Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Immunology (297)
Bibliography

Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews Immunology, 2(8), 569–579.

Authors 3
  1. Clotilde Théry (first)
  2. Laurence Zitvogel (additional)
  3. Sebastian Amigorena (additional)
References 69 Referenced 4,384
  1. Trams, E. G., Lauter, C. J., Salem, N. Jr & Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70 (1981). (10.1016/0005-2736(81)90512-5) / Biochim. Biophys. Acta by EG Trams (1981)
  2. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985). (10.1083/jcb.101.3.942) / J. Cell Biol. by BT Pan (1985)
  3. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).References 2 and 3 describe very detailed and careful electron-microscopy analyses of the fate of an endocytosed protein in reticulocytes, and point out, for the first time, the possible secretion of the content of multivesicular late endosomes into the extracellular space. (10.1083/jcb.97.2.329) / J. Cell Biol. by C Harding (1983)
  4. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma-membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987). (10.1016/S0021-9258(18)48095-7) / J. Biol. Chem. by RM Johnstone (1987)
  5. Peters, P. J. et al. Molecules relevant for T-cell–target-cell interaction are present in cytolytic granules of human T lymphocytes. Eur. J. Immunol. 19, 1469–1475 (1989). (10.1002/eji.1830190819) / Eur. J. Immunol. by PJ Peters (1989)
  6. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996).This study shows, for the first time, the secretion of vesicles that are derived from multivesicular late endosomes by an antigen-presenting cell, and the presence of functional MHC class II molecules on the released exosomes. (10.1084/jem.183.3.1161) / J. Exp. Med. by G Raposo (1996)
  7. Raposo, G. et al. Accumulation of major histocompatibility complex class II molecules in mast-cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8, 2631–2645 (1997). (10.1091/mbc.8.12.2631) / Mol. Biol. Cell by G Raposo (1997)
  8. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic-cell-derived exosomes. Nature Med. 4, 594–600 (1998).This study shows that exosomes can be secreted by dendritic cells, and that such exosomes can induce antigen-dependent T-cell-mediated immune responses in mice. (10.1038/nm0598-594) / Nature Med. by L Zitvogel (1998)
  9. Thery, C. et al. Molecular characterization of dendritic-cell-derived exosomes. Selective accumulation of the heat-shock protein hsc73. J. Cell Biol. 147, 599–610 (1999). (10.1083/jcb.147.3.599) / J. Cell Biol. by C Thery (1999)
  10. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J. & Sixma, J. J. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94, 3791–3799 (1999). (10.1182/blood.V94.11.3791) / Blood by HF Heijnen (1999)
  11. Davis, J. Q., Dansereau, D., Johnstone, R. M. & Bennett, V. Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat-shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation. J. Biol. Chem. 261, 15368–15371 (1986). (10.1016/S0021-9258(18)66719-5) / J. Biol. Chem. by JQ Davis (1986)
  12. Thery, C. et al. Proteomic analysis of dendritic-cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).A detailed analysis, together with reference 9 , of the protein composition of dendritic-cell-derived exosomes, and a demonstration that they are distinct from apoptotic-cell-derived microvesicles. (10.4049/jimmunol.166.12.7309) / J. Immunol. by C Thery (2001)
  13. Skokos, D. et al. Mast-cell-dependent B- and T-lymphocyte activation is mediated by the secretion of immunologically active exosomes. J. Immunol. 166, 868–876 (2001). (10.4049/jimmunol.166.2.868) / J. Immunol. by D Skokos (2001)
  14. Martinez-Lorenzo, M. J. et al. Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J. Immunol. 163, 1274–1281 (1999). (10.4049/jimmunol.163.3.1274) / J. Immunol. by MJ Martinez-Lorenzo (1999)
  15. Blanchard, N. et al. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J. Immunol. 168, 3235–3241 (2002). (10.4049/jimmunol.168.7.3235) / J. Immunol. by N Blanchard (2002)
  16. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Med. 7, 297–303 (2001). (10.1038/85438) / Nature Med. by J Wolfers (2001)
  17. van Niel, G. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349 (2001). (10.1053/gast.2001.26263) / Gastroenterology by G van Niel (2001)
  18. Nilsson, B. O., Lennartsson, L., Carlsson, L., Nilsson, S. & Ronquist, G. Expression of prostasome-like granules by the prostate cancer cell lines PC3, Du145 and LnCaP grown in monolayer. Ups. J. Med. Sci. 104, 199–206 (1999). (10.3109/03009739909178963) / Ups. J. Med. Sci. by BO Nilsson (1999)
  19. Hess, C., Sadallah, S., Hefti, A., Landmann, R. & Schifferli, J. A. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163, 4564–4573 (1999). (10.4049/jimmunol.163.8.4564) / J. Immunol. by C Hess (1999)
  20. Mack, M. et al. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nature Med. 6, 769–775 (2000). (10.1038/77498) / Nature Med. by M Mack (2000)
  21. MacKenzie, A. et al. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15, 825–835 (2001). (10.1016/S1074-7613(01)00229-1) / Immunity by A MacKenzie (2001)
  22. Escola, J. M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998). (10.1074/jbc.273.32.20121) / J. Biol. Chem. by JM Escola (1998)
  23. Rabesandratana, H., Toutant, J. P., Reggio, H. & Vidal, M. Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during in vitro maturation of reticulocytes. Blood 91, 2573–2580 (1998). (10.1182/blood.V91.7.2573) / Blood by H Rabesandratana (1998)
  24. Clayton, A. et al. Analysis of antigen-presenting-cell-derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163–174 (2001). (10.1016/S0022-1759(00)00321-5) / J. Immunol. Methods by A Clayton (2001)
  25. Srivastava, P. Interaction of heat-shock proteins with peptides and antigen-presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425 (2002). (10.1146/annurev.immunol.20.100301.064801) / Annu. Rev. Immunol. by P Srivastava (2002)
  26. Stubbs, J. D. et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc. Natl Acad. Sci. USA 87, 8417–8421 (1990). (10.1073/pnas.87.21.8417) / Proc. Natl Acad. Sci. USA by JD Stubbs (1990)
  27. Denzer, K. et al. Follicular dendritic cells carry MHC class-II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).The first direct observation of exosomes in a human tissue (tonsils) in the absence of any in vitro culture step. Most of the other data in this paper, however, are obtained after the in vitro culture of B cells. (10.4049/jimmunol.165.3.1259) / J. Immunol. by K Denzer (2000)
  28. Mobius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55 (2002). (10.1177/002215540205000105) / J. Histochem. Cytochem. by W Mobius (2002)
  29. Gruenberg, J. & Maxfield, F. R. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563 (1995). (10.1016/0955-0674(95)80013-1) / Curr. Opin. Cell Biol. by J Gruenberg (1995)
  30. Babst, M., Odorizzi, G., Estepa, E. J. & Emr, S. D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000). (10.1034/j.1600-0854.2000.010307.x) / Traffic by M Babst (2000)
  31. Vincent-Schneider, H. et al. Exosomes bearing HLA–DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int. Immunol. 14, 713–722 (2002). (10.1093/intimm/dxf048) / Int. Immunol. by H Vincent-Schneider (2002)
  32. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001). (10.1016/S0092-8674(01)00434-2) / Cell by DJ Katzmann (2001)
  33. Hicke, L. A new ticket for entry into budding vesicles — ubiquitin. Cell 106, 527–530 (2001). (10.1016/S0092-8674(01)00485-8) / Cell by L Hicke (2001)
  34. Reggiori, F. & Pelham, H. R. Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. EMBO J. 20, 5176–5186 (2001). (10.1093/emboj/20.18.5176) / EMBO J. by F Reggiori (2001)
  35. Aupeix, K. et al. The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J. Clin. Invest. 99, 1546–1554 (1997). (10.1172/JCI119317) / J. Clin. Invest. by K Aupeix (1997)
  36. Mather, I. H. in The Mammary Gland (eds Neville, M. C. & Daniel, C. W.) 217–267 (Plenum, New York, 1987). (10.1007/978-1-4899-5043-7_7) / The Mammary Gland by IH Mather (1987)
  37. Peterson, J. A., Patton, S. & Hamosh, M. Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Biol. Neonate 74, 143–162 (1998). (10.1159/000014020) / Biol. Neonate by JA Peterson (1998)
  38. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001). (10.1016/S0092-8674(01)00506-2) / Cell by JE Garrus (2001)
  39. VerPlank, L. et al. Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc. Natl Acad. Sci. USA 98, 7724–7729 (2001). (10.1073/pnas.131059198) / Proc. Natl Acad. Sci. USA by L VerPlank (2001)
  40. Martin-Serrano, J., Zang, T. & Bieniasz, P. D. HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Med. 7, 1313–1319 (2001). (10.1038/nm1201-1313) / Nature Med. by J Martin-Serrano (2001)
  41. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–131 (2002). (10.1038/nrm732) / Nature Rev. Mol. Cell Biol. by EJ Blott (2002)
  42. Pelham, H. R. SNAREs and the specificity of membrane fusion. Trends Cell Biol. 11, 99–101 (2001). (10.1016/S0962-8924(01)01929-8) / Trends Cell Biol. by HR Pelham (2001)
  43. Paumet, F. et al. Soluble NSF attachment protein receptors (SNAREs) in RBL-2H3 mast cells: functional role of syntaxin 4 in exocytosis and identification of a vesicle-associated membrane protein-8-containing secretory compartment. J. Immunol. 164, 5850–5857 (2000). (10.4049/jimmunol.164.11.5850) / J. Immunol. by F Paumet (2000)
  44. Hibi, T., Hirashima, N. & Nakanishi, M. Rat basophilic leukemia cells express syntaxin-3 and VAMP-7 in granule membranes. Biochem. Biophys. Res. Commun. 271, 36–41 (2000). (10.1006/bbrc.2000.2591) / Biochem. Biophys. Res. Commun. by T Hibi (2000)
  45. Guo, Z., Turner, C. & Castle, D. Relocation of the t-SNARE SNAP-23 from lamellipodia-like cell-surface projections regulates compound exocytosis in mast cells. Cell 94, 537–548 (1998). (10.1016/S0092-8674(00)81594-9) / Cell by Z Guo (1998)
  46. Martinez, I. et al. Synaptotagmin VII regulates Ca2+-dependent exocytosis of lysosomes in fibroblasts. J. Cell Biol. 148, 1141–1149 (2000). (10.1083/jcb.148.6.1141) / J. Cell Biol. by I Martinez (2000)
  47. Baram, D. et al. Synaptotagmin II negatively regulates Ca2+-triggered exocytosis of lysosomes in mast cells. J. Exp. Med. 189, 1649–1658 (1999). (10.1084/jem.189.10.1649) / J. Exp. Med. by D Baram (1999)
  48. Hwang, I. et al. T cells can use either T-cell receptor or CD28 receptors to absorb and internalize cell-surface molecules derived from antigen-presenting cells. J. Exp. Med. 191, 1137–1148 (2000). (10.1084/jem.191.7.1137) / J. Exp. Med. by I Hwang (2000)
  49. Huang, J. F. et al. TCR-mediated internalization of peptide–MHC complexes acquired by T cells. Science 286, 952–954 (1999). (10.1126/science.286.5441.952) / Science by JF Huang (1999)
  50. Hudrisier, D., Riond, J., Mazarguil, H., Gairin, J. E. & Joly, E. Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J. Immunol. 166, 3645–3649 (2001). (10.4049/jimmunol.166.6.3645) / J. Immunol. by D Hudrisier (2001)
  51. Stinchcombe, J. C., Bossi, G., Booth, S. & Griffiths, G. M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001). (10.1016/S1074-7613(01)00234-5) / Immunity by JC Stinchcombe (2001)
  52. Brezinschek, R. I., Oppenheimer-Marks, N. & Lipsky, P. E. Activated T cells acquire endothelial cell-surface determinants during transendothelial migration. J. Immunol. 162, 1677–1684 (1999). (10.4049/jimmunol.162.3.1677) / J. Immunol. by RI Brezinschek (1999)
  53. Russo, V. et al. Acquisition of intact allogeneic human leukocyte antigen molecules by human dendritic cells. Blood 95, 3473–3477 (2000). (10.1182/blood.V95.11.3473) / Blood by V Russo (2000)
  54. Batista, F. D., Iber, D. & Neuberger, M. S. B cells acquire antigen from target cells after synapse formation. Nature 411, 489–494 (2001). (10.1038/35078099) / Nature by FD Batista (2001)
  55. Patel, D. M., Arnold, P. Y., White, G. A., Nardella, J. P. & Mannie, M. D. Class II MHC/peptide complexes are released from APC and are acquired by T-cell responders during specific antigen recognition. J. Immunol. 163, 5201–5210 (1999). (10.4049/jimmunol.163.10.5201) / J. Immunol. by DM Patel (1999)
  56. Arnold, P. Y. & Mannie, M. D. Vesicles bearing MHC class II molecules mediate transfer of antigen from antigen-presenting cells to CD4+ T cells. Eur. J. Immunol. 29, 1363–1373 (1999). (10.1002/(SICI)1521-4141(199904)29:04<1363::AID-IMMU1363>3.0.CO;2-0) / Eur. J. Immunol. by PY Arnold (1999)
  57. Bedford, P., Garner, K. & Knight, S. C. MHC class II molecules transferred between allogeneic dendritic cells stimulate primary mixed leukocyte reactions. Int. Immunol. 11, 1739–1744 (1999). (10.1093/intimm/11.11.1739) / Int. Immunol. by P Bedford (1999)
  58. Knight, S. C., Iqball, S., Roberts, M. S., Macatonia, S. & Bedford, P. A. Transfer of antigen between dendritic cells in the stimulation of primary T-cell proliferation. Eur. J. Immunol. 28, 1636–1644 (1998). (10.1002/(SICI)1521-4141(199805)28:05<1636::AID-IMMU1636>3.0.CO;2-9) / Eur. J. Immunol. by SC Knight (1998)
  59. Sharrow, S. O., Mathieson, B. J. & Singer, A. Cell-surface appearance of unexpected host MHC determinants on thymocytes from radiation bone-marrow chimeras. J. Immunol. 126, 1327–1335 (1981). (10.4049/jimmunol.126.4.1327) / J. Immunol. by SO Sharrow (1981)
  60. Gray, D., Kosco, M. & Stockinger, B. Novel pathways of antigen presentation for the maintenance of memory. Int. Immunol. 3, 141–148 (1991). (10.1093/intimm/3.2.141) / Int. Immunol. by D Gray (1991)
  61. Greco, V., Hannus, M. & Eaton, S. Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645 (2001).This study shows a visualization in vivo in embryonic tissues of the transfer of membrane structures that are labelled with a fluorescent lipid between adjacent cells. The membrane structures that are involved have not been characterized. (10.1016/S0092-8674(01)00484-6) / Cell by V Greco (2001)
  62. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983). (10.1016/0092-8674(83)90040-5) / Cell by BT Pan (1983)
  63. Karlsson, M. et al. 'Tolerosomes' are produced by intestinal epithelial cells. Eur. J. Immunol. 31, 2892–2900 (2001). (10.1002/1521-4141(2001010)31:10<2892::AID-IMMU2892>3.0.CO;2-I) / Eur. J. Immunol. by M Karlsson (2001)
  64. Dukers, D. F. et al. Direct immunosuppressive effects of EBV-encoded latent membrane protein 1. J. Immunol. 165, 663–670 (2000). (10.4049/jimmunol.165.2.663) / J. Immunol. by DF Dukers (2000)
  65. Monleon, I. et al. Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J. Immunol. 167, 6736–6744 (2001). (10.4049/jimmunol.167.12.6736) / J. Immunol. by I Monleon (2001)
  66. Andreola, G. et al. Induction of lymphocyte apoptosis by tumor-cell secretion of FasL-bearing microvesicles. J. Exp. Med. 195, 1303–1316 (2002). (10.1084/jem.20011624) / J. Exp. Med. by G Andreola (2002)
  67. André, F. et al. Malignant ascitis accumulate immunogenic tumor-derived exosomes: novel approach for cancer immunotherapy. Lancet (in the press).
  68. Kleijmeer, M. J. et al. Antigen loading of MHC class I molecules in the endocytic tract. Traffic 2, 124–137 (2001). (10.1034/j.1600-0854.2001.020207.x) / Traffic by MJ Kleijmeer (2001)
  69. Rieu, S., Geminard, C., Rabesandratana, H., Sainte-Marie, J. & Vidal, M. Exosomes released during reticulocyte maturation bind to fibronectin via integrin α4β1. Eur. J. Biochem. 267, 583–590 (2000). (10.1046/j.1432-1327.2000.01036.x) / Eur. J. Biochem. by S Rieu (2000)
Dates
Type When
Created 7 years, 7 months ago (Jan. 10, 2018, 12:39 a.m.)
Deposited 2 years ago (Aug. 30, 2023, 10:43 a.m.)
Indexed 15 hours, 57 minutes ago (Sept. 4, 2025, 10:21 a.m.)
Issued 23 years, 1 month ago (Aug. 1, 2002)
Published 23 years, 1 month ago (Aug. 1, 2002)
Published Print 23 years, 1 month ago (Aug. 1, 2002)
Funders 0

None

@article{Th_ry_2002, title={Exosomes: composition, biogenesis and function}, volume={2}, ISSN={1474-1741}, url={http://dx.doi.org/10.1038/nri855}, DOI={10.1038/nri855}, number={8}, journal={Nature Reviews Immunology}, publisher={Springer Science and Business Media LLC}, author={Théry, Clotilde and Zitvogel, Laurence and Amigorena, Sebastian}, year={2002}, month=aug, pages={569–579} }