Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Immunology (297)
Bibliography

Karin, M., & Greten, F. R. (2005). NF-κB: linking inflammation and immunity to cancer development and progression. Nature Reviews Immunology, 5(10), 749–759.

Authors 2
  1. Michael Karin (first)
  2. Florian R. Greten (additional)
References 93 Referenced 2,499
  1. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001). (10.1016/S0140-6736(00)04046-0) / Lancet by F Balkwill (2001)
  2. Kuper, H., Adami, H. O. & Trichopoulos, D. Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171–183 (2000). (10.1046/j.1365-2796.2000.00742.x) / J. Intern. Med. by H Kuper (2000)
  3. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002). (10.1038/nature01322) / Nature by LM Coussens (2002)
  4. Roder, D. M. The epidemiology of gastric cancer. Gastric Cancer 5 (Suppl. 1), 5–11 (2002). (10.1007/s10120-002-0203-6) / Gastric Cancer by DM Roder (2002)
  5. Warzocha, K. et al. Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin's lymphoma outcome. Blood 91, 3574–3581 (1998). (10.1182/blood.V91.10.3574) / Blood by K Warzocha (1998)
  6. El-Omar, E. M. et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404, 398–402 (2000). (10.1038/35006081) / Nature by EM El-Omar (2000)
  7. Sun, J. et al. Sequence variants in Toll-like receptor gene cluster (TLR6–TLR1–TLR10) and prostate cancer risk. J. Natl Cancer Inst. 97, 525–532 (2005). (10.1093/jnci/dji070) / J. Natl Cancer Inst. by J Sun (2005)
  8. Bharti, A. C. & Aggarwal, B. B. Chemopreventive agents induce suppression of nuclear factor-κB leading to chemosensitization. Ann. NY Acad. Sci. 973, 392–395 (2002). (10.1111/j.1749-6632.2002.tb04671.x) / Ann. NY Acad. Sci. by AC Bharti (2002)
  9. Wang, W. H. et al. Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J. Natl Cancer Inst. 95, 1784–1791 (2003). (10.1093/jnci/djg106) / J. Natl Cancer Inst. by WH Wang (2003)
  10. Garber, K. Aspirin for cancer chemoprevention: still a headache? J. Natl Cancer Inst. 96, 252–253 (2004). (10.1093/jnci/96.4.252) / J. Natl Cancer Inst. by K Garber (2004)
  11. Ness, R. B. & Cottreau, C. Possible role of ovarian epithelial inflammation in ovarian cancer. J. Natl Cancer Inst. 91, 1459–1467 (1999). (10.1093/jnci/91.17.1459) / J. Natl Cancer Inst. by RB Ness (1999)
  12. Chang, E. T. et al. Aspirin and the risk of Hodgkin's lymphoma in a population-based case–control study. J. Natl Cancer Inst. 96, 305–315 (2004). (10.1093/jnci/djh038) / J. Natl Cancer Inst. by ET Chang (2004)
  13. Cerhan, J. R. et al. Association of aspirin and other non-steroidal anti-inflammatory drug use with incidence of non-Hodgkin lymphoma. Int. J. Cancer 106, 784–788 (2003). (10.1002/ijc.11311) / Int. J. Cancer by JR Cerhan (2003)
  14. Schernhammer, E. S. et al. A prospective study of aspirin use and the risk of pancreatic cancer in women. J. Natl Cancer Inst. 96, 22–28 (2004). (10.1093/jnci/djh001) / J. Natl Cancer Inst. by ES Schernhammer (2004)
  15. Burnet, F. M. The concept of immunological surveillance. Prog. Exp. Tumor Res. 13, 1–17 (1970). (10.1159/000386035) / Prog. Exp. Tumor Res. by FM Burnet (1970)
  16. Dunn, G. P., Old, L. J. & Schreiber, R. D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148 (2004). (10.1016/j.immuni.2004.07.017) / Immunity by GP Dunn (2004)
  17. Pardoll, D. Does the immune system see tumours as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003). References 16 and 17 are excellent reviews of the theory of immunoediting. (10.1146/annurev.immunol.21.120601.141135) / Annu. Rev. Immunol. by D Pardoll (2003)
  18. Philip, M., Rowley, D. A. & Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 14, 433–439 (2004). (10.1016/j.semcancer.2004.06.006) / Semin. Cancer Biol. by M Philip (2004)
  19. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004). (10.1016/j.ccr.2004.08.012) / Cancer Cell by JL Luo (2004)
  20. Chisari, F. V. Hepatitis B virus transgenic mice: insights into the virus and the disease. Hepatology 22, 1316–1325 (1995). / Hepatology by FV Chisari (1995)
  21. de Visser, K. E., Korets, L. V. & Coussens, L. M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005). (10.1016/j.ccr.2005.04.014) / Cancer Cell by KE de Visser (2005)
  22. Karin, M., Cao, Y., Greten, F. R. & Li, Z. W. NF-κB in cancer: from innocent bystander to major culprit. Nature Rev. Cancer 2, 301–310 (2002). (10.1038/nrc780) / Nature Rev. Cancer by M Karin (2002)
  23. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004). (10.1016/j.cell.2004.07.013) / Cell by FR Greten (2004)
  24. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004). References 23 and 24 were the first to describe IKK-β-dependent NF-κB activation as the molecular link between inflammation and cancer. (10.1038/nature02924) / Nature by E Pikarsky (2004)
  25. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004). (10.1016/j.it.2004.03.008) / Trends Immunol. by G Bonizzi (2004)
  26. Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004). (10.1101/gad.1228704) / Genes Dev. by MS Hayden (2004)
  27. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002). (10.1016/S0092-8674(02)00703-1) / Cell by S Ghosh (2002)
  28. Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005). (10.1038/nature03491) / Nature by T Lawrence (2005)
  29. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. & Karin, M. IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005). This paper describes the role of IKK-β-dependent NF-κB activation in chemically induced HCC, and it was the first to show that compensatory proliferation that depends on production of pro-inflammatory cytokines is important in carcinogenesis. (10.1016/j.cell.2005.04.014) / Cell by S Maeda (2005)
  30. Mauad, T. H. et al. Mice with homozygous disruption of the mdr2 P-glycoprotein gene. A novel animal model for studies of nonsuppurative inflammatory cholangitis and hepatocarcinogenesis. Am. J. Pathol. 145, 1237–1245 (1994). / Am. J. Pathol. by TH Mauad (1994)
  31. Becker, C. et al. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004). This paper describes the importance of T-cell-mediated, IL-6 signalling in the development of CAC. (10.1016/j.immuni.2004.07.020) / Immunity by C Becker (2004)
  32. Li, Z.-W. et al. The IKKβ subunit of IκB kinase (IKK) is essential for NF-κB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999). (10.1084/jem.189.11.1839) / J. Exp. Med. by Z-W Li (1999)
  33. Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649–661 (2005). (10.1016/j.cell.2004.12.041) / Cell by H Kamata (2005)
  34. Vakkila, J. & Lotze, M. T. Inflammation and necrosis promote tumour growth. Nature Rev. Immunol. 4, 641–648 (2004). (10.1038/nri1415) / Nature Rev. Immunol. by J Vakkila (2004)
  35. Fausto, N. Liver regeneration. J. Hepatol. 32, 19–31 (2000). (10.1016/S0168-8278(00)80412-2) / J. Hepatol. by N Fausto (2000)
  36. Zeh, H. J. & Lotze, M. T. Addicted to death: invasive cancer and the immune response to unscheduled cell death. J. Immunother. 28, 1–9 (2005). (10.1097/00002371-200501000-00001) / J. Immunother. by HJ Zeh (2005)
  37. Conejo-Garcia, J. R. et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nature Med. 10, 950–958 (2004). (10.1038/nm1097) / Nature Med. by JR Conejo-Garcia (2004)
  38. Moore, R. J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999). (10.1038/10552) / Nature Med. by RJ Moore (1999)
  39. Arnott, C. H. et al. Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development. Oncogene 23, 1902–1910 (2004). (10.1038/sj.onc.1207317) / Oncogene by CH Arnott (2004)
  40. Szabowski, A. et al. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell 103, 745–755 (2000). (10.1016/S0092-8674(00)00178-1) / Cell by A Szabowski (2000)
  41. Arnott, C. H. et al. Tumour necrosis factor-α mediates tumour promotion via a PKC α- and AP-1-dependent pathway. Oncogene 21, 4728–4738 (2002). (10.1038/sj.onc.1205588) / Oncogene by CH Arnott (2002)
  42. van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Res. 59, 3299–3303 (1999). / Cancer Res. by M van Hogerlinden (1999)
  43. van Hogerlinden, M., Auer, G. & Toftgard, R. Inhibition of Rel/nuclear factor-κB signaling in skin results in defective DNA damage-induced cell cycle arrest and Ha-ras- and p53-independent tumor development. Oncogene 21, 4969–4977 (2002). (10.1038/sj.onc.1205620) / Oncogene by M van Hogerlinden (2002)
  44. Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA 95, 2307–2312 (1998). (10.1073/pnas.95.5.2307) / Proc. Natl Acad. Sci. USA by CS Seitz (1998)
  45. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003). (10.1038/nature01283) / Nature by M Dajee (2003)
  46. Lind, M. H. et al. Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-κB inhibition. Proc. Natl Acad. Sci. USA 101, 4972–4977 (2004). (10.1073/pnas.0307106101) / Proc. Natl Acad. Sci. USA by MH Lind (2004)
  47. Zhang, J. Y., Green, C. L., Tao, S. & Khavari, P. A. NF-κB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev. 18, 17–22 (2004). References 46 and 47 describe TNF as a tumour promoter and show that the balance between JNK and NF-κB activation is essential for the development of skin cancer. (10.1101/gad.1160904) / Genes Dev. by JY Zhang (2004)
  48. Korner, H. et al. Tumor necrosis factor sustains the generalized lymphoproliferative disorder (gld) phenotype. J. Exp. Med. 191, 89–96 (2000). (10.1084/jem.191.1.89) / J. Exp. Med. by H Korner (2000)
  49. Balkwill, F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 13, 135–141 (2002). (10.1016/S1359-6101(01)00020-X) / Cytokine Growth Factor Rev. by F Balkwill (2002)
  50. Galban, S. et al. von Hippel–Lindau protein-mediated repression of tumor necrosis factor α translation revealed through use of cDNA arrays. Mol. Cell. Biol. 23, 2316–2328 (2003). (10.1128/MCB.23.7.2316-2328.2003) / Mol. Cell. Biol. by S Galban (2003)
  51. Nauts, H. C., Fowler, G. A. & Bogatko, F. H. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley's mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med. Scand. Suppl. 144, 1–103 (1953). / Acta Med. Scand. Suppl. by HC Nauts (1953)
  52. Duncan, L. M., Richards, L. A. & Mihm, M. C. Jr. Increased mast cell density in invasive melanoma. J. Cutan. Pathol. 25, 11–15 (1998). (10.1111/j.1600-0560.1998.tb01683.x) / J. Cutan. Pathol. by LM Duncan (1998)
  53. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004). (10.1038/nrc1256) / Nature Rev. Cancer by JW Pollard (2004)
  54. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791 (1998). (10.1182/blood.V92.12.4778) / Blood by C Menetrier-Caux (1998)
  55. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004). (10.1038/nm1093) / Nature Med. by TJ Curiel (2004)
  56. Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194, 847–853 (2001). (10.1084/jem.194.6.847) / J. Exp. Med. by A Iellem (2001)
  57. Erdman, S. E. et al. CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res. 65, 3998–4004 (2005). (10.1158/0008-5472.CAN-04-3104) / Cancer Res. by SE Erdman (2005)
  58. Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7, 211–217 (2005). (10.1016/j.ccr.2005.02.013) / Cancer Cell by F Balkwill (2005)
  59. Fadok, V. A., Bratton, D. L., Guthrie, L. & Henson, P. M. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J. Immunol. 166, 6847–6854 (2001). (10.4049/jimmunol.166.11.6847) / J. Immunol. by VA Fadok (2001)
  60. Engle, S. J. et al. Transforming growth factor β1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res. 59, 3379–3386 (1999). / Cancer Res. by SJ Engle (1999)
  61. Berg, D. J. et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ TH1-like responses. J. Clin. Invest. 98, 1010–1020 (1996). (10.1172/JCI118861) / J. Clin. Invest. by DJ Berg (1996)
  62. Goodman, J. E., Hofseth, L. J., Hussain, S. P. & Harris, C. C. Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ. Mol. Mutagen. 44, 3–9 (2004). (10.1002/em.20024) / Environ. Mol. Mutagen. by JE Goodman (2004)
  63. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003). (10.1084/jem.20030267) / J. Exp. Med. by T Schioppa (2003)
  64. Bando, H. & Toi, M. Tumor angiogenesis, macrophages, and cytokines. Adv. Exp. Med. Biol. 476, 267–284 (2000). (10.1007/978-1-4615-4221-6_21) / Adv. Exp. Med. Biol. by H Bando (2000)
  65. Leek, R. D. et al. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 190, 430–436 (2000). (10.1002/(SICI)1096-9896(200003)190:4<430::AID-PATH538>3.0.CO;2-6) / J. Pathol. by RD Leek (2000)
  66. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996). (10.1182/blood.V87.8.3336.bloodjournal8783336) / Blood by B Barleon (1996)
  67. Sparmann, A. & Bar-Sagi, D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6, 447–458 (2004). (10.1016/j.ccr.2004.09.028) / Cancer Cell by A Sparmann (2004)
  68. Jung, Y. J., Isaacs, J. S., Lee, S., Trepel, J. & Neckers, L. IL-1β-mediated up-regulation of HIF-1α via an NF-κB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. FASEB J. 17, 2115–2117 (2003). (10.1096/fj.03-0329fje) / FASEB J. by YJ Jung (2003)
  69. Voronov, E. et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc. Natl Acad. Sci. USA 100, 2645–2650 (2003). (10.1073/pnas.0437939100) / Proc. Natl Acad. Sci. USA by E Voronov (2003)
  70. Weinreich, D. M. et al. Effect of interleukin 1 receptor antagonist gene transduction on human melanoma xenografts in nude mice. Cancer Res. 63, 5957–5961 (2003). / Cancer Res. by DM Weinreich (2003)
  71. Melcher, A. et al. Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Med. 4, 581–587 (1998). (10.1038/nm0598-581) / Nature Med. by A Melcher (1998)
  72. Houghton, J. et al. Gastric cancer originating from bone marrow-derived cells. Science 306, 1568–1571 (2004). This paper describes how bone-marrow-derived cells can differentiate into epithelial cancer cells, and it provides the first molecular evidence of a role for inflammation in tumour initiation. (10.1126/science.1099513) / Science by J Houghton (2004)
  73. Keates, S., Hitti, Y. S., Upton, M. & Kelly, C. P. Helicobacter pylori infection activates NF-κB in gastric epithelial cells. Gastroenterology 113, 1099–1109 (1997). (10.1053/gast.1997.v113.pm9322504) / Gastroenterology by S Keates (1997)
  74. Barnes, P. J. & Karin, M. NF-κB — a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071 (1997). (10.1056/NEJM199704103361506) / N. Engl. J. Med. by PJ Barnes (1997)
  75. Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005). This paper provides a molecular mechanism by which protease-induced epithelial–mesenchymal transition can stimulate ROS production and thereby increase genomic instability. (10.1038/nature03688) / Nature by DC Radisky (2005)
  76. Hudson, J. D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. J. Exp. Med. 190, 1375–1382 (1999). (10.1084/jem.190.10.1375) / J. Exp. Med. by JD Hudson (1999)
  77. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001). (10.1038/35074122) / Nature by V Shankaran (2001)
  78. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001). (10.1126/science.1063916) / Science by M Girardi (2001)
  79. Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198, 747–755 (2003). (10.1084/jem.20021282) / J. Exp. Med. by M Girardi (2003)
  80. Street, S. E., Cretney, E. & Smyth, M. J. Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis. Blood 97, 192–197 (2001). (10.1182/blood.V97.1.192) / Blood by SE Street (2001)
  81. Kaplan, D. H. et al. Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice. Proc. Natl Acad. Sci. USA 95, 7556–7561 (1998). (10.1073/pnas.95.13.7556) / Proc. Natl Acad. Sci. USA by DH Kaplan (1998)
  82. Interferon α versus chemotherapy for chronic myeloid leukemia: a metaanalysis of seven randomized trials: Chronic Myeloid Leukemia Trialists' Collaborative Group. J. Natl Cancer Inst. 89, 1616–1620 (1997). (10.1093/jnci/89.21.1616)
  83. Schmidt, M. et al. Lack of interferon consensus sequence binding protein (ICSBP) transcripts in human myeloid leukemias. Blood 91, 22–29 (1998). (10.1182/blood.V91.1.22) / Blood by M Schmidt (1998)
  84. Takaoka, A. et al. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523 (2003). This paper shows that type I IFNs can sensitize cells to p53-mediated apoptosis, implying that type II IFNs might not be the only IFNs involved in tumour development. (10.1038/nature01850) / Nature by A Takaoka (2003)
  85. Smyth, M. J. et al. Nature's TRAIL — on a path to cancer immunotherapy. Immunity 18, 1–6 (2003). (10.1016/S1074-7613(02)00502-2) / Immunity by MJ Smyth (2003)
  86. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Rev. Cancer 4, 11–22 (2004). (10.1038/nrc1252) / Nature Rev. Cancer by G Dranoff (2004)
  87. Koehne, C. H. & Dubois, R. N. COX-2 inhibition and colorectal cancer. Semin. Oncol. 31, 12–21 (2004). (10.1053/j.seminoncol.2004.03.041) / Semin. Oncol. by CH Koehne (2004)
  88. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000). (10.1056/NEJM200006293422603) / N. Engl. J. Med. by G Steinbach (2000)
  89. Solomon, S. D. et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N. Engl. J. Med. 352, 1071–1080 (2005). (10.1056/NEJMoa050405) / N. Engl. J. Med. by SD Solomon (2005)
  90. Bresalier, R. S. et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352, 1092–1102 (2005). (10.1056/NEJMoa050493) / N. Engl. J. Med. by RS Bresalier (2005)
  91. Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nature Rev. Drug Discov. 3, 17–26 (2004). (10.1038/nrd1279) / Nature Rev. Drug Discov. by M Karin (2004)
  92. Li, Q. & Verma, I. M. NF-κB regulation in the immune system. Nature Rev. Immunol. 2, 725–734 (2002). (10.1038/nri910) / Nature Rev. Immunol. by Q Li (2002)
  93. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000). (10.1016/S0092-8674(00)81683-9) / Cell by D Hanahan (2000)
Dates
Type When
Created 19 years, 11 months ago (Sept. 20, 2005, 10:59 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:09 a.m.)
Indexed 52 minutes ago (Sept. 7, 2025, 5:34 p.m.)
Issued 19 years, 11 months ago (Sept. 20, 2005)
Published 19 years, 11 months ago (Sept. 20, 2005)
Published Online 19 years, 11 months ago (Sept. 20, 2005)
Published Print 19 years, 11 months ago (Oct. 1, 2005)
Funders 0

None

@article{Karin_2005, title={NF-κB: linking inflammation and immunity to cancer development and progression}, volume={5}, ISSN={1474-1741}, url={http://dx.doi.org/10.1038/nri1703}, DOI={10.1038/nri1703}, number={10}, journal={Nature Reviews Immunology}, publisher={Springer Science and Business Media LLC}, author={Karin, Michael and Greten, Florian R.}, year={2005}, month=sep, pages={749–759} }