Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Genetics (297)
Bibliography

McMurray, C. T. (2010). Mechanisms of trinucleotide repeat instability during human development. Nature Reviews Genetics, 11(11), 786–799.

Authors 1
  1. Cynthia T. McMurray (first)
References 125 Referenced 405
  1. Mirkin, S. M. Expandable DNA repeats and human disease. Nature 447, 932–940 (2007). (10.1038/nature05977) / Nature by SM Mirkin (2007)
  2. Kovtun, I. V. & McMurray, C. T. Features of trinucleotide repeat instability in vivo. Cell Res. 18, 198–213 (2008). (10.1038/cr.2008.5) / Cell Res. by IV Kovtun (2008)
  3. La Spada, A. R. & Taylor, J. P. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nature Rev. Genet. 11, 247–258 (2010). A comprehensive Review of recent progress in understanding the pathophysiology of expansion disease. (10.1038/nrg2748) / Nature Rev. Genet. by AR La Spada (2010)
  4. Dion, V. & Wilson, J. H. Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet. 25, 288–297 (2009). (10.1016/j.tig.2009.04.007) / Trends Genet. by V Dion (2009)
  5. Kumari, D. & Usdin, K. Chromatin remodeling in the non-coding repeat expansion diseases. J. Biol. Chem. 284, 7413–7417 (2009). (10.1074/jbc.R800026200) / J. Biol. Chem. by D Kumari (2009)
  6. Day, L. W. & Ranum, L. P. RNA pathogenesis of the myotonic dystrophies. Neuromuscul. Disord. 15, 5–16 (2005). (10.1016/j.nmd.2004.09.012) / Neuromuscul. Disord. by LW Day (2005)
  7. Slattery, J. P., Murphy, W. J. & O'Brien, S. J. Patterns of diversity among SINE elements isolated from three Y-chromosome genes in carnivores. Mol. Biol. Evol. 17, 825–829 (2000). (10.1093/oxfordjournals.molbev.a026361) / Mol. Biol. Evol. by JP Slattery (2000)
  8. Petruska, J., Hartenstine, M. J. & Goodman, M. F. Analysis of strand slippage in DNA polymerase expansions of CAG/CTG triplet repeats associated with neurodegenerative disease. J. Biol. Chem. 273, 5204–5210 (1998). (10.1074/jbc.273.9.5204) / J. Biol. Chem. by J Petruska (1998)
  9. Hartenstine, M. J., Goodman, M. F. & Petruska, J. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J. Biol. Chem. 275, 18382–18390 (2000). (10.1074/jbc.275.24.18382) / J. Biol. Chem. by MJ Hartenstine (2000)
  10. Fu, Y. H. et al. Variation of the CGG repeat at the Fragile X site results in genetic instability: resolution of the Sherman paradox. Cell 67, 1047–1058 (1991). (10.1016/0092-8674(91)90283-5) / Cell by YH Fu (1991)
  11. Sullivan, A. K., Crawford, D. C., Scott, E. H., Leslie, M. L. & Sherman, S. L. Paternally transmitted FMR1 alleles are less stable than maternally transmitted alleles in the common and intermediate size range. Am. J. Hum. Genet. 70, 1532–1544 (2002). (10.1086/340846) / Am. J. Hum. Genet. by AK Sullivan (2002)
  12. Helderman-van den Enden, A. T. et al. Monozygotic twin brothers with the fragile X syndrome: different CGG repeats and different mental capacities. J. Med. Genet. 36, 253–257 (1999). / J. Med. Genet. by AT Helderman-van den Enden (1999)
  13. Tripathi, A., Kumar, K. V. & Chaube, S. K. Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600 (2010). (10.1002/jcp.22108) / J. Cell. Physiol. by A Tripathi (2010)
  14. Rifé, M. et al. Analysis of CGG variation through 642 meioses in fragile X families. Mol. Hum. Reprod. 10, 773–776 (2004). This study provided evidence that the earliest detected CGG expansions in female patients with FXS occurred in the primary oocytes, suggesting that expansion occurred in non-dividing cells in humans. (10.1093/molehr/gah102) / Mol. Hum. Reprod. by M Rifé (2004)
  15. Sermon, K. et al. Preimplantation diagnosis for fragile X syndrome based on the detection of the non-expanded paternal and maternal CGG. Prenat. Diagn. 19, 1223–1230 (2000). (10.1002/(SICI)1097-0223(199912)19:13<1223::AID-PD724>3.0.CO;2-0) / Prenat. Diagn. by K Sermon (2000)
  16. Ashley-Koch, A. E. et al. Examination of factors associated with instability of the FMR1 CGG repeat. Am. J. Hum. Genet. 63, 776–785 (1998). (10.1086/302018) / Am. J. Hum. Genet. by AE Ashley-Koch (1998)
  17. Bontekoe, C. J. et al. Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum. Mol. Genet. 10, 1693–1699 (2001). (10.1093/hmg/10.16.1693) / Hum. Mol. Genet. by CJ Bontekoe (2001)
  18. Entezam, A. et al. Regional FMRP deficits and large repeat expansions into the full mutation range in a new fragile X premutation mouse model. Gene 15, 125–134 (2007). (10.1016/j.gene.2007.02.026) / Gene by A Entezam (2007)
  19. Reyniers, E. et al. The full mutation in the FMR-1 gene of male fragile X patients is absent in their sperm. Nature Genet. 4, 143–146 (1993). (10.1038/ng0693-143) / Nature Genet. by E Reyniers (1993)
  20. Malter, H. E. et al. Characterization of the full fragile X syndrome mutation in fetal gametes. Nature Genet. 15, 165–169 (1997). This work provided definitive evidence that the absence of the full mutation in male patients with FXS was due to deletion of CGG tracts in their germ cells at fetal stages of development. (10.1038/ng0297-165) / Nature Genet. by HE Malter (1997)
  21. Dean, N., Tan, S. & Ao, A. Instability in the transmission of the myotonic dystrophy CTG repeat in human oocytes and preimplantation embryos. Fertil. Steril. 86, 98–105 (2006). (10.1016/j.fertnstert.2005.12.025) / Fertil. Steril. by N Dean (2006)
  22. De Temmerman, N. et al. Intergenerational instability of the expanded CTG repeat in the DMPK gene: studies in human gametes and preimplantation embryos. Am. J. Hum. Genet. 75, 325–329 (2004). This study indicated that the earliest detected CTG expansions in female patients with DM1 also occurred in the primary oocytes, suggesting that large expansion did not require replication. (10.1086/422762) / Am. J. Hum. Genet. by N De Temmerman (2004)
  23. Martorell, L. et al. Germline mutational dynamics in myotonic dystrophy: allele length and age effects. Neurology 62, 269–274 (2004). The results indicated that the largest length changes in CTG tracts in male patients with DM1 were observed for pre-mutation alleles and the highest frequency of contractions were observed in full mutation alleles. (10.1212/WNL.62.2.269) / Neurology by L Martorell (2004)
  24. Ashizawa, T. et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet. 54, 414–423 (1994). / Am. J. Hum. Genet. by T Ashizawa (1994)
  25. Lavedan, C. et al. Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am. J. Hum. Genet. 52, 875–883 (1993). / Am. J. Hum. Genet. by C Lavedan (1993)
  26. Jansen, G. et al. Gonosomal mosaicism in myotonic dystrophy patients: involvement of mitotic events in (CTG)n repeat variation and selection against extreme expansion in sperm. Am. J. Hum. Genet. 54, 575–585 (1994). / Am. J. Hum. Genet. by G Jansen (1994)
  27. Savouret, C. et al. MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol. Cell. Biol. 24, 629–637 (2004). (10.1128/MCB.24.2.629-637.2004) / Mol. Cell. Biol. by C Savouret (2004)
  28. Savouret, C. et al. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22, 2264–2273 (2003). This work provided evidence from knockout mice that dispelled the notion that the homologous recombination and non-homologous end joining pathways were major mechanisms for CTG expansions. (10.1093/emboj/cdg202) / EMBO J. by C Savouret (2003)
  29. Fortune, M. T., Vassilopoulos, C., Coolbaugh, M. I., Sicilliano, M. J. & Mockton, D. G. Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet instability. Hum. Mol. Genet. 9, 439–445 (2000). (10.1093/hmg/9.3.439) / Hum. Mol. Genet. by MT Fortune (2000)
  30. Kremer, B. et al. Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes. Am. J. Hum. Genet. 57, 343–350 (1995). / Am. J. Hum. Genet. by B Kremer (1995)
  31. Wheeler, V. C. et al. Factors associated with HD CAG repeat instability in Huntington disease. J. Med. Genet. 44, 695–701 (2007). This analysis of a large cohort of patients with HD is a comprehensive analysis of the factors governing expansion in HD. These factors include length, age-dependence and gender-dependence of expansion. (10.1136/jmg.2007.050930) / J. Med. Genet. by VC Wheeler (2007)
  32. Norremolle, A., Sorensen, S. A., Fenger, K. & Hasholt, L. Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington's disease. Clin. Genet. 47, 113–119 (1995). (10.1111/j.1399-0004.1995.tb03941.x) / Clin. Genet. by A Norremolle (1995)
  33. Telenius, H. et al. Molecular analysis of juvenile Huntington disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum. Mol. Genet. 2, 1535–1540 (1993). (10.1093/hmg/2.10.1535) / Hum. Mol. Genet. by H Telenius (1993)
  34. Kovtun, I. V., Therneau, T. M. & McMurray, C. T. Gender of the embryo contributes to CAG instability in transgenic mice containing a Huntington's disease gene. Hum. Mol. Genet. 9, 2767–2775 (2000). (10.1093/hmg/9.18.2767) / Hum. Mol. Genet. by IV Kovtun (2000)
  35. Telenius, H. et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nature Genet. 6, 409–414 (1994). (10.1038/ng0494-409) / Nature Genet. by H Telenius (1994)
  36. Kovtun, I. V. & McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27, 407–411 (2001). (10.1038/86906) / Nature Genet. by IV Kovtun (2001)
  37. Yoon, S. R., Dubeau, L., de Young, M., Wexler, N. S. & Arnheim, N. Huntington disease expansion mutations in humans can occur before meiosis is completed. Proc. Natl Acad. Sci. USA 100, 8834–8838 (2003). (10.1073/pnas.1331390100) / Proc. Natl Acad. Sci. USA by SR Yoon (2003)
  38. Leeflang, E. P. et al. Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Hum. Mol. Genet. 8, 173–183 (1999). (10.1093/hmg/8.2.173) / Hum. Mol. Genet. by EP Leeflang (1999)
  39. Kennedy, L. et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 12, 3359–3367 (2003). This work provided the first strong evidence for the importance of age-dependent somatic instability in HD pathogenesis. The results demonstrated that increases of up to 1,000 CAG repeats occurred in human HD striatal cells early in the disease course. These increases might influence the age of disease onset. (10.1093/hmg/ddg352) / Hum. Mol. Genet. by L Kennedy (2003)
  40. Shelbourne, P. F. et al. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum. Mol. Genet. 16, 1133–1142 (2007). (10.1093/hmg/ddm054) / Hum. Mol. Genet. by PF Shelbourne (2007)
  41. Mangiarini, L. et al. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nature Genet. 15, 197–200 (1997). (10.1038/ng0297-197) / Nature Genet. by L Mangiarini (1997)
  42. Wheeler, V. C. et al. Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse. Hum. Mol. Genet. 8, 115–122 (1999). (10.1093/hmg/8.1.115) / Hum. Mol. Genet. by VC Wheeler (1999)
  43. Kovtun, I. V., Thornhill, A. R. & McMurray, C. T. Somatic deletion events occur during early embryonic development and modify the extent of CAG expansion in subsequent generations. Hum. Mol. Genet. 13, 3057–3068 (2004). (10.1093/hmg/ddh325) / Hum. Mol. Genet. by IV Kovtun (2004)
  44. Gonitel, R. et al. DNA instability in postmitotic neurons. Proc. Natl Acad. Sci. USA 105, 3467–3472 (2008). (10.1073/pnas.0800048105) / Proc. Natl Acad. Sci. USA by R Gonitel (2008)
  45. Kovtun, I. V. et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447, 447–452 (2007). This work provided evidence for a direct causative link among oxidative DNA damage, BER and expansion during mouse development. Expansion occurred in the process of removing oxidized bases and depended on OGG1. (10.1038/nature05778) / Nature by IV Kovtun (2007)
  46. Swami, M. et al. Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 18, 3039–3047 (2009). (10.1093/hmg/ddp242) / Hum. Mol. Genet. by M Swami (2009)
  47. Koefoed, P. et al. Mitotic and meiotic instability of the CAG trinucleotide repeat in spinocerebellar ataxia type 1. Hum. Genet. 103, 564–569 (1998). (10.1007/s004390050870) / Hum. Genet. by P Koefoed (1998)
  48. Kaytor, M. D., Burright, E. N., Duvick, L. A., Zoghbi, H. Y. & Orr, H. T. Increased trinucleotide repeat instability with advanced maternal age. Hum. Mol. Genet. 6, 2135–2139 (1997). (10.1093/hmg/6.12.2135) / Hum. Mol. Genet. by MD Kaytor (1997)
  49. Morton, A. J. et al. Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol. Dis. 33, 331–341 (2009). (10.1016/j.nbd.2008.11.015) / Neurobiol. Dis. by AJ Morton (2009)
  50. Richards, R. I. et al. Fragile X syndrome: genetic localisation by linkage mapping of two microsatellite repeats FRAXAC1 and FRAXAC2 which immediately flank the fragile site. J. Med. Genet. 28, 818–823 (1991). (10.1136/jmg.28.12.818) / J. Med. Genet. by RI Richards (1991)
  51. Wolff, R. K., Plaetke, R., Jeffreys, A. J. & White, R. Unequal crossing over between homologous chromosomes is not the major mechanism involved in the generation of new alleles at VNTR loci. Genomics 5, 382–384 (1989). (10.1016/0888-7543(89)90076-1) / Genomics by RK Wolff (1989)
  52. Bjelland, S. & Seeberg, E. Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat. Res. 531, 37–80 (2003). (10.1016/j.mrfmmm.2003.07.002) / Mutat. Res. by S Bjelland (2003)
  53. Entezam, A., Lokanga, A. R., Le, W., Hoffman, G. & Usdin, K. Potassium bromate, a potent DNA oxidizing agent, exacerbates germline repeat expansion in a fragile X premutation mouse model. Hum. Mutat. 31, 611–616 (2010). / Hum. Mutat. by A Entezam (2010)
  54. Goula, A. V. et al. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet. 5, e1000749 (2009). (10.1371/journal.pgen.1000749) / PLoS Genet. by AV Goula (2009)
  55. Daube, S. S., Arad, G. & Livneh, A. Translesion replication by DNA polymerase β is modulated by sequence context and stimulated by fork-like flap structures in DNA. Biochemistry 39, 397–405 (2000). (10.1021/bi991443m) / Biochemistry by SS Daube (2000)
  56. Spiro, C. et al. Inhibition of FEN-1 processing by DNA secondary structure at trinucleotide repeats. Mol. Cell 4, 1079–1085 (1999). (10.1016/S1097-2765(00)80236-1) / Mol. Cell by C Spiro (1999)
  57. Liu, Y. et al. Coordination between polymerase β and FEN1 can modulate CAG repeat expansion. J. Biol. Chem. 284, 28352–28366 (2009). (10.1074/jbc.M109.050286) / J. Biol. Chem. by Y Liu (2009)
  58. Henricksen, L. A., Veeraraghavan, J., Chafin, D. R. & Bambara, R. A. DNA ligase I competes with FEN1 to expand repetitive DNA sequences in vitro. J. Biol. Chem. 277, 22361–22369 (2002). (10.1074/jbc.M201765200) / J. Biol. Chem. by LA Henricksen (2002)
  59. Asagoshi, K. et al. DNA polymerase β dependent long patch base excision repair in living cells. DNA Repair 9, 109–119 (2010). (10.1016/j.dnarep.2009.11.002) / DNA Repair by K Asagoshi (2010)
  60. Beard, W. A., Prasad, R. & Wilson, S. H. Activities and mechanism of DNA polymerase β. Meth. Enzymol. 408, 91–107 (2006). (10.1016/S0076-6879(06)08007-4) / Meth. Enzymol. by WA Beard (2006)
  61. Kunkel, T. A. Evolving views of DNA replication (in) fidelity. Cold Spring Harb. Symp. Quant. Biol. 74, 91–101 (2009). (10.1101/sqb.2009.74.027) / Cold Spring Harb. Symp. Quant. Biol. by TA Kunkel (2009)
  62. Kaplan, S., Itzkovitz, S. & Shapiro, E. A universal mechanism ties genotype to phenotype in trinucleotide diseases. PLoS Comput. Biol. 3, e235 (2007). (10.1371/journal.pcbi.0030235) / PLoS Comput. Biol. by S Kaplan (2007)
  63. Rolseth, V. et al. Widespread distribution of DNA glycosylases removing oxidative DNA lesions in human and rodent brains. DNA Repair 7, 1578–1588 (2008). (10.1016/j.dnarep.2008.06.007) / DNA Repair by V Rolseth (2008)
  64. Hazra, T. K. & Mitra, S. Purification and characterization of NEIL1 and NEIL2, members of a distinct family of mammalian DNA glycosylases for repair of oxidized bases. Meth. Enzymol. 408, 33–48 (2006). (10.1016/S0076-6879(06)08003-7) / Meth. Enzymol. by TK Hazra (2006)
  65. Takao, M. et al. A back-up glycosylase in Nth1 knock-out mice is a functional Nth (endonuclease III) homologue. J. Biol. Chem. 277, 42205–42213 (2002). (10.1074/jbc.M206884200) / J. Biol. Chem. by M Takao (2002)
  66. Cleaver, J. E., Lam, E. T. & Revet, I. Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nature Rev. Genet. 10, 756–768 (2009). (10.1038/nrg2663) / Nature Rev. Genet. by JE Cleaver (2009)
  67. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Rev. Mol. Cell Biol. 9, 958–970 (2008). (10.1038/nrm2549) / Nature Rev. Mol. Cell Biol. by PC Hanawalt (2008)
  68. Nouspikel, T. DNA repair in differentiated cells: some new answers to old questions. Neuroscience 145, 1183–1448 (2007). (10.1016/j.neuroscience.2006.07.006) / Neuroscience by T Nouspikel (2007)
  69. Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009). (10.1038/emboj.2009.49) / EMBO J. by L Staresincic (2009)
  70. Dragileva, E. et al. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 33, 37–47 (2009). (10.1016/j.nbd.2008.09.014) / Neurobiol. Dis. by E Dragileva (2009)
  71. Lin, Y. & Wilson, J. H. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 27, 6209–6217 (2007). (10.1128/MCB.00739-07) / Mol. Cell. Biol. by Y Lin (2007)
  72. Jung, J. & Bonini, N. CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 315, 1857–1859 (2007). This work provided evidence that CAG instability could occur by a TCR process. (10.1126/science.1139517) / Science by J Jung (2007)
  73. Lin, Y., Dion, V., & Wilson, J. H. Transcription promotes contraction of CAG repeat tracts in human cells. Nature Struct. Mol. Biol. 13, 179–180 (2006). (10.1038/nsmb1042) / Nature Struct. Mol. Biol. by Y Lin (2006)
  74. Sarker, A. H. et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol. Cell 20, 187–198 (2005). (10.1016/j.molcel.2005.09.022) / Mol. Cell by AH Sarker (2005)
  75. Parsons, A. M., Sinden, R. R. & Izban, M. G. Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J. Biol. Chem. 273, 26998–27008 (1998). (10.1074/jbc.273.41.26998) / J. Biol. Chem. by AM Parsons (1998)
  76. Grabczyka, E. & Usdin, K. The GAA•TTC triplet repeat expanded in Friedreich's ataxia impedes transcription elongation by T7 RNA polymerase in a length and supercoil dependent manner. Nucleic Acids Res. 28, 2815–2822 (2000). (10.1093/nar/28.14.2815) / Nucleic Acids Res. by E Grabczyka (2000)
  77. Fousteri, M. & Mullenders, L. H. F. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 18, 73–84 (2008). (10.1038/cr.2008.6) / Cell Res. by M Fousteri (2008)
  78. Kovtun, I. V. & McMurray, C. T. Crosstalk of DNA glycosylases with pathways other than base excision repair. DNA Repair 6, 517–529 (2007). (10.1016/j.dnarep.2006.10.015) / DNA Repair by IV Kovtun (2007)
  79. Wong, H.-K. et al. Cockayne syndrome B protein stimulates apurinic endonuclease 1 activity and protects against agents that introduce base excision repair intermediates. Nucleic Acids Res. 35, 4103–4113 (2007). (10.1093/nar/gkm404) / Nucleic Acids Res. by H-K Wong (2007)
  80. Thorslund, T. et al. Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress. Mol. Cell. Biol. 25, 7625–7636 (2005). (10.1128/MCB.25.17.7625-7636.2005) / Mol. Cell. Biol. by T Thorslund (2005)
  81. Khobta, A., Kitseraa, N., Speckmanna, B. & Epe, B. 8-Oxoguanine DNA glycosylase (Ogg1) causes a transcriptional inactivation of damaged DNA in the absence of functional Cockayne syndrome B (Csb) protein. DNA Repair 8, 309–317 (2009). (10.1016/j.dnarep.2008.11.006) / DNA Repair by A Khobta (2009)
  82. Dou, H., Mitra, S. & Hazra, T. K. Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2. J. Biol. Chem. 278, 49679–49684 (2003). (10.1074/jbc.M308658200) / J. Biol. Chem. by H Dou (2003)
  83. Kang, S., Jaworski, A., Ohshima, K. & Wells, R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nature Genet. 10, 213–218 (1995). This work demonstrated that slippage could generate small increases and decreases in TNR tracts depending on the direction of replication. (10.1038/ng0695-213) / Nature Genet. by S Kang (1995)
  84. Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S. & Wells, R. D. Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J. Biol. Chem. 270, 27014–27021 (1995). (10.1074/jbc.270.45.27014) / J. Biol. Chem. by S Kang (1995)
  85. Viguera, E., Canceill, D. & Ehrlich, D. S. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 20, 2587–2595 (2001). (10.1093/emboj/20.10.2587) / EMBO J. by E Viguera (2001)
  86. Delagoutte, E., Goellner, G. M., Guo, J., Baldacci, G. & McMurray, C. T. Single-stranded DNA-binding protein in vitro eliminates the orientation-dependent impediment to polymerase passage on CAG/CTG repeats. J. Biol. Chem. 283, 13341–13356 (2008). (10.1074/jbc.M800153200) / J. Biol. Chem. by E Delagoutte (2008)
  87. Goldberg, Y. P. et al. Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nature Genet. 5, 174–179 (1993). This work demonstrated how transmitted repeat tracts change at the threshold for HD and showed that pre-mutation alleles underwent roughly equal small losses and gains of repeats. However, after the repeat grew past the threshold, expansion became the dominant change. (10.1038/ng1093-174) / Nature Genet. by YP Goldberg (1993)
  88. Schweitzer, J. K. & Livingston, D. M. The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 15, 953–963 (1999). (10.1093/genetics/152.3.953) / Genetics by JK Schweitzer (1999)
  89. Kroutil, L. C. & Kunkel, T. A. Deletion errors generated during replication of CAG repeats. Nucleic Acids Res. 27, 3481–3486 (1999). (10.1093/nar/27.17.3481) / Nucleic Acids Res. by LC Kroutil (1999)
  90. Pinder, D. J., Blake, C. E., Lindsey, J. C. & Leach, D. R. Replication strand preference for deletions associated with DNA palindromes. Mol. Microbiol. 28, 719–727 (1998). (10.1046/j.1365-2958.1998.00831.x) / Mol. Microbiol. by DJ Pinder (1998)
  91. Gomes-Pereira, M., Fortune, M. T. & Monckton, D. G. Mouse tissue culture models of unstable triplet repeats: in vitro selection for larger alleles, mutational expansion bias and tissue specificity, but no association with cell division rates. Hum. Mol. Genet. 10, 845–854 (2001). (10.1093/hmg/10.8.845) / Hum. Mol. Genet. by M Gomes-Pereira (2001)
  92. Mirkin, E. V. & Mirkin, S. M. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 71, 13–35 (2007). (10.1128/MMBR.00030-06) / Microbiol. Mol. Biol. Rev. by EV Mirkin (2007)
  93. Samadashwily, G. M., Raca, G. & Mirkin, S. M. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17, 298–304 (1997). (10.1038/ng1197-298) / Nature Genet. by GM Samadashwily (1997)
  94. Voineagu, I., Surka, C. F., Shishkin, A. A., Krasilnikova, M. M. & Mirkin, S. M. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nature Struct. Mol. Biol. 16, 226–228 (2009). This work provided definitive evidence that long repeat tracts blocked polymerase passage in vivo and suggested that expansion can depend on replication-dependent repair mechanisms. (10.1038/nsmb.1527) / Nature Struct. Mol. Biol. by I Voineagu (2009)
  95. Krasilnikova, M. M. & Mirkin, S. M. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol. Cell. Biol. 24, 2286–2295 (2004). (10.1128/MCB.24.6.2286-2295.2004) / Mol. Cell. Biol. by MM Krasilnikova (2004)
  96. Shishkin, A. A. et al. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell 35, 82–92 (2009). (10.1016/j.molcel.2009.06.017) / Mol. Cell by AA Shishkin (2009)
  97. Pomerantz, R. T. & O'Donnell, M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science 327, 590–592 (2010). (10.1126/science.1179595) / Science by RT Pomerantz (2010)
  98. Fouché, N., Özgür, S., Roy, D. & Griffith, J. D. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 34, 6044–6050 (2006). (10.1093/nar/gkl757) / Nucleic Acids Res. by N Fouché (2006)
  99. Yang, Z., Lau, R., Marcadier, J. L., Chitayat, D. & Pearson, C. E. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet. 73, 1092–1105 (2003). (10.1086/379523) / Am. J. Hum. Genet. by Z Yang (2003)
  100. Maul, R. W. & Sutton, M. D. Roles of the Escherichia coli RecA protein and the global SOS response in effecting DNA polymerase selection in vivo. J. Bacteriol. 187, 7607–7618 (2005). (10.1128/JB.187.22.7607-7618.2005) / J. Bacteriol. by RW Maul (2005)
  101. Guo, C., Kosarek-Stancel, J. N., Tang, T. S. & Friedberg, E. C. Y-family DNA polymerases in mammalian cells. Cell. Mol. Life Sci. 66, 2363–2381 (2009). (10.1007/s00018-009-0024-4) / Cell. Mol. Life Sci. by C Guo (2009)
  102. Waters, L. S. et al. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154 (2009). (10.1128/MMBR.00034-08) / Microbiol. Mol. Biol. Rev. by LS Waters (2009)
  103. Edmunds, C. E., Simpson, L. J. & Sale, J. E. PCNA ubiquitination and REV1 define temporally distinct mechanisms for controlling translesion synthesis in the avian cell line DT40. Mol. Cell 30, 4519–4529, (2008). (10.1016/j.molcel.2008.03.024) / Mol. Cell by CE Edmunds (2008)
  104. Modrich, P. Mechanisms in eukaryotic mismatch repair. J. Biol. Chem. 281, 30305–30309 (2006). (10.1074/jbc.R600022200) / J. Biol. Chem. by P Modrich (2006)
  105. Hou, C., Chan, N. L., Gu, L. & Li, G. M. Incision-dependent and error-free repair of (CAG)n/(CTG)n hairpins in human cell extracts. Nature Struct. Mol. Biol. 16, 869–675 (2009). (10.1038/nsmb.1638) / Nature Struct. Mol. Biol. by C Hou (2009)
  106. Panigrahi, G. B., Lau, R., Montgomery, S. E., Leonard, M. R. & Pearson, C. E. Slipped (CTG)•(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Nature Struct. Mol. Biol. 12, 654–662 (2005). (10.1038/nsmb959) / Nature Struct. Mol. Biol. by GB Panigrahi (2005)
  107. McMurray, C. T. Hijacking of the mismatch repair system to cause CAG expansion and cell death in neurodegenerative disease. DNA Repair 7, 1121–1134 (2008). (10.1016/j.dnarep.2008.03.013) / DNA Repair by CT McMurray (2008)
  108. Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice. Nature Genet. 23, 471–473 (1999). This work provided the first evidence that the MMR system causes rather than corrects repeat expansions. (10.1038/70598) / Nature Genet. by K Manley (1999)
  109. Gomes-Pereira, M., Fortune, M. T., Ingram, L., McAbney, J. P. & Monckton, D. G. Pms2 is a genetic enhancer of trinucleotide CAG.CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13, 1815–1825 (2004). (10.1093/hmg/ddh186) / Hum. Mol. Genet. by M Gomes-Pereira (2004)
  110. van den Broek, W. J. et al. Somatic expansion behaviour of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11, 191–198 (2002). (10.1093/hmg/11.2.191) / Hum. Mol. Genet. by WJ van den Broek (2002)
  111. Owen, B. A. et al. [CAG]n-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nature Struct. Mol. Biol. 12, 663–670 (2005). (10.1038/nsmb965) / Nature Struct. Mol. Biol. by BA Owen (2005)
  112. Tomé, S. et al. MSH2 ATPase domain mutation affects CTG•CAG repeat instability in transgenic mice. PLoS Genet. 5, e1000482 (2009). (10.1371/journal.pgen.1000482) / PLoS Genet. by S Tomé (2009)
  113. Kim, H. M. et al. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J. 27, 2896–2906 (2008). (10.1038/emboj.2008.205) / EMBO J. by HM Kim (2008)
  114. Tian, L., Gu, L. & Li, G. M. Distinct nucleotide binding/hydrolysis properties and molar ratio of MutSα and MutSβ determine their differential mismatch binding activities. J. Biol. Chem. 284, 11557–11562 (2009). (10.1074/jbc.M900908200) / J. Biol. Chem. by L Tian (2009)
  115. Owen, B. A. L., Lang, W. H. & McMurray, C. T. The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent. Nature Struct. Mol. Biol. 16, 550–557 (2009). (10.1038/nsmb.1596) / Nature Struct. Mol. Biol. by BAL Owen (2009)
  116. Moore, H., Greenwell, P. W., Liu, C. P., Arnheim, N. & Petes, T. D. Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl Acad. Sci. USA 96, 1504–1509 (1999). This work demonstrated that repeats that could form structures were not repaired during meiosis, whereas unstructured repeats were removed. This indicated that the DNA secondary structure prevented the removal of looped expansion intermediates. (10.1073/pnas.96.4.1504) / Proc. Natl Acad. Sci. USA by H Moore (1999)
  117. Gu, Y. et al. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6. J.Biol. Chem. 277, 11135–11142 (2002). (10.1074/jbc.M108618200) / J.Biol. Chem. by Y Gu (2002)
  118. Kulaksiz, G., Reardon, J. T. . & Sancar, A. Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol. Cell. Biol. 25, 9784–9792 (2005). (10.1128/MCB.25.22.9784-9792.2005) / Mol. Cell. Biol. by G Kulaksiz (2005)
  119. Masutani, C. et al. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399, 700–704 (1999). (10.1038/21447) / Nature by C Masutani (1999)
  120. McCulloch, S. D., Kokoska, R. J., Garg, P., Burgers, P. M. & Kunkel, T. A. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases δ and η. Nucleic Acids Res. 37, 2830–2840 (2009). (10.1093/nar/gkp103) / Nucleic Acids Res. by SD McCulloch (2009)
  121. Yoshimura, M. et al. Vertebrate POLQ and POLβ cooperate in base excision repair of oxidative DNA damage. Mol. Cell 24, 115–125 (2006). (10.1016/j.molcel.2006.07.032) / Mol. Cell by M Yoshimura (2006)
  122. Braithwaite, E. K., Kedar, P. S. & Lan, L. DNA polymerase λ protects mouse fibroblasts against oxidative DNA damage and is recruited to sites of DNA damage/repair. J. Biol. Chem. 280, 31641–31647 (2005). (10.1074/jbc.C500256200) / J. Biol. Chem. by EK Braithwaite (2005)
  123. Libby, R. T. et al. CTCF cis-regulates trinucleotide repeat instability in an epigenetic manner: a novel basis for mutational hot spot determination. PLoS Genet. 4, e1000257 (2008). This work was the first to definitively demonstrate that chromosomal position could determine whether a repeat tract was unstable. The evidence suggested that chromatin context was a key factor in expansion. (10.1371/journal.pgen.1000257) / PLoS Genet. by RT Libby (2008)
  124. Brock, G. J., Anderson, N. H. & Monckton, D. G. Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: associations with flanking GC content and proximity to CpG islands. Hum. Mol. Genet. 8, 1061–1067 (1999). (10.1093/hmg/8.6.1061) / Hum. Mol. Genet. by GJ Brock (1999)
  125. Engel, N., Thorvaldsen, J. L. & Bartolomei, M. S. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum. Mol. Genet. 17, 1306–1317 (2008). (10.1093/hmg/ddn200) / Hum. Mol. Genet. by N Engel (2008)
Dates
Type When
Created 14 years, 10 months ago (Oct. 18, 2010, 5:37 a.m.)
Deposited 1 year, 5 months ago (March 31, 2024, 9:24 a.m.)
Indexed 5 days, 21 hours ago (Aug. 31, 2025, 6:07 a.m.)
Issued 14 years, 10 months ago (Oct. 18, 2010)
Published 14 years, 10 months ago (Oct. 18, 2010)
Published Online 14 years, 10 months ago (Oct. 18, 2010)
Published Print 14 years, 10 months ago (Nov. 1, 2010)
Funders 0

None

@article{McMurray_2010, title={Mechanisms of trinucleotide repeat instability during human development}, volume={11}, ISSN={1471-0064}, url={http://dx.doi.org/10.1038/nrg2828}, DOI={10.1038/nrg2828}, number={11}, journal={Nature Reviews Genetics}, publisher={Springer Science and Business Media LLC}, author={McMurray, Cynthia T.}, year={2010}, month=oct, pages={786–799} }