Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Immunology (297)
Bibliography

Sun, S.-C. (2008). Deubiquitylation and regulation of the immune response. Nature Reviews Immunology, 8(7), 501–511.

Authors 1
  1. Shao-Cong Sun (first)
References 114 Referenced 295
  1. Adhikari, A., Xu, M. & Chen, Z. J. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26, 3214–3226 (2007). (10.1038/sj.onc.1210413) / Oncogene by A Adhikari (2007)
  2. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998). (10.1146/annurev.biochem.67.1.425) / Annu. Rev. Biochem. by A Hershko (1998)
  3. Liu, Y. C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nature Rev. Immunol. 5, 941–952 (2005). (10.1038/nri1731) / Nature Rev. Immunol. by YC Liu (2005)
  4. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005). (10.1016/j.cell.2005.11.007) / Cell by SM Nijman (2005)
  5. Gong, B. & Leznik, E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 20, 365–370 (2007). (10.1358/dnp.2007.20.6.1138160) / Drug News Perspect. by B Gong (2007)
  6. Makarova, K. S., Aravind, L. & Koonin, E. V. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci. 25, 50–52 (2000). (10.1016/S0968-0004(99)01530-3) / Trends Biochem. Sci. by KS Makarova (2000)
  7. Kayagaki, N. et al. DUBA: a deubiquitinase that regulates type I interferon production. Science 318, 1628–1632 (2007). This paper identifies DUBA as a key regulator of antiviral innate immunity. (10.1126/science.1145918) / Science by N Kayagaki (2007)
  8. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kB signalling. Nature 430, 694–699 (2004). This paper shows that A20 has both DUB and E3-ligase functions. (10.1038/nature02794) / Nature by IE Wertz (2004)
  9. Lin, A. E. & Mak, T. W. The role of E3 ligases in autoimmunity and the regulation of autoreactive T cells. Curr. Opin. Immunol. 19, 665–673 (2007). (10.1016/j.coi.2007.10.002) / Curr. Opin. Immunol. by AE Lin (2007)
  10. Bignell, G. R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nature Genet. 25, 160–165 (2000). This paper reports the identification of CYLD as a tumour suppressor. (10.1038/76006) / Nature Genet. by GR Bignell (2000)
  11. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002). (10.1016/S1074-5521(02)00248-X) / Chem. Biol. by A Borodovsky (2002)
  12. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003). (10.1038/nature01811) / Nature by TR Brummelkamp (2003)
  13. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801–805 (2003). (10.1038/nature01802) / Nature by A Kovalenko (2003)
  14. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kB activation by TNFR family members. Nature 424, 793–796 (2003). References 12–14 are key reports of the signalling function of CYLD. (10.1038/nature01803) / Nature by E Trompouki (2003)
  15. Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer,A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking bcl-3-dependent NF-κB signaling. Cell 125, 665–677 (2006). (10.1016/j.cell.2006.03.041) / Cell by R Massoumi (2006)
  16. Yoshida, H., Jono, H., Kai, H. & Li, J. D. The tumor suppressor CYLD acts as a negative regulator for Toll-like receptor 2 signaling via negative cross-talk with TRAF6 and TRAF7. J. Biol. Chem. 280, 41111–41121 (2005). (10.1074/jbc.M509526200) / J. Biol. Chem. by H Yoshida (2005)
  17. Jin, W. et al. Deubiquitinating enzyme CYLD regulates RANK signaling and osteoclastogenesis. J. Clinic. Invest. (in the press).
  18. Reiley, W. W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nature Immunol. 7, 411–417 (2006). This paper was the first to show the in vivo role of CYLD in regulating immune functions. (10.1038/ni1315) / Nature Immunol. by WW Reiley (2006)
  19. Reiley, W. W. et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J. Exp. Med. 204, 1475–1485 (2007). (10.1084/jem.20062694) / J. Exp. Med. by WW Reiley (2007)
  20. Wright, A. et al. Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Dev. Cell 13, 705–716 (2007). (10.1016/j.devcel.2007.09.007) / Dev. Cell by A Wright (2007)
  21. Stokes, A. et al. TRPA1 is a substrate for de-ubiquitination by the tumor suppressor CYLD. Cell Signal. 18, 1584–1594 (2006). (10.1016/j.cellsig.2005.12.009) / Cell Signal. by A Stokes (2006)
  22. Lim, J. H. et al. Tumor suppressor CYLD acts as a negative regulator for non-typeable Haemophilus influenza-induced inflammation in the middle ear and lung of mice. PLoS ONE 2, e1032 (2007). (10.1371/journal.pone.0001032) / PLoS ONE by JH Lim (2007)
  23. Lim, J. H. et al. Tumor suppressor CYLD regulates acute lung injury in lethal Streptococcus pneumoniae infections. Immunity 27, 349–360 (2007). (10.1016/j.immuni.2007.07.011) / Immunity by JH Lim (2007)
  24. Zhang, J. et al. Impaired regulation of NF-κB and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J. Clin. Invest. 116, 3042–3049 (2006). (10.1172/JCI28746) / J. Clin. Invest. by J Zhang (2006)
  25. Hövelmeyer, N. et al. Regulation of B cell homeostasis and activation by the tumor suppressor gene CYLD. J. Exp. Med. 204, 2615–2627 (2007). (10.1084/jem.20070318) / J. Exp. Med. by N Hövelmeyer (2007)
  26. Gao, J. et al. The tumor suppressor CYLD regulates microtubule dynamics and plays a role in cell migration. J. Biol. Chem. 283, 8802–8809 (2008). (10.1074/jbc.M708470200) / J. Biol. Chem. by J Gao (2008)
  27. Stegmeier, F. et al. The tumor suppressor CYLD regulates entry into mitosis. Proc. Natl Acad. Sci. USA 104, 8869–8874 (2007). (10.1073/pnas.0703268104) / Proc. Natl Acad. Sci. USA by F Stegmeier (2007)
  28. Saito, K. et al. The CAP-Gly domain of CYLD associates with the proline-rich sequence in NEMO/IKKγ. Structure 12, 1719–1728 (2004). (10.1016/j.str.2004.07.012) / Structure by K Saito (2004)
  29. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006). (10.1016/j.molcel.2006.03.026) / Mol. Cell by CK Ea (2006)
  30. Li, H., Kobayashi, M., Blonska, M., You, Y. & Lin, X. Ubiquitination of RIP is required for tumor necrosis factor a-induced NF-κB activation. J. Biol. Chem. 281, 13636–13643 (2006). (10.1074/jbc.M600620200) / J. Biol. Chem. by H Li (2006)
  31. Wu, C. J., Conze, D. B., Li, T., Srinivasula, S. M. & Ashwell, J. D. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nature Cell Biol. 8, 398–406 (2006). (10.1038/ncb1384) / Nature Cell Biol. by CJ Wu (2006)
  32. Komander, D. et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B Box module. Mol. Cell 29, 451–464 (2008). (10.1016/j.molcel.2007.12.018) / Mol. Cell by D Komander (2008)
  33. Xue, L. et al. Tumor suppressor CYLD regulates JNK-induced cell death in Drosophila. Dev. Cell 13, 446–454 (2007). (10.1016/j.devcel.2007.07.012) / Dev. Cell by L Xue (2007)
  34. Wooten, M. W. et al. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J. Biol. Chem. 283, 6783–6789 (2008). (10.1074/jbc.M709496200) / J. Biol. Chem. by MW Wooten (2008)
  35. Beyaert, R., Heyninck, K. & Van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000). (10.1016/S0006-2952(00)00404-4) / Biochem. Pharmacol. by R Beyaert (2000)
  36. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–4 (2000). This study was the first to report the in vivo role of A20 in regulating inflammation. (10.1126/science.289.5488.2350) / Science by EG Lee (2000)
  37. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004). (10.1038/ni1110) / Nature Immunol. by DL Boone (2004)
  38. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008). (10.1016/j.immuni.2008.02.002) / Immunity by O Hitotsumatsu (2008)
  39. Evans, P. C. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734 (2004). (10.1042/bj20031377) / Biochem. J. by PC Evans (2004)
  40. Mauro, C. et al. ABIN-1 binds to NEMO/IKKg and co-operates with A20 in inhibiting NF-κB. J. Biol. Chem. 281, 18482–18488 (2006). (10.1074/jbc.M601502200) / J. Biol. Chem. by C Mauro (2006)
  41. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008). (10.1038/ni1563) / Nature Immunol. by N Shembade (2008)
  42. Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008). (10.1042/BJ20071399) / Biochem. J. by D Komander (2008)
  43. Lin, S. C. et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol. 376, 526–540 (2008). (10.1016/j.jmb.2007.11.092) / J. Mol. Biol. by SC Lin (2008)
  44. Shembade, N., Harhaj, N. S., Liebl, D. J. & Harhaj, E. W. Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J. 26, 3910–3922 (2007). (10.1038/sj.emboj.7601823) / EMBO J. by N Shembade (2007)
  45. Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J. 27, 629–641 (2008). (10.1038/emboj.2008.5) / EMBO J. by H Iha (2008)
  46. Jin, D. Y. et al. A human suppressor of c-Jun N-terminal kinase 1 activation by tumor necrosis factor α. J. Biol. Chem. 272, 25816–25823 (1997). (10.1074/jbc.272.41.25816) / J. Biol. Chem. by DY Jin (1997)
  47. De Valck, D. et al. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18, 4182–4190 (1999). (10.1038/sj.onc.1202787) / Oncogene by D De Valck (1999)
  48. Wagner, S. et al. Ubiquitin binding mediates the NF-κB inhibitory potential of ABINs. Oncogene 21 January 2008 (doi:10.1038/sj.onc.1211042). (10.1038/sj.onc.1211042) / Oncogene by S Wagner (2008)
  49. Evans, P. C. et al. Isolation and characterization of two novel A20-like proteins. Biochem. J. 357, 617–623 (2001). (10.1042/bj3570617) / Biochem. J. by PC Evans (2001)
  50. Evans, P. C. et al. A novel type of deubiquitinating enzyme. J. Biol. Chem. 278, 23180–23186 (2003). (10.1074/jbc.M301863200) / J. Biol. Chem. by PC Evans (2003)
  51. Enesa, K. et al. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036–7045 (2008). (10.1074/jbc.M708690200) / J. Biol. Chem. by K Enesa (2008)
  52. Balakirev, M. Y., Tcherniuk, S. O., Jaquinod, M. & Chroboczek, J. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep. 4, 517–522 (2003). (10.1038/sj.embor.embor824) / EMBO Rep. by MY Balakirev (2003)
  53. Soares, L. et al. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nature Immunol. 5, 45–54 (2004). (10.1038/ni1017) / Nature Immunol. by L Soares (2004)
  54. Schweitzer, K., Bozko, P. M., Dubiel, W. & Naumann, M. CSN controls NF-κB by deubiquitinylation of IκBα. EMBO J. 26, 1532–1541 (2007). (10.1038/sj.emboj.7601600) / EMBO J. by K Schweitzer (2007)
  55. Scherer, D. C., Brockman, J. A., Chen, A., Maniatis, T. & Ballard, D. W. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl Acad. Sci. USA 92, 11259–11263 (1995). (10.1073/pnas.92.24.11259) / Proc. Natl Acad. Sci. USA by DC Scherer (1995)
  56. Schwechheimer, C. & Deng, X. W. COP9 signalosome revisited: a novel mediator of protein degradation. Trends Cell Biol. 11, 420–426 (2001). (10.1016/S0962-8924(01)02091-8) / Trends Cell Biol. by C Schwechheimer (2001)
  57. Baek, K. H. Cytokine-regulated protein degradation by the ubiquitination system. Curr. Protein Pept. Sci. 7, 171–177 (2006). (10.2174/138920306776359740) / Curr. Protein Pept. Sci. by KH Baek (2006)
  58. Gesbert, F., Malardé, V. & Dautry-Varsat, A. Ubiquitination of the common cytokine receptor gammac and regulation of expression by an ubiquitination/deubiquitination machinery. Biochem. Biophys. Res. Commun. 334, 474–480 (2005). (10.1016/j.bbrc.2005.06.121) / Biochem. Biophys. Res. Commun. by F Gesbert (2005)
  59. Migone, T. S. et al. The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal. Blood 98, 1935–1941 (2001). (10.1182/blood.V98.6.1935) / Blood by TS Migone (2001)
  60. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282, 15325–15329 (2007). (10.1074/jbc.R700002200) / J. Biol. Chem. by J Hiscott (2007)
  61. Liew, F. Y., Xu, D., Brint, E. K. & O'Neill, L. A. Negative regulation of Toll-like receptor-mediated immune responses. Nature Rev. Immunol. 5, 446–458 (2005). (10.1038/nri1630) / Nature Rev. Immunol. by FY Liew (2005)
  62. Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nature Med. 13, 543–551 (2007). (10.1038/nm1590) / Nature Med. by R Baccala (2007)
  63. Turer, E. E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008). (10.1084/jem.20071108) / J. Exp. Med. by EE Turer (2008)
  64. Reiley, W., Zhang, M., Wu, X., Graner, E. & Sun, S. -C. Regulation of the deubiquitinating enzyme CYLD by IκB kinase γ-dependent phosphorylation. Mol. Cell. Biol. 25, 3886–3895 (2005). (10.1128/MCB.25.10.3886-3895.2005) / Mol. Cell. Biol. by W Reiley (2005)
  65. Hiscott, J. Convergence of the NF-κB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev. 18, 483–490 (2007). (10.1016/j.cytogfr.2007.06.002) / Cytokine Growth Factor Rev. by J Hiscott (2007)
  66. Häcker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006). (10.1038/nature04369) / Nature by H Häcker (2006)
  67. Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006). (10.1038/nature04374) / Nature by G Oganesyan (2006)
  68. Guo, B. & Cheng, G. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282, 11817–11826 (2007). (10.1074/jbc.M700017200) / J. Biol. Chem. by B Guo (2007)
  69. Gatot, J. S. et al. Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKε-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK/I-TRAF. J. Biol. Chem. 282, 31131–31146 (2007). (10.1074/jbc.M701690200) / J. Biol. Chem. by JS Gatot (2007)
  70. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nature Immunol. 8, 592–600 (2007). (10.1038/ni1465) / Nature Immunol. by T Zhao (2007)
  71. Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007). This paper reports the regulation of RIG-I signalling function by K63-linked ubiquitylation. (10.1038/nature05732) / Nature by MU Gack (2007)
  72. Zhang, M. et al. Regulation of IKK-related kinases and antiviral responses by tumor suppressor CYLD. J. Biol. Chem. 8 May 2008 (doi:10.1074/jbc.M801451200). (10.1074/jbc.M801451200) / Journal of Biological Chemistry by Minying Zhang (2008)
  73. Wang, Y. Y., Li, L., Han, K. J., Zhai, Z. & Shu, H. B. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-κB and ISRE and IFN-β promoter. FEBS J. 576, 86–90 (2004). (10.1016/j.febslet.2004.08.071) / FEBS J. by YY Wang (2004)
  74. Saitoh, T. et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J. Immunol. 174, 1507–1512 (2005). (10.4049/jimmunol.174.3.1507) / J. Immunol. by T Saitoh (2005)
  75. Lin, R. et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J. Biol. Chem. 281, 2095–2103 (2006). (10.1074/jbc.M510326200) / J. Biol. Chem. by R Lin (2006)
  76. Starr, T. K., Jameson, S. C. & Hogquist, K. A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003). (10.1146/annurev.immunol.21.120601.141107) / Annu. Rev. Immunol. by TK Starr (2003)
  77. Molina, T. J. et al. Profound block in thymocyte development in mice lacking p56lck. Nature 357, 161–164 (1992). (10.1038/357161a0) / Nature by TJ Molina (1992)
  78. Palacios, E. H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004). (10.1038/sj.onc.1208074) / Oncogene by EH Palacios (2004)
  79. Rao, N. et al. Negative regulation of Lck by Cbl ubiquitin ligase. Proc. Natl Acad. Sci. USA 99, 3794–3799 (2002). (10.1073/pnas.062055999) / Proc. Natl Acad. Sci. USA by N Rao (2002)
  80. Thien, C. B., Bowtell, D. D. & Langdon, W. Y. Perturbed regulation of ZAP-70 and sustained tyrosine phosphorylation of LAT and SLP-76 in c-Cbl-deficient thymocytes. J. Immunol. 162, 7133–7139 (1999). (10.4049/jimmunol.162.12.7133) / J. Immunol. by CB Thien (1999)
  81. Naramura, M., Kole, H. K., Hu, R. J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998). (10.1073/pnas.95.26.15547) / Proc. Natl Acad. Sci. USA by M Naramura (1998)
  82. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18, 4872–4882 (1998). (10.1128/MCB.18.8.4872) / Mol. Cell. Biol. by MA Murphy (1998)
  83. Hawash, I. Y., Kesavan, K. P., Magee, A. I., Geahlen, R. L. & Harrison, M. L. The Lck SH3 domain negatively regulates localization to lipid rafts through an interaction with c-Cbl. J. Biol. Chem. 277, 5683–5691 (2002). (10.1074/jbc.M110002200) / J. Biol. Chem. by IY Hawash (2002)
  84. Kronenberg, M. & Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 435, 598–604 (2005). (10.1038/nature03725) / Nature by M Kronenberg (2005)
  85. Kyewski, B. & Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 24, 571–606 (2006). (10.1146/annurev.immunol.23.021704.115601) / Annu. Rev. Immunol. by B Kyewski (2006)
  86. Choi, S. & Schwartz, R. H. Molecular mechanisms for adaptive tolerance and other T cell anergy models. Semin. Immunol. 19, 140–152 (2007). (10.1016/j.smim.2007.02.005) / Semin. Immunol. by S Choi (2007)
  87. MacKenzie, D. A. et al. GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J. Biol. Chem. 282, 9696–9702 (2007). (10.1074/jbc.M604192200) / J. Biol. Chem. by DA MacKenzie (2007)
  88. Mouchantaf, R. et al. The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J. Biol. Chem. 281, 38738–38747 (2006). (10.1074/jbc.M605959200) / J. Biol. Chem. by R Mouchantaf (2006)
  89. Liu, Y. C. The E3 ubiquitin ligase Itch in T cell activation, differentiation, and tolerance. Semin. Immunol. 19, 197–205 (2007). (10.1016/j.smim.2007.02.003) / Semin. Immunol. by YC Liu (2007)
  90. Perry, W. L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in a18H mice. Nature Genet. 18, 143–146 (1998). (10.1038/ng0298-143) / Nature Genet. by WL Perry (1998)
  91. Rawlings, D. J., Sommer, K. & Moreno-García, M. E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nature Rev. Immunol. 6, 799–812 (2006). (10.1038/nri1944) / Nature Rev. Immunol. by DJ Rawlings (2006)
  92. Sun, L., Deng, L., Ea, C. -K., Xia, Z. -P. & Chen, Z. J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004). (10.1016/S1097-2765(04)00236-9) / Mol. Cell by L Sun (2004)
  93. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004). (10.1038/nature02273) / Nature by H Zhou (2004)
  94. Oeckinghaus, A. et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J. 26, 4634–4645 (2007). (10.1038/sj.emboj.7601897) / EMBO J. by A Oeckinghaus (2007)
  95. Liu, H. H., Xie, M., Schneider, M. D. & Chen, Z. J. Essential role of TAK1 in thymocyte development and activation. Proc. Natl Acad. Sci. USA 103, 11677–11682 (2006). (10.1073/pnas.0603089103) / Proc. Natl Acad. Sci. USA by HH Liu (2006)
  96. Sato, S. et al. TAK1 is indispensable for development of T cells and prevention of colitis by the generation of regulatory T cells. Int. Immunol. 18, 1405–1411 (2006). (10.1093/intimm/dxl082) / Int. Immunol. by S Sato (2006)
  97. Wan, Y. Y., Chi, H., Xie, M., Schneider, M. D. & Flavell, R. A. The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nature Immunol. 7, 851–858 (2006). (10.1038/ni1355) / Nature Immunol. by YY Wan (2006)
  98. Thiefes, A. et al. The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep. 7, 838–844 (2006). (10.1038/sj.embor.7400754) / EMBO Rep. by A Thiefes (2006)
  99. Yamamoto, M. et al. Cutting Edge: pivotal function of Ubc13 in thymocyte TCR signaling. J. Immunol. 177, 7520–7524 (2006). (10.4049/jimmunol.177.11.7520) / J. Immunol. by M Yamamoto (2006)
  100. King, C. G. et al. TRAF6 is a T cell-intrinsic negative regulator required for the maintenance of immune homeostasis. Nature Med. 12, 1088–1092 (2006). (10.1038/nm1449) / Nature Med. by CG King (2006)
  101. Coornaert, B. et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nature Immunol. 9, 263–271 (2008). (10.1038/ni1561) / Nature Immunol. by B Coornaert (2008)
  102. Baumgart, D. C. & Carding, S. R. Inflammatory bowel disease: cause and immunobiology. Lancet 369, 1627–1640 (2007). (10.1016/S0140-6736(07)60750-8) / Lancet by DC Baumgart (2007)
  103. Sen, R. Control of B lymphocyte apoptosis by the transcription factor NF-κB. Immunity 25, 871–883 (2006). (10.1016/j.immuni.2006.12.003) / Immunity by R Sen (2006)
  104. Claudio, E., Brown, K., Park, S., Wang, H. & Siebenlist, U. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nature Immunol. 3, 958–965 (2002). (10.1038/ni842) / Nature Immunol. by E Claudio (2002)
  105. Kayagaki, N. et al. BAFF/BLyS receptor 3 binds the B-cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002). (10.1016/S1074-7613(02)00425-9) / Immunity by N Kayagaki (2002)
  106. Jin, W. et al. Deubiquitinating enzyme CYLD regulates the peripheral development and naive phenotype maintenance of B cells. J. Biol. Chem. 282, 15884–15893 (2007). (10.1074/jbc.M609952200) / J. Biol. Chem. by W Jin (2007)
  107. Annunziata, C. M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007). (10.1016/j.ccr.2007.07.004) / Cancer Cell by CM Annunziata (2007)
  108. Keats, J. J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007). (10.1016/j.ccr.2007.07.003) / Cancer Cell by JJ Keats (2007)
  109. Haglund, K. & Dikic, I. Ubiquitylation and cell signaling. EMBO J. 24, 3353–3359 (2005). (10.1038/sj.emboj.7600808) / EMBO J. by K Haglund (2005)
  110. Sigismund, S., Polo, S. & Di Fiore, P. P. Signaling through monoubiquitination. Curr. Top. Microbiol. Immunol. 286, 149–185 (2004). / Curr. Top. Microbiol. Immunol. by S Sigismund (2004)
  111. Beinke, S. & Ley, S. C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 382, 393–409 (2004). (10.1042/BJ20040544) / Biochem. J. by S Beinke (2004)
  112. Xiao, G., Harhaj, E. W. & Sun, S. C. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell. 7, 401–409 (2001). (10.1016/S1097-2765(01)00187-3) / Mol. Cell. by G Xiao (2001)
  113. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004). (10.1016/j.it.2004.03.008) / Trends Immunol. by G Bonizzi (2004)
  114. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 357, re13 (2006). / Sci. STKE by H Hacker (2006)
Dates
Type When
Created 17 years, 2 months ago (June 6, 2008, 3:22 a.m.)
Deposited 1 year, 6 months ago (Feb. 26, 2024, 11:41 p.m.)
Indexed 1 month, 1 week ago (July 20, 2025, 12:13 a.m.)
Issued 17 years, 2 months ago (July 1, 2008)
Published 17 years, 2 months ago (July 1, 2008)
Published Print 17 years, 2 months ago (July 1, 2008)
Funders 0

None

@article{Sun_2008, title={Deubiquitylation and regulation of the immune response}, volume={8}, ISSN={1474-1741}, url={http://dx.doi.org/10.1038/nri2337}, DOI={10.1038/nri2337}, number={7}, journal={Nature Reviews Immunology}, publisher={Springer Science and Business Media LLC}, author={Sun, Shao-Cong}, year={2008}, month=jul, pages={501–511} }