Structural basis of Brr2–Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 21, 910–919 (2013).
(
10.1016/j.str.2013.04.017
) / Structure by TH Nguyen (2013) -
Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016).
(
10.1016/j.molcel.2016.08.036
) / Mol. Cell by C Cretu (2016) -
Zhou, Z., Sim, J., Griffith, J. & Reed, R. Purification and electron microscopic visualization of functional human spliceosomes. Proc. Natl Acad. Sci. USA 99, 12203–12207 (2002).
(
10.1073/pnas.182427099
) / Proc. Natl Acad. Sci. USA by Z Zhou (2002) -
Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N. & Moore, M. J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002).
(
10.1017/S1355838202021088
) / RNA by MS Jurica (2002) -
Luhrmann, R. & Stark, H. Structural mapping of spliceosomes by electron microscopy. Curr. Opin. Struct. Biol. 19, 96–102 (2009).
(
10.1016/j.sbi.2009.01.001
) / Curr. Opin. Struct. Biol. by R Luhrmann (2009) -
Behzadnia, N. et al. Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J. 26, 1737–1748 (2007).
(
10.1038/sj.emboj.7601631
) / EMBO J. by N Behzadnia (2007) -
Furman, E. & Glitz, D. G. Purification of the spliceosome A-complex and its visualization by electron microscopy. J. Biol. Chem. 270, 15515–15522 (1995).
(
10.1074/jbc.270.26.15515
) / J. Biol. Chem. by E Furman (1995) -
Boehringer, D. et al. Three-dimensional structure of a pre-catalytic human spliceosomal complex B. Nat. Struct. Mol. Biol. 11, 463–468 (2004).
(
10.1038/nsmb761
) / Nat. Struct. Mol. Biol. by D Boehringer (2004) -
Wolf, E. et al. Exon, intron and splice site locations in the spliceosomal B complex. EMBO J. 28, 2283–2292 (2009).
(
10.1038/emboj.2009.171
) / EMBO J. by E Wolf (2009) -
Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26, 5528–5543 (2006).
(
10.1128/MCB.00582-06
) / Mol. Cell. Biol. by J Deckert (2006) -
Bessonov, S. et al. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16, 2384–2403 (2010).
(
10.1261/rna.2456210
) / RNA by S Bessonov (2010) -
Golas, M. M. et al. 3D cryo-EM structure of an active step I spliceosome and localization of its catalytic core. Mol. Cell 40, 927–938 (2010).
(
10.1016/j.molcel.2010.11.023
) / Mol. Cell by MM Golas (2010) -
Jurica, M. S., Sousa, D., Moore, M. J. & Grigorieff, N. Three-dimensional structure of C complex spliceosomes by electron microscopy. Nat. Struct. Mol. Biol. 11, 265–269 (2004).
(
10.1038/nsmb728
) / Nat. Struct. Mol. Biol. by MS Jurica (2004) -
Ilagan, J. O., Chalkley, R. J., Burlingame, A. L. & Jurica, M. S. Rearrangements within human spliceosomes captured after exon ligation. RNA 19, 400–412 (2013).
(
10.1261/rna.034223.112
) / RNA by JO Ilagan (2013) -
Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009).
(
10.1016/j.molcel.2009.09.040
) / Mol. Cell by P Fabrizio (2009) -
Ohi, M. D., Ren, L., Wall, J. S., Gould, K. L. & Walz, T. Structural characterization of the fission yeast U5. U2/U6 spliceosome complex. Proc. Natl Acad. Sci. USA 104, 3195–3200 (2007).
(
10.1073/pnas.0611591104
) / Proc. Natl Acad. Sci. USA by MD Ohi (2007) -
Chen, W. et al. Endogenous U2. U5. U6 snRNA complexes in S. pombe are intron lariat spliceosomes. RNA 20, 308–320 (2014).
(
10.1261/rna.040980.113
) / RNA by W Chen (2014) -
Nguyen, T. H. et al. The architecture of the spliceosomal U4/U6. U5 tri-snRNP. Nature 523, 47–52 (2015).
(
10.1038/nature14548
) / Nature by TH Nguyen (2015) -
Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015).
(
10.1126/science.aac7629
) / Science by C Yan (2015) -
Hang, J., Wan, R., Yan, C. & Shi, Y. Structural basis of pre-mRNA splicing. Science 349, 1191–1198 (2015).
(
10.1126/science.aac8159
) / Science by J Hang (2015) -
Wan, R. et al. The 3.8 A structure of the U4/U6. U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016).
(
10.1126/science.aad6466
) / Science by R Wan (2016) -
Nguyen, T. H. et al. Cryo-EM structure of the yeast U4/U6. U5 tri-snRNP at 3.7 A resolution. Nature 530, 298–302 (2016).
(
10.1038/nature16940
) / Nature by TH Nguyen (2016) -
Agafonov, D. E. et al. Molecular architecture of the human U4/U6. U5 tri-snRNP. Science 351, 1416–1420 (2016).
(
10.1126/science.aad2085
) / Science by DE Agafonov (2016) -
Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast activated spliceosome at 3.5 A resolution. Science 353, 904–911 (2016).
(
10.1126/science.aag0291
) / Science by C Yan (2016) -
Wan, R., Yan, C., Bai, R., Huang, G. & Shi, Y. Structure of a yeast catalytic step I spliceosome at 3.4 A resolution. Science 353, 895–904 (2016).
(
10.1126/science.aag2235
) / Science by R Wan (2016) -
Galej, W. P. et al. Cryo-EM structure of the spliceosome immediately after branching. Nature 537, 197–201 (2016).
(
10.1038/nature19316
) / Nature by WP Galej (2016) -
Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast step II catalytically activated spliceosome. Science 355, 149–155 (2017).
(
10.1126/science.aak9979
) / Science by C Yan (2017) -
Fica, S. M. et al. Structure of a spliceosome remodelled for exon ligation. Nature 542, 377–380 (2017).
(
10.1038/nature21078
) / Nature by SM Fica (2017) -
Rauhut, R. et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353, 1399–1405 (2016).
(
10.1126/science.aag1906
) / Science by R Rauhut (2016) -
Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017).
(
10.1038/nature21079
) / Nature by K Bertram (2017) -
Fica, S. M., Mefford, M. A., Piccirilli, J. A. & Staley, J. P. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21, 464–471 (2014).
(
10.1038/nsmb.2815
) / Nat. Struct. Mol. Biol. by SM Fica (2014) -
Robart, A. R., Chan, R. T., Peters, J. K., Rajashankar, K. R. & Toor, N. Crystal structure of a eukaryotic group II intron lariat. Nature 514, 193–197 (2014).
(
10.1038/nature13790
) / Nature by AR Robart (2014) -
Grainger, R. J. & Beggs, J. D. Prp8 protein: at the heart of the spliceosome. RNA 11, 533–557 (2005).
(
10.1261/rna.2220705
) / RNA by RJ Grainger (2005) -
Turner, I. A., Norman, C. M., Churcher, M. J. & Newman, A. J. Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12, 375–386 (2006).
(
10.1261/rna.2229706
) / RNA by IA Turner (2006) -
Galej, W. P., Nguyen, T. H., Newman, A. J. & Nagai, K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr. Opin. Struct. Biol. 25, 57–66 (2014).
(
10.1016/j.sbi.2013.12.002
) / Curr. Opin. Struct. Biol. by WP Galej (2014) -
Yang, K., Zhang, L., Xu, T., Heroux, A. & Zhao, R. Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc. Natl Acad. Sci. USA 105, 13817–13822 (2008).
(
10.1073/pnas.0805960105
) / Proc. Natl Acad. Sci. USA by K Yang (2008) -
Garrey, S. M. et al. A homolog of lariat-debranching enzyme modulates turnover of branched RNA. RNA 20, 1337–1348 (2014).
(
10.1261/rna.044602.114
) / RNA by SM Garrey (2014) -
Rasche, N. et al. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J. 31, 1591–1604 (2012).
(
10.1038/emboj.2011.502
) / EMBO J. by N Rasche (2012) -
Hahn, C. N. & Scott, H. S. Spliceosome mutations in hematopoietic malignancies. Nat. Genet. 44, 9–10 (2012).
(
10.1038/ng.1045
) / Nat. Genet. by CN Hahn (2012) -
Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015).
(
10.1016/j.celrep.2015.09.053
) / Cell Rep. by RB Darman (2015) -
Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).
(
10.1038/ncomms10615
) / Nat. Commun. by S Alsafadi (2016) -
Jacquier, A. & Michel, F. Base-pairing interactions involving the 5′ and 3′-terminal nucleotides of group II self-splicing introns. J. Mol. Biol. 213, 437–447 (1990).
(
10.1016/S0022-2836(05)80206-2
) / J. Mol. Biol. by A Jacquier (1990) -
Chanfreau, G. & Jacquier, A. Catalytic site components common to both splicing steps of a group II intron. Science 266, 1383–1387 (1994).
(
10.1126/science.7973729
) / Science by G Chanfreau (1994) - Umen, J. G. & Guthrie, C. The second catalytic step of pre-mRNA splicing. RNA 1, 869–885 (1995). / RNA by JG Umen (1995)
-
Luukkonen, B. G. & Seraphin, B. The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. EMBO J. 16, 779–792 (1997).
(
10.1093/emboj/16.4.779
) / EMBO J. by BG Luukkonen (1997) - Collins, C. A. & Guthrie, C. Genetic interactions between the 5′ and 3′ splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing. RNA 7, 1845–1854 (2001). / RNA by CA Collins (2001)
-
Frank, D. & Guthrie, C. An essential splicing factor, SLU7, mediates 3′ splice site choice in yeast. Genes Dev. 6, 2112–2124 (1992).
(
10.1101/gad.6.11.2112
) / Genes Dev. by D Frank (1992) - Umen, J. G. & Guthrie, C. Prp16p, Slu7p, and Prp8p interact with the 3′ splice site in two distinct stages during the second catalytic step of pre-mRNA splicing. RNA 1, 584–597 (1995). / RNA by JG Umen (1995)
-
Umen, J. G. & Guthrie, C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3′ splice site selection. Genetics 143, 723–739 (1996).
(
10.1093/genetics/143.2.723
) / Genetics by JG Umen (1996) -
Chua, K. & Reed, R. The RNA splicing factor hSlu7 is required for correct 3′ splice-site choice. Nature 402, 207–210 (1999).
(
10.1038/46086
) / Nature by K Chua (1999) -
Chen, W. & Moore, M. J. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 24, 141–149 (2014).
(
10.1016/j.sbi.2014.01.009
) / Curr. Opin. Struct. Biol. by W Chen (2014) -
Ohi, M. D. & Gould, K. L. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA 8, 798–815 (2002).
(
10.1017/S1355838202025050
) / RNA by MD Ohi (2002) -
Ohrt, T. et al. Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. RNA 18, 1244–1256 (2012).
(
10.1261/rna.033316.112
) / RNA by T Ohrt (2012) -
Grainger, R. J., Barrass, J. D., Jacquier, A., Rain, J. C. & Beggs, J. D. Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. RNA 15, 2161–2173 (2009).
(
10.1261/rna.1908309
) / RNA by RJ Grainger (2009) -
Warkocki, Z. et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat. Struct. Mol. Biol. 16, 1237–1243 (2009).
(
10.1038/nsmb.1729
) / Nat. Struct. Mol. Biol. by Z Warkocki (2009) -
Chiu, Y. F. et al. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction. Mol. Cell. Biol. 29, 5671–5678 (2009).
(
10.1128/MCB.00773-09
) / Mol. Cell. Biol. by YF Chiu (2009) -
Krishnan, R. et al. Biased Brownian ratcheting leads to pre-mRNA remodeling and capture prior to first-step splicing. Nat. Struct. Mol. Biol. 20, 1450–1457 (2013).
(
10.1038/nsmb.2704
) / Nat. Struct. Mol. Biol. by R Krishnan (2013) -
Ohrt, T. et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. RNA 19, 902–915 (2013).
(
10.1261/rna.039024.113
) / RNA by T Ohrt (2013) -
James, S. A., Turner, W. & Schwer, B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA 8, 1068–1077 (2002).
(
10.1017/S1355838202022033
) / RNA by SA James (2002) -
Zhang, X. & Schwer, B. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18. Nucleic Acids Res. 25, 2146–2152 (1997).
(
10.1093/nar/25.11.2146
) / Nucleic Acids Res. by X Zhang (1997) -
Santos, K. F. et al. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc. Natl Acad. Sci. USA 109, 17418–17423 (2012).
(
10.1073/pnas.1208098109
) / Proc. Natl Acad. Sci. USA by KF Santos (2012) -
Hahn, D., Kudla, G., Tollervey, D. & Beggs, J. D. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev. 26, 2408–2421 (2012).
(
10.1101/gad.199307.112
) / Genes Dev. by D Hahn (2012) -
Huang, Y. H., Chung, C. S., Kao, D. I., Kao, T. C. & Cheng, S. C. Sad1 counteracts Brr2-mediated dissociation of U4/U6. U5 in tri-snRNP homeostasis. Mol. Cell. Biol. 34, 210–220 (2014).
(
10.1128/MCB.00837-13
) / Mol. Cell. Biol. by YH Huang (2014) -
McPheeters, D. S. & Muhlenkamp, P. Spatial organization of protein-RNA interactions in the branch site-3′ splice site region during pre-mRNA splicing in yeast. Mol. Cell. Biol. 23, 4174–4186 (2003).
(
10.1128/MCB.23.12.4174-4186.2003
) / Mol. Cell. Biol. by DS McPheeters (2003) -
Schneider, C. et al. Dynamic contacts of U2, RES, Cwc25, Prp8 and Prp45 proteins with the pre-mRNA branch-site and 3′ splice site during catalytic activation and step 1 catalysis in yeast spliceosomes. PLoS Genet. 11, e1005539 (2015).
(
10.1371/journal.pgen.1005539
) / PLoS Genet. by C Schneider (2015) -
Edwalds-Gilbert, G., Kim, D. H., Silverman, E. & Lin, R. J. Definition of a spliceosome interaction domain in yeast Prp2 ATPase. RNA 10, 210–220 (2004).
(
10.1261/rna.5151404
) / RNA by G Edwalds-Gilbert (2004) -
Liu, H. L. & Cheng, S. C. The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. Mol. Cell. Biol. 32, 5056–5066 (2012).
(
10.1128/MCB.01109-12
) / Mol. Cell. Biol. by HL Liu (2012) -
Warkocki, Z. et al. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. Genes Dev. 29, 94–107 (2015).
(
10.1101/gad.253070.114
) / Genes Dev. by Z Warkocki (2015) -
Teigelkamp, S., McGarvey, M., Plumpton, M. & Beggs, J. D. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. EMBO J. 13, 888–897 (1994).
(
10.1002/j.1460-2075.1994.tb06332.x
) / EMBO J. by S Teigelkamp (1994) -
Lardelli, R. M., Thompson, J. X., Yates, J. R. 3rd & Stevens, S. W. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 16, 516–528 (2010).
(
10.1261/rna.2030510
) / RNA by RM Lardelli (2010) -
Schwer, B. & Guthrie, C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J. 11, 5033–5039 (1992).
(
10.1002/j.1460-2075.1992.tb05610.x
) / EMBO J. by B Schwer (1992) -
Tseng, C. K., Liu, H. L. & Cheng, S. C. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 17, 145–154 (2011).
(
10.1261/rna.2459611
) / RNA by CK Tseng (2011) -
Schwer, B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol. Cell 30, 743–754 (2008).
(
10.1016/j.molcel.2008.05.003
) / Mol. Cell by B Schwer (2008) -
Schwer, B. & Gross, C. H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 17, 2086–2094 (1998).
(
10.1093/emboj/17.7.2086
) / EMBO J. by B Schwer (1998) -
Sharp, P. A. On the origin of RNA splicing and introns. Cell 42, 397–400 (1985).
(
10.1016/0092-8674(85)90092-3
) / Cell by PA Sharp (1985) -
Cech, T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210 (1986).
(
10.1016/0092-8674(86)90751-8
) / Cell by TR Cech (1986) -
Maroney, P. A., Romfo, C. M. & Nilsen, T. W. Functional recognition of 5′ splice site by U4/U6. U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol. Cell 6, 317–328 (2000).
(
10.1016/S1097-2765(00)00032-0
) / Mol. Cell by PA Maroney (2000) -
Tsai, R. T. et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev. 19, 2991–3003 (2005).
(
10.1101/gad.1377405
) / Genes Dev. by RT Tsai (2005) -
Fourmann, J. B., Tauchert, M. J., Ficner, R., Fabrizio, P. & Luhrmann, R. Regulation of Prp43-mediated disassembly of spliceosomes by its cofactors Ntr1 and Ntr2. Nucleic Acids Res. 45, 4068–4080 (2017).
(
10.1093/nar/gkw1225
) / Nucleic Acids Res. by JB Fourmann (2017)
Dates
Type | When |
---|---|
Created | 7 years, 10 months ago (Sept. 27, 2017, 2:03 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 11:43 p.m.) |
Indexed | 2 days, 11 hours ago (Aug. 21, 2025, 1:39 p.m.) |
Issued | 7 years, 10 months ago (Sept. 27, 2017) |
Published | 7 years, 10 months ago (Sept. 27, 2017) |
Published Online | 7 years, 10 months ago (Sept. 27, 2017) |
Published Print | 7 years, 9 months ago (Nov. 1, 2017) |
@article{Shi_2017, title={Mechanistic insights into precursor messenger RNA splicing by the spliceosome}, volume={18}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm.2017.86}, DOI={10.1038/nrm.2017.86}, number={11}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Shi, Yigong}, year={2017}, month=sep, pages={655–670} }