Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Molecular Cell Biology (297)
Bibliography

Shi, Y. (2017). Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews Molecular Cell Biology, 18(11), 655–670.

Authors 1
  1. Yigong Shi (first)
References 168 Referenced 356
  1. Berget, S. M., Moore, C. & Sharp, P. A. Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc. Natl Acad. Sci. USA 74, 3171–3175 (1977). (10.1073/pnas.74.8.3171) / Proc. Natl Acad. Sci. USA by SM Berget (1977)
  2. Chow, L. T., Gelinas, R. E., Broker, T. R. & Roberts, R. J. An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8 (1977). (10.1016/0092-8674(77)90180-5) / Cell by LT Chow (1977)
  3. Lerner, M. R. & Steitz, J. A. Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 76, 5495–5499 (1979). (10.1073/pnas.76.11.5495) / Proc. Natl Acad. Sci. USA by MR Lerner (1979)
  4. Lerner, M. R., Boyle, J. A., Mount, S. M., Wolin, S. L. & Steitz, J. A. Are snRNPs involved in splicing? Nature 283, 220–224 (1980). (10.1038/283220a0) / Nature by MR Lerner (1980)
  5. Rogers, J. & Wall, R. A mechanism for RNA splicing. Proc. Natl Acad. Sci. USA 77, 1877–1879 (1980). (10.1073/pnas.77.4.1877) / Proc. Natl Acad. Sci. USA by J Rogers (1980)
  6. Hinterberger, M., Pettersson, I. & Steitz, J. A. Isolation of small nuclear ribonucleoproteins containing U1, U2, U4, U5, and U6 RNAs. J. Biol. Chem. 258, 2604–2613 (1983). (10.1016/S0021-9258(18)32969-7) / J. Biol. Chem. by M Hinterberger (1983)
  7. Mount, S. M., Pettersson, I., Hinterberger, M., Karmas, A. & Steitz, J. A. The U1 small nuclear RNA-protein complex selectively binds a 5′ splice site in vitro. Cell 33, 509–518 (1983). (10.1016/0092-8674(83)90432-4) / Cell by SM Mount (1983)
  8. Padgett, R. A., Mount, S. M., Steitz, J. A. & Sharp, P. A. Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell 35, 101–107 (1983). (10.1016/0092-8674(83)90212-X) / Cell by RA Padgett (1983)
  9. Yang, V. W., Lerner, M. R., Steitz, J. A. & Flint, S. J. A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc. Natl Acad. Sci. USA 78, 1371–1375 (1981). (10.1073/pnas.78.3.1371) / Proc. Natl Acad. Sci. USA by VW Yang (1981)
  10. DiMaria, P. R., Kaltwasser, G. & Goldenberg, C. J. Partial purification and properties of a pre-mRNA splicing activity. J. Biol. Chem. 260, 1096–1102 (1985). (10.1016/S0021-9258(20)71212-3) / J. Biol. Chem. by PR DiMaria (1985)
  11. Kramer, A., Keller, W., Appel, B. & Luhrmann, R. The 5′ terminus of the RNA moiety of U1 small nuclear ribonucleoprotein particles is required for the splicing of messenger RNA precursors. Cell 38, 299–307 (1984). (10.1016/0092-8674(84)90551-8) / Cell by A Kramer (1984)
  12. Black, D. L., Chabot, B. & Steitz, J. A. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell 42, 737–750 (1985). (10.1016/0092-8674(85)90270-3) / Cell by DL Black (1985)
  13. Krainer, A. R. & Maniatis, T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell 42, 725–736 (1985). (10.1016/0092-8674(85)90269-7) / Cell by AR Krainer (1985)
  14. Berget, S. M. & Robberson, B. L. U1, U2, and U4/U6 small nuclear ribonucleoproteins are required for in vitro splicing but not polyadenylation. Cell 46, 691–696 (1986). (10.1016/0092-8674(86)90344-2) / Cell by SM Berget (1986)
  15. Grabowski, P. J. & Sharp, P. A. Affinity chromatography of splicing complexes: U2, U5, and U4 + U6 small nuclear ribonucleoprotein particles in the spliceosome. Science 233, 1294–1299 (1986). (10.1126/science.3638792) / Science by PJ Grabowski (1986)
  16. Pikielny, C. W. & Rosbash, M. Specific small nuclear RNAs are associated with yeast spliceosomes. Cell 45, 869–877 (1986). (10.1016/0092-8674(86)90561-1) / Cell by CW Pikielny (1986)
  17. Goldenberg, C. J. & Hauser, S. D. Accurate and efficient in vitro splicing of purified precursor RNAs specified by early region 2 of the adenovirus 2 genome. Nucleic Acids Res. 11, 1337–1348 (1983). (10.1093/nar/11.5.1337) / Nucleic Acids Res. by CJ Goldenberg (1983)
  18. Hernandez, N. & Keller, W. Splicing of in vitro synthesized messenger RNA precursors in HeLa cell extracts. Cell 35, 89–99 (1983). (10.1016/0092-8674(83)90211-8) / Cell by N Hernandez (1983)
  19. Kole, R. & Weissman, S. M. Accurate in vitro splicing of human beta-globin RNA. Nucleic Acids Res. 10, 5429–5445 (1982). (10.1093/nar/10.18.5429) / Nucleic Acids Res. by R Kole (1982)
  20. Padgett, R. A., Hardy, S. F. & Sharp, P. A. Splicing of adenovirus RNA in a cell-free transcription system. Proc. Natl Acad. Sci. USA 80, 5230–5234 (1983). (10.1073/pnas.80.17.5230) / Proc. Natl Acad. Sci. USA by RA Padgett (1983)
  21. Hardy, S. F., Grabowski, P. J., Padgett, R. A. & Sharp, P. A. Cofactor requirements of splicing of purified messenger RNA precursors. Nature 308, 375–377 (1984). (10.1038/308375a0) / Nature by SF Hardy (1984)
  22. Krainer, A. R., Maniatis, T., Ruskin, B. & Green, M. R. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro. Cell 36, 993–1005 (1984). (10.1016/0092-8674(84)90049-7) / Cell by AR Krainer (1984)
  23. Grabowski, P. J., Padgett, R. A. & Sharp, P. A. Messenger RNA splicing in vitro: an excised intervening sequence and a potential intermediate. Cell 37, 415–427 (1984). (10.1016/0092-8674(84)90372-6) / Cell by PJ Grabowski (1984)
  24. Padgett, R. A., Konarska, M. M., Grabowski, P. J., Hardy, S. F. & Sharp, P. A. Lariat RNA's as intermediates and products in the splicing of messenger RNA precursors. Science 225, 898–903 (1984). (10.1126/science.6206566) / Science by RA Padgett (1984)
  25. Ruskin, B., Krainer, A. R., Maniatis, T. & Green, M. R. Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38, 317–331 (1984). (10.1016/0092-8674(84)90553-1) / Cell by B Ruskin (1984)
  26. Steitz, T. A. & Steitz, J. A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl Acad. Sci. USA 90, 6498–6502 (1993). (10.1073/pnas.90.14.6498) / Proc. Natl Acad. Sci. USA by TA Steitz (1993)
  27. Sontheimer, E. J., Sun, S. & Piccirilli, J. A. Metal ion catalysis during splicing of premessenger RNA. Nature 388, 801–805 (1997). (10.1038/42068) / Nature by EJ Sontheimer (1997)
  28. Yean, S. L., Wuenschell, G., Termini, J. & Lin, R. J. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Nature 408, 881–884 (2000). (10.1038/35048617) / Nature by SL Yean (2000)
  29. Fica, S. M. et al. RNA catalyses nuclear pre-mRNA splicing. Nature 503, 229–234 (2013). (10.1038/nature12734) / Nature by SM Fica (2013)
  30. Toor, N., Keating, K. S., Taylor, S. D. & Pyle, A. M. Crystal structure of a self-spliced group II intron. Science 320, 77–82 (2008). (10.1126/science.1153803) / Science by N Toor (2008)
  31. Keating, K. S., Toor, N., Perlman, P. S. & Pyle, A. M. A structural analysis of the group II intron active site and implications for the spliceosome. RNA 16, 1–9 (2010). (10.1261/rna.1791310) / RNA by KS Keating (2010)
  32. Brody, E. & Abelson, J. The “spliceosome”: yeast pre-messenger RNA associates with a 40S complex in a splicing-dependent reaction. Science 228, 963–967 (1985). (10.1126/science.3890181) / Science by E Brody (1985)
  33. Grabowski, P. J., Seiler, S. R. & Sharp, P. A. A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42, 345–353 (1985). (10.1016/S0092-8674(85)80130-6) / Cell by PJ Grabowski (1985)
  34. Frendewey, D. & Keller, W. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367 (1985). (10.1016/S0092-8674(85)80131-8) / Cell by D Frendewey (1985)
  35. Aebi, M., Hornig, H., Padgett, R. A., Reiser, J. & Weissmann, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986). (10.1016/0092-8674(86)90620-3) / Cell by M Aebi (1986)
  36. Vijayraghavan, U. et al. Mutations in conserved intron sequences affect multiple steps in the yeast splicing pathway, particularly assembly of the spliceosome. EMBO J. 5, 1683–1695 (1986). (10.1002/j.1460-2075.1986.tb04412.x) / EMBO J. by U Vijayraghavan (1986)
  37. Newman, A. J., Lin, R. J., Cheng, S. C. & Abelson, J. Molecular consequences of specific intron mutations on yeast mRNA splicing in vivo and in vitro. Cell 42, 335–344 (1985). (10.1016/S0092-8674(85)80129-X) / Cell by AJ Newman (1985)
  38. Lamond, A. I., Konarska, M. M. & Sharp, P. A. A mutational analysis of spliceosome assembly: evidence for splice site collaboration during spliceosome formation. Genes Dev. 1, 532–543 (1987). (10.1101/gad.1.6.532) / Genes Dev. by AI Lamond (1987)
  39. Konarska, M. M. & Sharp, P. A. Electrophoretic separation of complexes involved in the splicing of precursors to mRNAs. Cell 46, 845–855 (1986). (10.1016/0092-8674(86)90066-8) / Cell by MM Konarska (1986)
  40. Pikielny, C. W., Rymond, B. C. & Rosbash, M. Electrophoresis of ribonucleoproteins reveals an ordered assembly pathway of yeast splicing complexes. Nature 324, 341–345 (1986). (10.1038/324341a0) / Nature by CW Pikielny (1986)
  41. Konarska, M. M. & Sharp, P. A. Interactions between small nuclear ribonucleoprotein particles in formation of spliceosomes. Cell 49, 763–774 (1987). (10.1016/0092-8674(87)90614-3) / Cell by MM Konarska (1987)
  42. Cheng, S. C. & Abelson, J. Spliceosome assembly in yeast. Genes Dev. 1, 1014–1027 (1987). (10.1101/gad.1.9.1014) / Genes Dev. by SC Cheng (1987)
  43. Bindereif, A. & Green, M. R. An ordered pathway of snRNP binding during mammalian pre-mRNA splicing complex assembly. EMBO J. 6, 2415–2424 (1987). (10.1002/j.1460-2075.1987.tb02520.x) / EMBO J. by A Bindereif (1987)
  44. Wahl, M. C., Will, C. L. & Luhrmann, R. The spliceosome: design principles of a dynamic RNP machine. Cell 136, 701–718 (2009). (10.1016/j.cell.2009.02.009) / Cell by MC Wahl (2009)
  45. Guthrie, C. & Patterson, B. Spliceosomal snRNAs. Annu. Rev. Genet. 22, 387–419 (1988). (10.1146/annurev.ge.22.120188.002131) / Annu. Rev. Genet. by C Guthrie (1988)
  46. Bringmann, P. & Luhrmann, R. Purification of the individual snRNPs U1, U2, U5 and U4/U6 from HeLa cells and characterization of their protein constituents. EMBO J. 5, 3509–3516 (1986). (10.1002/j.1460-2075.1986.tb04676.x) / EMBO J. by P Bringmann (1986)
  47. Lossky, M., Anderson, G. J., Jackson, S. P. & Beggs, J. Identification of a yeast snRNP protein and detection of snRNP-snRNP interactions. Cell 51, 1019–1026 (1987). (10.1016/0092-8674(87)90588-5) / Cell by M Lossky (1987)
  48. Jackson, S. P., Lossky, M. & Beggs, J. D. Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. Mol. Cell. Biol. 8, 1067–1075 (1988). (10.1128/MCB.8.3.1067) / Mol. Cell. Biol. by SP Jackson (1988)
  49. Tarn, W. Y. et al. Functional association of essential splicing factor(s) with PRP19 in a protein complex. EMBO J. 13, 2421–2431 (1994). (10.1002/j.1460-2075.1994.tb06527.x) / EMBO J. by WY Tarn (1994)
  50. Chan, S. P., Kao, D. I., Tsai, W. Y. & Cheng, S. C. The Prp19p-associated complex in spliceosome activation. Science 302, 279–282 (2003). (10.1126/science.1086602) / Science by SP Chan (2003)
  51. Chabot, B. & Steitz, J. A. Multiple interactions between the splicing substrate and small nuclear ribonucleoproteins in spliceosomes. Mol. Cell. Biol. 7, 281–293 (1987). (10.1128/MCB.7.1.281) / Mol. Cell. Biol. by B Chabot (1987)
  52. Parker, R., Siliciano, P. G. & Guthrie, C. Recognition of the TACTAAC box during mRNA splicing in yeast involves base pairing to the U2-like snRNA. Cell 49, 229–239 (1987). (10.1016/0092-8674(87)90564-2) / Cell by R Parker (1987)
  53. Newman, A. & Norman, C. Mutations in yeast U5 snRNA alter the specificity of 5′ splice-site cleavage. Cell 65, 115–123 (1991). (10.1016/0092-8674(91)90413-S) / Cell by A Newman (1991)
  54. Newman, A. J. & Norman, C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell 68, 743–754 (1992). (10.1016/0092-8674(92)90149-7) / Cell by AJ Newman (1992)
  55. Madhani, H. D. & Guthrie, C. A novel base-pairing interaction between U2 and U6 snRNAs suggests a mechanism for the catalytic activation of the spliceosome. Cell 71, 803–817 (1992). (10.1016/0092-8674(92)90556-R) / Cell by HD Madhani (1992)
  56. Wassarman, D. A. & Steitz, J. A. Interactions of small nuclear RNA's with precursor messenger RNA during in vitro splicing. Science 257, 1918–1925 (1992). (10.1126/science.1411506) / Science by DA Wassarman (1992)
  57. Wyatt, J. R., Sontheimer, E. J. & Steitz, J. A. Site-specific cross-linking of mammalian U5 snRNP to the 5′ splice site before the first step of pre-mRNA splicing. Genes Dev. 6, 2542–2553 (1992). (10.1101/gad.6.12b.2542) / Genes Dev. by JR Wyatt (1992)
  58. Lesser, C. F. & Guthrie, C. Mutations in U6 snRNA that alter splice site specificity: implications for the active site. Science 262, 1982–1988 (1993). (10.1126/science.8266093) / Science by CF Lesser (1993)
  59. Sontheimer, E. J. & Steitz, J. A. The U5 and U6 small nuclear RNAs as active site components of the spliceosome. Science 262, 1989–1996 (1993). (10.1126/science.8266094) / Science by EJ Sontheimer (1993)
  60. Kandels-Lewis, S. & Seraphin, B. Involvement of U6 snRNA in 5′ splice site selection. Science 262, 2035–2039 (1993). (10.1126/science.8266100) / Science by S Kandels-Lewis (1993)
  61. Newman, A. J., Teigelkamp, S. & Beggs, J. D. snRNA interactions at 5′ and 3′ splice sites monitored by photoactivated crosslinking in yeast spliceosomes. RNA 1, 968–980 (1995). / RNA by AJ Newman (1995)
  62. Anokhina, M. et al. RNA structure analysis of human spliceosomes reveals a compact 3D arrangement of snRNAs at the catalytic core. EMBO J. 32, 2804–2818 (2013). (10.1038/emboj.2013.198) / EMBO J. by M Anokhina (2013)
  63. Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29 (2011). (10.1016/j.tibs.2010.07.008) / Trends Biochem. Sci. by E Jankowsky (2011)
  64. Cordin, O., Hahn, D. & Beggs, J. D. Structure, function and regulation of spliceosomal RNA helicases. Curr. Opin. Cell Biol. 24, 431–438 (2012). (10.1016/j.ceb.2012.03.004) / Curr. Opin. Cell Biol. by O Cordin (2012)
  65. Staley, J. P. & Guthrie, C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326 (1998). (10.1016/S0092-8674(00)80925-3) / Cell by JP Staley (1998)
  66. Raghunathan, P. L. & Guthrie, C. RNA unwinding in U4/U6 snRNPs requires ATP hydrolysis and the DEIH-box splicing factor Brr2. Curr. Biol. 8, 847–855 (1998). (10.1016/S0960-9822(07)00345-4) / Curr. Biol. by PL Raghunathan (1998)
  67. Laggerbauer, B., Achsel, T. & Luhrmann, R. The human U5-200kD DEXH-box protein unwinds U4/U6 RNA duplices in vitro. Proc. Natl Acad. Sci. USA 95, 4188–4192 (1998). (10.1073/pnas.95.8.4188) / Proc. Natl Acad. Sci. USA by B Laggerbauer (1998)
  68. Chen, J. H. & Lin, R. J. The yeast PRP2 protein, a putative RNA-dependent ATPase, shares extensive sequence homology with two other pre-mRNA splicing factors. Nucleic Acids Res. 18, 6447 (1990). (10.1093/nar/18.21.6447) / Nucleic Acids Res. by JH Chen (1990)
  69. King, D. S. & Beggs, J. D. Interactions of PRP2 protein with pre-mRNA splicing complexes in Saccharomyces cerevisiae. Nucleic Acids Res. 18, 6559–6564 (1990). (10.1093/nar/18.22.6559) / Nucleic Acids Res. by DS King (1990)
  70. Kim, S. H. & Lin, R. J. Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell. Biol. 16, 6810–6819 (1996). (10.1128/MCB.16.12.6810) / Mol. Cell. Biol. by SH Kim (1996)
  71. Kim, S. H., Smith, J., Claude, A. & Lin, R. J. The purified yeast pre-mRNA splicing factor PRP2 is an RNA-dependent NTPase. EMBO J. 11, 2319–2326 (1992). (10.1002/j.1460-2075.1992.tb05291.x) / EMBO J. by SH Kim (1992)
  72. Burgess, S., Couto, J. R. & Guthrie, C. A putative ATP binding protein influences the fidelity of branchpoint recognition in yeast splicing. Cell 60, 705–717 (1990). (10.1016/0092-8674(90)90086-T) / Cell by S Burgess (1990)
  73. Schwer, B. & Guthrie, C. PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349, 494–499 (1991). (10.1038/349494a0) / Nature by B Schwer (1991)
  74. Company, M., Arenas, J. & Abelson, J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature 349, 487–493 (1991). (10.1038/349487a0) / Nature by M Company (1991)
  75. Semlow, D. R., Blanco, M. R., Walter, N. G. & Staley, J. P. Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell 164, 985–998 (2016). (10.1016/j.cell.2016.01.025) / Cell by DR Semlow (2016)
  76. Semlow, D. R. & Staley, J. P. Staying on message: ensuring fidelity in pre-mRNA splicing. Trends Biochem. Sci. 37, 263–273 (2012). (10.1016/j.tibs.2012.04.001) / Trends Biochem. Sci. by DR Semlow (2012)
  77. Weber, G., Trowitzsch, S., Kastner, B., Luhrmann, R. & Wahl, M. C. Functional organization of the Sm core in the crystal structure of human U1 snRNP. EMBO J. 29, 4172–4184 (2010). (10.1038/emboj.2010.295) / EMBO J. by G Weber (2010)
  78. Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458, 475–480 (2009). (10.1038/nature07851) / Nature by DA Pomeranz Krummel (2009)
  79. Kondo, Y., Oubridge, C., van Roon, A. M. & Nagai, K. Crystal structure of human U1 snRNP, a small nuclear ribonucleoprotein particle, reveals the mechanism of 5′ splice site recognition. Elife http://dx.doi.org/10.7554/eLife.04986 (2015). (10.7554/eLife.04986)
  80. Price, S. R., Evans, P. R. & Nagai, K. Crystal structure of the spliceosomal U2B”-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 645–650 (1998). (10.1038/29234) / Nature by SR Price (1998)
  81. Sickmier, E. A. et al. Structural basis for polypyrimidine tract recognition by the essential pre-mRNA splicing factor U2AF65. Mol. Cell 23, 49–59 (2006). (10.1016/j.molcel.2006.05.025) / Mol. Cell by EA Sickmier (2006)
  82. Lin, P. C. & Xu, R. M. Structure and assembly of the SF3a splicing factor complex of U2 snRNP. EMBO J. 31, 1579–1590 (2012). (10.1038/emboj.2012.7) / EMBO J. by PC Lin (2012)
  83. Jenkins, J. L., Agrawal, A. A., Gupta, A., Green, M. R. & Kielkopf, C. L. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res. 41, 3859–3873 (2013). (10.1093/nar/gkt046) / Nucleic Acids Res. by JL Jenkins (2013)
  84. Yoshida, H. et al. A novel 3′ splice site recognition by the two zinc fingers in the U2AF small subunit. Genes Dev. 29, 1649–1660 (2015). (10.1101/gad.267104.115) / Genes Dev. by H Yoshida (2015)
  85. Leung, A. K., Nagai, K. & Li, J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 473, 536–539 (2011). (10.1038/nature09956) / Nature by AK Leung (2011)
  86. Zhou, L. et al. Crystal structures of the Lsm complex bound to the 3′ end sequence of U6 small nuclear RNA. Nature 506, 116–120 (2014). (10.1038/nature12803) / Nature by L Zhou (2014)
  87. Montemayor, E. J. et al. Core structure of the U6 small nuclear ribonucleoprotein at 1.7-A resolution. Nat. Struct. Mol. Biol. 21, 544–551 (2014). (10.1038/nsmb.2832) / Nat. Struct. Mol. Biol. by EJ Montemayor (2014)
  88. Galej, W. P., Oubridge, C., Newman, A. J. & Nagai, K. Crystal structure of Prp8 reveals active site cavity of the spliceosome. Nature 493, 638–643 (2013). (10.1038/nature11843) / Nature by WP Galej (2013)
  89. Mozaffari-Jovin, S. et al. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science 341, 80–84 (2013). (10.1126/science.1237515) / Science by S Mozaffari-Jovin (2013)
  90. Nguyen, T. H. et al. Structural basis of Brr2–Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure 21, 910–919 (2013). (10.1016/j.str.2013.04.017) / Structure by TH Nguyen (2013)
  91. Cretu, C. et al. Molecular architecture of SF3b and structural consequences of its cancer-related mutations. Mol. Cell 64, 307–319 (2016). (10.1016/j.molcel.2016.08.036) / Mol. Cell by C Cretu (2016)
  92. Zhou, Z., Sim, J., Griffith, J. & Reed, R. Purification and electron microscopic visualization of functional human spliceosomes. Proc. Natl Acad. Sci. USA 99, 12203–12207 (2002). (10.1073/pnas.182427099) / Proc. Natl Acad. Sci. USA by Z Zhou (2002)
  93. Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N. & Moore, M. J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439 (2002). (10.1017/S1355838202021088) / RNA by MS Jurica (2002)
  94. Luhrmann, R. & Stark, H. Structural mapping of spliceosomes by electron microscopy. Curr. Opin. Struct. Biol. 19, 96–102 (2009). (10.1016/j.sbi.2009.01.001) / Curr. Opin. Struct. Biol. by R Luhrmann (2009)
  95. Behzadnia, N. et al. Composition and three-dimensional EM structure of double affinity-purified, human prespliceosomal A complexes. EMBO J. 26, 1737–1748 (2007). (10.1038/sj.emboj.7601631) / EMBO J. by N Behzadnia (2007)
  96. Furman, E. & Glitz, D. G. Purification of the spliceosome A-complex and its visualization by electron microscopy. J. Biol. Chem. 270, 15515–15522 (1995). (10.1074/jbc.270.26.15515) / J. Biol. Chem. by E Furman (1995)
  97. Boehringer, D. et al. Three-dimensional structure of a pre-catalytic human spliceosomal complex B. Nat. Struct. Mol. Biol. 11, 463–468 (2004). (10.1038/nsmb761) / Nat. Struct. Mol. Biol. by D Boehringer (2004)
  98. Wolf, E. et al. Exon, intron and splice site locations in the spliceosomal B complex. EMBO J. 28, 2283–2292 (2009). (10.1038/emboj.2009.171) / EMBO J. by E Wolf (2009)
  99. Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26, 5528–5543 (2006). (10.1128/MCB.00582-06) / Mol. Cell. Biol. by J Deckert (2006)
  100. Bessonov, S. et al. Characterization of purified human Bact spliceosomal complexes reveals compositional and morphological changes during spliceosome activation and first step catalysis. RNA 16, 2384–2403 (2010). (10.1261/rna.2456210) / RNA by S Bessonov (2010)
  101. Golas, M. M. et al. 3D cryo-EM structure of an active step I spliceosome and localization of its catalytic core. Mol. Cell 40, 927–938 (2010). (10.1016/j.molcel.2010.11.023) / Mol. Cell by MM Golas (2010)
  102. Jurica, M. S., Sousa, D., Moore, M. J. & Grigorieff, N. Three-dimensional structure of C complex spliceosomes by electron microscopy. Nat. Struct. Mol. Biol. 11, 265–269 (2004). (10.1038/nsmb728) / Nat. Struct. Mol. Biol. by MS Jurica (2004)
  103. Ilagan, J. O., Chalkley, R. J., Burlingame, A. L. & Jurica, M. S. Rearrangements within human spliceosomes captured after exon ligation. RNA 19, 400–412 (2013). (10.1261/rna.034223.112) / RNA by JO Ilagan (2013)
  104. Fabrizio, P. et al. The evolutionarily conserved core design of the catalytic activation step of the yeast spliceosome. Mol. Cell 36, 593–608 (2009). (10.1016/j.molcel.2009.09.040) / Mol. Cell by P Fabrizio (2009)
  105. Ohi, M. D., Ren, L., Wall, J. S., Gould, K. L. & Walz, T. Structural characterization of the fission yeast U5. U2/U6 spliceosome complex. Proc. Natl Acad. Sci. USA 104, 3195–3200 (2007). (10.1073/pnas.0611591104) / Proc. Natl Acad. Sci. USA by MD Ohi (2007)
  106. Chen, W. et al. Endogenous U2. U5. U6 snRNA complexes in S. pombe are intron lariat spliceosomes. RNA 20, 308–320 (2014). (10.1261/rna.040980.113) / RNA by W Chen (2014)
  107. Nguyen, T. H. et al. The architecture of the spliceosomal U4/U6. U5 tri-snRNP. Nature 523, 47–52 (2015). (10.1038/nature14548) / Nature by TH Nguyen (2015)
  108. Yan, C. et al. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 349, 1182–1191 (2015). (10.1126/science.aac7629) / Science by C Yan (2015)
  109. Hang, J., Wan, R., Yan, C. & Shi, Y. Structural basis of pre-mRNA splicing. Science 349, 1191–1198 (2015). (10.1126/science.aac8159) / Science by J Hang (2015)
  110. Wan, R. et al. The 3.8 A structure of the U4/U6. U5 tri-snRNP: insights into spliceosome assembly and catalysis. Science 351, 466–475 (2016). (10.1126/science.aad6466) / Science by R Wan (2016)
  111. Nguyen, T. H. et al. Cryo-EM structure of the yeast U4/U6. U5 tri-snRNP at 3.7 A resolution. Nature 530, 298–302 (2016). (10.1038/nature16940) / Nature by TH Nguyen (2016)
  112. Agafonov, D. E. et al. Molecular architecture of the human U4/U6. U5 tri-snRNP. Science 351, 1416–1420 (2016). (10.1126/science.aad2085) / Science by DE Agafonov (2016)
  113. Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast activated spliceosome at 3.5 A resolution. Science 353, 904–911 (2016). (10.1126/science.aag0291) / Science by C Yan (2016)
  114. Wan, R., Yan, C., Bai, R., Huang, G. & Shi, Y. Structure of a yeast catalytic step I spliceosome at 3.4 A resolution. Science 353, 895–904 (2016). (10.1126/science.aag2235) / Science by R Wan (2016)
  115. Galej, W. P. et al. Cryo-EM structure of the spliceosome immediately after branching. Nature 537, 197–201 (2016). (10.1038/nature19316) / Nature by WP Galej (2016)
  116. Yan, C., Wan, R., Bai, R., Huang, G. & Shi, Y. Structure of a yeast step II catalytically activated spliceosome. Science 355, 149–155 (2017). (10.1126/science.aak9979) / Science by C Yan (2017)
  117. Fica, S. M. et al. Structure of a spliceosome remodelled for exon ligation. Nature 542, 377–380 (2017). (10.1038/nature21078) / Nature by SM Fica (2017)
  118. Rauhut, R. et al. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Science 353, 1399–1405 (2016). (10.1126/science.aag1906) / Science by R Rauhut (2016)
  119. Bertram, K. et al. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature 542, 318–323 (2017). (10.1038/nature21079) / Nature by K Bertram (2017)
  120. Fica, S. M., Mefford, M. A., Piccirilli, J. A. & Staley, J. P. Evidence for a group II intron-like catalytic triplex in the spliceosome. Nat. Struct. Mol. Biol. 21, 464–471 (2014). (10.1038/nsmb.2815) / Nat. Struct. Mol. Biol. by SM Fica (2014)
  121. Robart, A. R., Chan, R. T., Peters, J. K., Rajashankar, K. R. & Toor, N. Crystal structure of a eukaryotic group II intron lariat. Nature 514, 193–197 (2014). (10.1038/nature13790) / Nature by AR Robart (2014)
  122. Grainger, R. J. & Beggs, J. D. Prp8 protein: at the heart of the spliceosome. RNA 11, 533–557 (2005). (10.1261/rna.2220705) / RNA by RJ Grainger (2005)
  123. Turner, I. A., Norman, C. M., Churcher, M. J. & Newman, A. J. Dissection of Prp8 protein defines multiple interactions with crucial RNA sequences in the catalytic core of the spliceosome. RNA 12, 375–386 (2006). (10.1261/rna.2229706) / RNA by IA Turner (2006)
  124. Galej, W. P., Nguyen, T. H., Newman, A. J. & Nagai, K. Structural studies of the spliceosome: zooming into the heart of the machine. Curr. Opin. Struct. Biol. 25, 57–66 (2014). (10.1016/j.sbi.2013.12.002) / Curr. Opin. Struct. Biol. by WP Galej (2014)
  125. Yang, K., Zhang, L., Xu, T., Heroux, A. & Zhao, R. Crystal structure of the beta-finger domain of Prp8 reveals analogy to ribosomal proteins. Proc. Natl Acad. Sci. USA 105, 13817–13822 (2008). (10.1073/pnas.0805960105) / Proc. Natl Acad. Sci. USA by K Yang (2008)
  126. Garrey, S. M. et al. A homolog of lariat-debranching enzyme modulates turnover of branched RNA. RNA 20, 1337–1348 (2014). (10.1261/rna.044602.114) / RNA by SM Garrey (2014)
  127. Rasche, N. et al. Cwc2 and its human homologue RBM22 promote an active conformation of the spliceosome catalytic centre. EMBO J. 31, 1591–1604 (2012). (10.1038/emboj.2011.502) / EMBO J. by N Rasche (2012)
  128. Hahn, C. N. & Scott, H. S. Spliceosome mutations in hematopoietic malignancies. Nat. Genet. 44, 9–10 (2012). (10.1038/ng.1045) / Nat. Genet. by CN Hahn (2012)
  129. Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015). (10.1016/j.celrep.2015.09.053) / Cell Rep. by RB Darman (2015)
  130. Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016). (10.1038/ncomms10615) / Nat. Commun. by S Alsafadi (2016)
  131. Jacquier, A. & Michel, F. Base-pairing interactions involving the 5′ and 3′-terminal nucleotides of group II self-splicing introns. J. Mol. Biol. 213, 437–447 (1990). (10.1016/S0022-2836(05)80206-2) / J. Mol. Biol. by A Jacquier (1990)
  132. Chanfreau, G. & Jacquier, A. Catalytic site components common to both splicing steps of a group II intron. Science 266, 1383–1387 (1994). (10.1126/science.7973729) / Science by G Chanfreau (1994)
  133. Umen, J. G. & Guthrie, C. The second catalytic step of pre-mRNA splicing. RNA 1, 869–885 (1995). / RNA by JG Umen (1995)
  134. Luukkonen, B. G. & Seraphin, B. The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. EMBO J. 16, 779–792 (1997). (10.1093/emboj/16.4.779) / EMBO J. by BG Luukkonen (1997)
  135. Collins, C. A. & Guthrie, C. Genetic interactions between the 5′ and 3′ splice site consensus sequences and U6 snRNA during the second catalytic step of pre-mRNA splicing. RNA 7, 1845–1854 (2001). / RNA by CA Collins (2001)
  136. Frank, D. & Guthrie, C. An essential splicing factor, SLU7, mediates 3′ splice site choice in yeast. Genes Dev. 6, 2112–2124 (1992). (10.1101/gad.6.11.2112) / Genes Dev. by D Frank (1992)
  137. Umen, J. G. & Guthrie, C. Prp16p, Slu7p, and Prp8p interact with the 3′ splice site in two distinct stages during the second catalytic step of pre-mRNA splicing. RNA 1, 584–597 (1995). / RNA by JG Umen (1995)
  138. Umen, J. G. & Guthrie, C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3′ splice site selection. Genetics 143, 723–739 (1996). (10.1093/genetics/143.2.723) / Genetics by JG Umen (1996)
  139. Chua, K. & Reed, R. The RNA splicing factor hSlu7 is required for correct 3′ splice-site choice. Nature 402, 207–210 (1999). (10.1038/46086) / Nature by K Chua (1999)
  140. Chen, W. & Moore, M. J. The spliceosome: disorder and dynamics defined. Curr. Opin. Struct. Biol. 24, 141–149 (2014). (10.1016/j.sbi.2014.01.009) / Curr. Opin. Struct. Biol. by W Chen (2014)
  141. Ohi, M. D. & Gould, K. L. Characterization of interactions among the Cef1p-Prp19p-associated splicing complex. RNA 8, 798–815 (2002). (10.1017/S1355838202025050) / RNA by MD Ohi (2002)
  142. Ohrt, T. et al. Prp2-mediated protein rearrangements at the catalytic core of the spliceosome as revealed by dcFCCS. RNA 18, 1244–1256 (2012). (10.1261/rna.033316.112) / RNA by T Ohrt (2012)
  143. Grainger, R. J., Barrass, J. D., Jacquier, A., Rain, J. C. & Beggs, J. D. Physical and genetic interactions of yeast Cwc21p, an ortholog of human SRm300/SRRM2, suggest a role at the catalytic center of the spliceosome. RNA 15, 2161–2173 (2009). (10.1261/rna.1908309) / RNA by RJ Grainger (2009)
  144. Warkocki, Z. et al. Reconstitution of both steps of Saccharomyces cerevisiae splicing with purified spliceosomal components. Nat. Struct. Mol. Biol. 16, 1237–1243 (2009). (10.1038/nsmb.1729) / Nat. Struct. Mol. Biol. by Z Warkocki (2009)
  145. Chiu, Y. F. et al. Cwc25 is a novel splicing factor required after Prp2 and Yju2 to facilitate the first catalytic reaction. Mol. Cell. Biol. 29, 5671–5678 (2009). (10.1128/MCB.00773-09) / Mol. Cell. Biol. by YF Chiu (2009)
  146. Krishnan, R. et al. Biased Brownian ratcheting leads to pre-mRNA remodeling and capture prior to first-step splicing. Nat. Struct. Mol. Biol. 20, 1450–1457 (2013). (10.1038/nsmb.2704) / Nat. Struct. Mol. Biol. by R Krishnan (2013)
  147. Ohrt, T. et al. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system. RNA 19, 902–915 (2013). (10.1261/rna.039024.113) / RNA by T Ohrt (2013)
  148. James, S. A., Turner, W. & Schwer, B. How Slu7 and Prp18 cooperate in the second step of yeast pre-mRNA splicing. RNA 8, 1068–1077 (2002). (10.1017/S1355838202022033) / RNA by SA James (2002)
  149. Zhang, X. & Schwer, B. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18. Nucleic Acids Res. 25, 2146–2152 (1997). (10.1093/nar/25.11.2146) / Nucleic Acids Res. by X Zhang (1997)
  150. Santos, K. F. et al. Structural basis for functional cooperation between tandem helicase cassettes in Brr2-mediated remodeling of the spliceosome. Proc. Natl Acad. Sci. USA 109, 17418–17423 (2012). (10.1073/pnas.1208098109) / Proc. Natl Acad. Sci. USA by KF Santos (2012)
  151. Hahn, D., Kudla, G., Tollervey, D. & Beggs, J. D. Brr2p-mediated conformational rearrangements in the spliceosome during activation and substrate repositioning. Genes Dev. 26, 2408–2421 (2012). (10.1101/gad.199307.112) / Genes Dev. by D Hahn (2012)
  152. Huang, Y. H., Chung, C. S., Kao, D. I., Kao, T. C. & Cheng, S. C. Sad1 counteracts Brr2-mediated dissociation of U4/U6. U5 in tri-snRNP homeostasis. Mol. Cell. Biol. 34, 210–220 (2014). (10.1128/MCB.00837-13) / Mol. Cell. Biol. by YH Huang (2014)
  153. McPheeters, D. S. & Muhlenkamp, P. Spatial organization of protein-RNA interactions in the branch site-3′ splice site region during pre-mRNA splicing in yeast. Mol. Cell. Biol. 23, 4174–4186 (2003). (10.1128/MCB.23.12.4174-4186.2003) / Mol. Cell. Biol. by DS McPheeters (2003)
  154. Schneider, C. et al. Dynamic contacts of U2, RES, Cwc25, Prp8 and Prp45 proteins with the pre-mRNA branch-site and 3′ splice site during catalytic activation and step 1 catalysis in yeast spliceosomes. PLoS Genet. 11, e1005539 (2015). (10.1371/journal.pgen.1005539) / PLoS Genet. by C Schneider (2015)
  155. Edwalds-Gilbert, G., Kim, D. H., Silverman, E. & Lin, R. J. Definition of a spliceosome interaction domain in yeast Prp2 ATPase. RNA 10, 210–220 (2004). (10.1261/rna.5151404) / RNA by G Edwalds-Gilbert (2004)
  156. Liu, H. L. & Cheng, S. C. The interaction of Prp2 with a defined region of the intron is required for the first splicing reaction. Mol. Cell. Biol. 32, 5056–5066 (2012). (10.1128/MCB.01109-12) / Mol. Cell. Biol. by HL Liu (2012)
  157. Warkocki, Z. et al. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome. Genes Dev. 29, 94–107 (2015). (10.1101/gad.253070.114) / Genes Dev. by Z Warkocki (2015)
  158. Teigelkamp, S., McGarvey, M., Plumpton, M. & Beggs, J. D. The splicing factor PRP2, a putative RNA helicase, interacts directly with pre-mRNA. EMBO J. 13, 888–897 (1994). (10.1002/j.1460-2075.1994.tb06332.x) / EMBO J. by S Teigelkamp (1994)
  159. Lardelli, R. M., Thompson, J. X., Yates, J. R. 3rd & Stevens, S. W. Release of SF3 from the intron branchpoint activates the first step of pre-mRNA splicing. RNA 16, 516–528 (2010). (10.1261/rna.2030510) / RNA by RM Lardelli (2010)
  160. Schwer, B. & Guthrie, C. A conformational rearrangement in the spliceosome is dependent on PRP16 and ATP hydrolysis. EMBO J. 11, 5033–5039 (1992). (10.1002/j.1460-2075.1992.tb05610.x) / EMBO J. by B Schwer (1992)
  161. Tseng, C. K., Liu, H. L. & Cheng, S. C. DEAH-box ATPase Prp16 has dual roles in remodeling of the spliceosome in catalytic steps. RNA 17, 145–154 (2011). (10.1261/rna.2459611) / RNA by CK Tseng (2011)
  162. Schwer, B. A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol. Cell 30, 743–754 (2008). (10.1016/j.molcel.2008.05.003) / Mol. Cell by B Schwer (2008)
  163. Schwer, B. & Gross, C. H. Prp22, a DExH-box RNA helicase, plays two distinct roles in yeast pre-mRNA splicing. EMBO J. 17, 2086–2094 (1998). (10.1093/emboj/17.7.2086) / EMBO J. by B Schwer (1998)
  164. Sharp, P. A. On the origin of RNA splicing and introns. Cell 42, 397–400 (1985). (10.1016/0092-8674(85)90092-3) / Cell by PA Sharp (1985)
  165. Cech, T. R. The generality of self-splicing RNA: relationship to nuclear mRNA splicing. Cell 44, 207–210 (1986). (10.1016/0092-8674(86)90751-8) / Cell by TR Cech (1986)
  166. Maroney, P. A., Romfo, C. M. & Nilsen, T. W. Functional recognition of 5′ splice site by U4/U6. U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol. Cell 6, 317–328 (2000). (10.1016/S1097-2765(00)00032-0) / Mol. Cell by PA Maroney (2000)
  167. Tsai, R. T. et al. Spliceosome disassembly catalyzed by Prp43 and its associated components Ntr1 and Ntr2. Genes Dev. 19, 2991–3003 (2005). (10.1101/gad.1377405) / Genes Dev. by RT Tsai (2005)
  168. Fourmann, J. B., Tauchert, M. J., Ficner, R., Fabrizio, P. & Luhrmann, R. Regulation of Prp43-mediated disassembly of spliceosomes by its cofactors Ntr1 and Ntr2. Nucleic Acids Res. 45, 4068–4080 (2017). (10.1093/nar/gkw1225) / Nucleic Acids Res. by JB Fourmann (2017)
Dates
Type When
Created 7 years, 10 months ago (Sept. 27, 2017, 2:03 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 11:43 p.m.)
Indexed 2 days, 11 hours ago (Aug. 21, 2025, 1:39 p.m.)
Issued 7 years, 10 months ago (Sept. 27, 2017)
Published 7 years, 10 months ago (Sept. 27, 2017)
Published Online 7 years, 10 months ago (Sept. 27, 2017)
Published Print 7 years, 9 months ago (Nov. 1, 2017)
Funders 0

None

@article{Shi_2017, title={Mechanistic insights into precursor messenger RNA splicing by the spliceosome}, volume={18}, ISSN={1471-0080}, url={http://dx.doi.org/10.1038/nrm.2017.86}, DOI={10.1038/nrm.2017.86}, number={11}, journal={Nature Reviews Molecular Cell Biology}, publisher={Springer Science and Business Media LLC}, author={Shi, Yigong}, year={2017}, month=sep, pages={655–670} }