Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Genetics (297)
References
122
Referenced
906
-
Modrek, B. & Lee, C. A genomic view of alternative splicing. Nature Genet. 30, 13–19 (2002).
(
10.1038/ng0102-13
) / Nature Genet. by B Modrek (2002) -
Tazi, J., Bakkour, N. & Stamm, S. Alternative splicing and disease. Biochim. Biophys. Acta 1792, 14–26 (2009).
(
10.1016/j.bbadis.2008.09.017
) / Biochim. Biophys. Acta by J Tazi (2009) -
Wang, G. S. & Cooper, T. A. Splicing in disease: disruption of the splicing code and the decoding machinery. Nature Rev. Genet. 8, 749–761 (2007).
(
10.1038/nrg2164
) / Nature Rev. Genet. by GS Wang (2007) -
Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).
(
10.1038/nrg775
) / Nature Rev. Genet. by L Cartegni (2002) -
Venables, J. P. Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004).
(
10.1158/0008-5472.CAN-04-1910
) / Cancer Res. by JP Venables (2004) -
Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).
(
10.1038/nature07509
) / Nature by ET Wang (2008) -
Chen, M. & Manley, J. L. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature Rev. Mol. Cell Biol. 10, 741–754 (2009).
(
10.1038/nrm2777
) / Nature Rev. Mol. Cell Biol. by M Chen (2009) -
Hartmann, B. & Valcarcel, J. Decrypting the genome's alternative messages. Curr. Opin. Cell Biol. 21, 377–386 (2009).
(
10.1016/j.ceb.2009.02.006
) / Curr. Opin. Cell Biol. by B Hartmann (2009) -
Hui, J. Regulation of mammalian pre-mRNA splicing. Sci. China C Life Sci. 52, 253–260 (2009).
(
10.1007/s11427-009-0037-0
) / Sci. China C Life Sci. by J Hui (2009) -
Licatalosi, D. D. & Darnell, R. B. RNA processing and its regulation: global insights into biological networks. Nature Rev. Genet. 11, 75–87 (2010).
(
10.1038/nrg2673
) / Nature Rev. Genet. by DD Licatalosi (2010) -
Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon–intron structure. Nature Struct. Mol. Biol. 16, 990–995 (2009). This paper shows that exons have increased nucleosome occupancy levels compared with introns, and four specific post-translational histone modifications are enriched in exons. This article, together with Tilgner et al . and Andersson et al . (references 98 and 99, respectively), presents evidence that the positioning and modifications of nucleosomes might help to define the exon–intron architecture of genes.
(
10.1038/nsmb.1659
) / Nature Struct. Mol. Biol. by S Schwartz (2009) -
Ast, G. How did alternative splicing evolve? Nature Rev. Genet. 5, 773–782 (2004).
(
10.1038/nrg1451
) / Nature Rev. Genet. by G Ast (2004) -
Ram, O. & Ast, G. SR proteins: a foot on the exon before the transition from intron to exon definition. Trends Genet. 23, 5–7 (2007).
(
10.1016/j.tig.2006.10.002
) / Trends Genet. by O Ram (2007) -
Edgell, D. R., Belfort, M. & Shub, D. A. Barriers to intron promiscuity in bacteria. J. Bacteriol. 182, 5281–5289 (2000).
(
10.1128/JB.182.19.5281-5289.2000
) / J. Bacteriol. by DR Edgell (2000) -
Watanabe, Y. et al. Introns in protein-coding genes in archaea. FEBS Lett. 510, 27–30 (2002).
(
10.1016/S0014-5793(01)03219-7
) / FEBS Lett. by Y Watanabe (2002) -
Yokobori, S. et al. Gain and loss of an intron in a protein-coding gene in archaea: the case of an archaeal RNA pseudouridine synthase gene. BMC Evol. Biol. 9, 198 (2009).
(
10.1186/1471-2148-9-198
) / BMC Evol. Biol. by S Yokobori (2009) -
Alekseyenko, A. V., Kim, N. & Lee, C. J. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA 13, 661–670 (2007).
(
10.1261/rna.325107
) / RNA by AV Alekseyenko (2007) -
Artamonova, I. I. & Gelfand, M. S. Comparative genomics and evolution of alternative splicing: the pessimists' science. Chem. Rev. 107, 3407–3430 (2007).
(
10.1021/cr068304c
) / Chem. Rev. by II Artamonova (2007) -
Kim, E., Goren, A. & Ast, G. Alternative splicing: current perspectives. Bioessays 30, 38–47 (2008).
(
10.1002/bies.20692
) / Bioessays by E Kim (2008) -
Koren, E., Lev-Maor, G. & Ast, G. The emergence of alternative 3′ and 5′ splice site exons from constitutive exons. PLoS Comput. Biol. 3, e95 (2007).
(
10.1371/journal.pcbi.0030095
) / PLoS Comput. Biol. by E Koren (2007) -
Fox-Walsh, K. L. et al. The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc. Natl Acad. Sci. USA 102, 16176–16181 (2005).
(
10.1073/pnas.0508489102
) / Proc. Natl Acad. Sci. USA by KL Fox-Walsh (2005) -
Sterner, D. A., Carlo, T. & Berget, S. M. Architectural limits on split genes. Proc. Natl Acad. Sci. USA 93, 15081–15085 (1996).
(
10.1073/pnas.93.26.15081
) / Proc. Natl Acad. Sci. USA by DA Sterner (1996) -
Carmel, L., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Patterns of intron gain and conservation in eukaryotic genes. BMC Evol. Biol. 7, 192 (2007).
(
10.1186/1471-2148-7-192
) / BMC Evol. Biol. by L Carmel (2007) -
Li, W., Tucker, A. E., Sung, W., Thomas, W. K. & Lynch, M. Extensive, recent intron gains in Daphnia populations. Science 326, 1260–1262 (2009).
(
10.1126/science.1179302
) / Science by W Li (2009) -
Farlow, A., Meduri, E., Dolezal, M., Hua, L. & Schlötterer, C. Nonsense-mediated decay enables intron gain in Drosophila. PLoS Genet. 6, e1000819 (2010).
(
10.1371/journal.pgen.1000819
) / PLoS Genet. by A Farlow (2010) -
Sela, N. et al. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol. 8, R127 (2007).
(
10.1186/gb-2007-8-6-r127
) / Genome Biol. by N Sela (2007) -
Schwartz, S. H. et al. Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 18, 88–103 (2008).
(
10.1101/gr.6818908
) / Genome Res. by SH Schwartz (2008) -
Barbosa-Morais, N. L., Carmo-Fonseca, M. & Aparicio, S. Systematic genome-wide annotation of spliceosomal proteins reveals differential gene family expansion. Genome Res. 16, 66–77 (2006).
(
10.1101/gr.3936206
) / Genome Res. by NL Barbosa-Morais (2006) -
Fedorov, A., Merican, A. F. & Gilbert, W. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc. Natl Acad. Sci. USA 99, 16128–16133 (2002).
(
10.1073/pnas.242624899
) / Proc. Natl Acad. Sci. USA by A Fedorov (2002) -
Csuros, M., Rogozin, I. B. & Koonin, E. V. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol. Biol. Evol. 25, 903–911 (2008).
(
10.1093/molbev/msn039
) / Mol. Biol. Evol. by M Csuros (2008) -
Nguyen, H. D., Yoshihama, M. & Kenmochi, N. New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput. Biol. 1, e79 (2005).
(
10.1371/journal.pcbi.0010079
) / PLoS Comput. Biol. by HD Nguyen (2005) -
Roy, S. W. & Irimia, M. Splicing in the eukaryotic ancestor: form, function and dysfunction. Trends Ecol. Evol. 24, 447–455 (2009). This review covers important aspects of eukaryotic evolution.
(
10.1016/j.tree.2009.04.005
) / Trends Ecol. Evol. by SW Roy (2009) -
Rogozin, I. B., Wolf, Y. I., Sorokin, A. V., Mirkin, B. G. & Koonin, E. V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512–1517 (2003).
(
10.1016/S0960-9822(03)00558-X
) / Curr. Biol. by IB Rogozin (2003) -
Roy, S. W. & Gilbert, W. Rates of intron loss and gain: implications for early eukaryotic evolution. Proc. Natl Acad. Sci. USA 102, 5773–5778 (2005).
(
10.1073/pnas.0500383102
) / Proc. Natl Acad. Sci. USA by SW Roy (2005) -
Carmel, L., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res. 17, 1034–1044 (2007).
(
10.1101/gr.6438607
) / Genome Res. by L Carmel (2007) -
Jaillon, O. et al. Translational control of intron splicing in eukaryotes. Nature 451, 359–362 (2008).
(
10.1038/nature06495
) / Nature by O Jaillon (2008) -
Kerenyi, Z. et al. Inter-kingdom conservation of mechanism of nonsense-mediated mRNA decay. EMBO J. 27, 1585–1595 (2008).
(
10.1038/emboj.2008.88
) / EMBO J. by Z Kerenyi (2008) -
Plass, M., Agirre, E., Reyes, D., Camara, F. & Eyras, E. Co-evolution of the branch site and SR proteins in eukaryotes. Trends Genet. 24, 590–594 (2008).
(
10.1016/j.tig.2008.10.004
) / Trends Genet. by M Plass (2008) -
Gal-Mark, N., Schwartz, S., Ram, O., Eyras, E. & Ast, G. The pivotal roles of TIA proteins in 5′ splice-site selection of Alu exons and across evolution. PLoS Genet. 5, e1000717 (2009).
(
10.1371/journal.pgen.1000717
) / PLoS Genet. by N Gal-Mark (2009) -
Irimia, M., Rukov, J. L., Penny, D. & Roy, S. W. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol. Biol. 7, 188 (2007).
(
10.1186/1471-2148-7-188
) / BMC Evol. Biol. by M Irimia (2007) -
Lev-Maor, G., Sorek, R., Shomron, N. & Ast, G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science 300, 1288–1291 (2003).
(
10.1126/science.1082588
) / Science by G Lev-Maor (2003) -
Nurtdinov, R. N., Artamonova, I. I., Mironov, A. A. & Gelfand, M. S. Low conservation of alternative splicing patterns in the human and mouse genomes. Hum. Mol. Genet. 12, 1313–1320 (2003).
(
10.1093/hmg/ddg137
) / Hum. Mol. Genet. by RN Nurtdinov (2003) -
Thanaraj, T. A., Clark, F. & Muilu, J. Conservation of human alternative splice events in mouse. Nucleic Acids Res. 31, 2544–2552 (2003).
(
10.1093/nar/gkg355
) / Nucleic Acids Res. by TA Thanaraj (2003) -
Kondrashov, F. A. & Koonin, E. V. Evolution of alternative splicing: deletions, insertions and origin of functional parts of proteins from intron sequences. Trends Genet. 19, 115–119 (2003).
(
10.1016/S0168-9525(02)00029-X
) / Trends Genet. by FA Kondrashov (2003) -
Gilbert, W. Why genes in pieces? Nature 271, 501 (1978).
(
10.1038/271501a0
) / Nature by W Gilbert (1978) -
Kondrashov, F. A. & Koonin, E. V. Origin of alternative splicing by tandem exon duplication. Hum. Mol. Genet. 10, 2661–2669 (2001).
(
10.1093/hmg/10.23.2661
) / Hum. Mol. Genet. by FA Kondrashov (2001) -
Doolittle, R. F. The multiplicity of domains in proteins. Annu. Rev. Biochem. 64, 287–314 (1995).
(
10.1146/annurev.bi.64.070195.001443
) / Annu. Rev. Biochem. by RF Doolittle (1995) -
Kolkman, J. A. & Stemmer, W. P. Directed evolution of proteins by exon shuffling. Nature Biotech. 19, 423–428 (2001).
(
10.1038/88084
) / Nature Biotech. by JA Kolkman (2001) -
Liu, M. & Grigoriev, A. Protein domains correlate strongly with exons in multiple eukaryotic genomes — evidence of exon shuffling? Trends Genet. 20, 399–403 (2004). The authors found a strong correlation between borders of exons and protein domains in multiple eukaryotic genomes. This is consistent with the principles of exon shuffling.
(
10.1016/j.tig.2004.06.013
) / Trends Genet. by M Liu (2004) -
Peng, T. & Li, Y. Tandem exon duplication tends to propagate rather than to create de novo alternative splicing. Biochem. Biophys. Res. Commun. 383, 163–166 (2009).
(
10.1016/j.bbrc.2009.03.162
) / Biochem. Biophys. Res. Commun. by T Peng (2009) -
Letunic, I., Copley, R. R. & Bork, P. Common exon duplication in animals and its role in alternative splicing. Hum. Mol. Genet. 11, 1561–1567 (2002).
(
10.1093/hmg/11.13.1561
) / Hum. Mol. Genet. by I Letunic (2002) -
Gal-Mark, N., Schwartz, S. & Ast, G. Alternative splicing of Alu exons — two arms are better than one. Nucleic Acids Res. 36, 2012–2023 (2008).
(
10.1093/nar/gkn024
) / Nucleic Acids Res. by N Gal-Mark (2008) -
Long, M., Rosenberg, C. & Gilbert, W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl Acad. Sci. USA 92, 12495–12499 (1995).
(
10.1073/pnas.92.26.12495
) / Proc. Natl Acad. Sci. USA by M Long (1995) -
Patthy, L. Genome evolution and the evolution of exon-shuffling — a review. Gene 238, 103–114 (1999).
(
10.1016/S0378-1119(99)00228-0
) / Gene by L Patthy (1999) -
Patthy, L. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett. 214, 1–7 (1987).
(
10.1016/0014-5793(87)80002-9
) / FEBS Lett. by L Patthy (1987) -
Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).
(
10.1016/S0092-8674(00)80878-8
) / Cell by D Schmucker (2000) -
De Grassi, A. & Ciccarelli, F. D. Tandem repeats modify the structure of human genes hosted in segmental duplications. Genome Biol. 10, R137 (2009).
(
10.1186/gb-2009-10-12-r137
) / Genome Biol. by A De Grassi (2009) -
Parma, J., Christophe, D., Pohl, V. & Vassart, G. Structural organization of the 5′ region of the thyroglobulin gene. Evidence for intron loss and 'exonization' during evolution. J. Mol. Biol. 196, 769–779 (1987).
(
10.1016/0022-2836(87)90403-7
) / J. Mol. Biol. by J Parma (1987) -
Makalowski, W., Mitchell, G. A. & Labuda, D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet. 10, 188–193 (1994).
(
10.1016/0168-9525(94)90254-2
) / Trends Genet. by W Makalowski (1994) -
Sorek, R., Ast, G. & Graur, D. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060–1067 (2002).
(
10.1101/gr.229302
) / Genome Res. by R Sorek (2002) -
Nekrutenko, A. & Li, W. H. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17, 619–621 (2001).
(
10.1016/S0168-9525(01)02445-3
) / Trends Genet. by A Nekrutenko (2001) -
Wang, W. & Kirkness, E. F. Short interspersed elements (SINEs) are a major source of canine genomic diversity. Genome Res. 15, 1798–1808 (2005).
(
10.1101/gr.3765505
) / Genome Res. by W Wang (2005) -
Wang, W. et al. Origin and evolution of new exons in rodents. Genome Res. 15, 1258–1264 (2005).
(
10.1101/gr.3929705
) / Genome Res. by W Wang (2005) -
Kandul, N. P. & Noor, M. A. Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3. BMC Genet. 10, 67 (2009).
(
10.1186/1471-2156-10-67
) / BMC Genet. by NP Kandul (2009) -
Kent, L. B. & Robertson, H. M. Evolution of the sugar receptors in insects. BMC Evol. Biol. 9, 41 (2009).
(
10.1186/1471-2148-9-41
) / BMC Evol. Biol. by LB Kent (2009) -
Fu, Y. et al. Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA. Genome Res. 19, 913–921 (2009).
(
10.1101/gr.086876.108
) / Genome Res. by Y Fu (2009) -
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
(
10.1038/35057062
) / Nature by ES Lander (2001) -
Amit, M. et al. Biased exonization of transposed elements in duplicated genes: a lesson from the TIF-IA gene. BMC Mol. Biol. 8, 109 (2007).
(
10.1186/1471-2199-8-109
) / BMC Mol. Biol. by M Amit (2007) -
Mersch, B., Sela, N., Ast, G., Suhai, S. & Hotz-Wagenblatt, A. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements. BMC Genet. 8, 78 (2007).
(
10.1186/1471-2156-8-78
) / BMC Genet. by B Mersch (2007) -
Lin, L. et al. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 4, e1000225 (2008).
(
10.1371/journal.pgen.1000225
) / PLoS Genet. by L Lin (2008) -
Toll-Riera, M. et al. Origin of primate orphan genes: a comparative genomics approach. Mol. Biol. Evol. 26, 603–612 (2009).
(
10.1093/molbev/msn281
) / Mol. Biol. Evol. by M Toll-Riera (2009) -
Sorek, R. The birth of new exons: mechanisms and evolutionary consequences. RNA 13, 1603–1608 (2007).
(
10.1261/rna.682507
) / RNA by R Sorek (2007) -
Singer, S. S., Mannel, D. N., Hehlgans, T., Brosius, J. & Schmitz, J. From 'junk' to gene: curriculum vitae of a primate receptor isoform gene. J. Mol. Biol. 341, 883–886 (2004).
(
10.1016/j.jmb.2004.06.070
) / J. Mol. Biol. by SS Singer (2004) -
Krull, M., Brosius, J. & Schmitz, J. Alu-SINE exonization:en route to protein-coding function. Mol. Biol. Evol. 22, 1702–1711 (2005).
(
10.1093/molbev/msi164
) / Mol. Biol. Evol. by M Krull (2005) -
Kreahling, J. & Graveley, B. R. The origins and implications of Aluternative splicing. Trends Genet. 20, 1–4 (2004).
(
10.1016/j.tig.2003.11.001
) / Trends Genet. by J Kreahling (2004) -
Schwartz, S. et al. Alu exonization events reveal features required for precise recognition of exons by the splicing machinery. PLoS Comput. Biol. 5, e1000300 (2009). This article describes the features that are required for precise recognition of exons by the splicing machinery by analysing Alu exonization events.
(
10.1371/journal.pcbi.1000300
) / PLoS Comput. Biol. by S Schwartz (2009) -
Sorek, R. et al. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in Alu exons. Mol. Cell 14, 221–231 (2004).
(
10.1016/S1097-2765(04)00181-9
) / Mol. Cell by R Sorek (2004) -
Ram, O., Schwartz, S. & Ast, G. Multifactorial interplay controls the splicing profile of Alu-derived exons. Mol. Cell. Biol. 28, 3513–3525 (2008).
(
10.1128/MCB.02279-07
) / Mol. Cell. Biol. by O Ram (2008) -
Corvelo, A. & Eyras, E. Exon creation and establishment in human genes. Genome Biol. 9, R141 (2008). The authors show that specific sequence environments are required for exonization and that these can change with time.
(
10.1186/gb-2008-9-9-r141
) / Genome Biol. by A Corvelo (2008) -
Gombart, A. F., Saito, T. & Koeffler, H. P. Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates. BMC Genomics 10, 321 (2009).
(
10.1186/1471-2164-10-321
) / BMC Genomics by AF Gombart (2009) -
Lee, J. R. et al. Lineage specific evolutionary events on SFTPB gene: Alu recombination-mediated deletion (ARMD), exonization, and alternative splicing events. Gene 435, 29–35 (2009).
(
10.1016/j.gene.2009.01.008
) / Gene by JR Lee (2009) -
Pan, Q. et al. Alternative splicing of conserved exons is frequently species-specific in human and mouse. Trends Genet. 21, 73–77 (2005).
(
10.1016/j.tig.2004.12.004
) / Trends Genet. by Q Pan (2005) -
Lev-Maor, G. et al. The 'alternative' choice of constitutive exons throughout evolution. PLoS Genet. 3, e203 (2007). This paper shows that exons shift from constitutive to alternative splicing during evolution, and relaxation of the 5′ splice site sequence is one of the molecular mechanisms that leads to this shift.
(
10.1371/journal.pgen.0030203
) / PLoS Genet. by G Lev-Maor (2007) -
Ke, S., Zhang, X. H. & Chasin, L. A. Positive selection acting on splicing motifs reflects compensatory evolution. Genome Res. 18, 533–543 (2008).
(
10.1101/gr.070268.107
) / Genome Res. by S Ke (2008) -
Lev-Maor, G. et al. Intronic Alus influence alternative splicing. PLoS Genet. 4, e1000204 (2008). This article shows that Alu insertions into introns change the mode of splicing of the flanking exons.
(
10.1371/journal.pgen.1000204
) / PLoS Genet. by G Lev-Maor (2008) -
Tappino, B., Regis, S., Corsolini, F. & Filocamo, M. An Alu insertion in compound heterozygosity with a microduplication in GNPTAB gene underlies Mucolipidosis II. Mol. Genet. Metab. 93, 129–133 (2008).
(
10.1016/j.ymgme.2007.09.010
) / Mol. Genet. Metab. by B Tappino (2008) -
Mola, G., Vela, E., Fernandez-Figueras, M. T., Isamat, M. & Munoz-Marmol, A. M. Exonization of Alu-generated splice variants in the survivin gene of human and non-human primates. J. Mol. Biol. 366, 1055–1063 (2007).
(
10.1016/j.jmb.2006.11.089
) / J. Mol. Biol. by G Mola (2007) -
Sorek, R., Shamir, R. & Ast, G. How prevalent is functional alternative splicing in the human genome? Trends Genet. 20, 68–71 (2004).
(
10.1016/j.tig.2003.12.004
) / Trends Genet. by R Sorek (2004) -
Yeo, G. W., Van Nostrand, E., Holste, D., Poggio, T. & Burge, C. B. Identification and analysis of alternative splicing events conserved in human and mouse. Proc. Natl Acad. Sci. USA 102, 2850–2855 (2005).
(
10.1073/pnas.0409742102
) / Proc. Natl Acad. Sci. USA by GW Yeo (2005) -
Modrek, B. & Lee, C. J. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genet. 34, 177–180 (2003).
(
10.1038/ng1159
) / Nature Genet. by B Modrek (2003) -
Magen, A. & Ast, G. The importance of being divisible by three in alternative splicing. Nucleic Acids Res. 33, 5574–5582 (2005).
(
10.1093/nar/gki858
) / Nucleic Acids Res. by A Magen (2005) -
Irimia, M. et al. Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis. Mol. Biol. Evol. 25, 375–382 (2008).
(
10.1093/molbev/msm262
) / Mol. Biol. Evol. by M Irimia (2008) -
Melamud, E. & Moult, J. Stochastic noise in splicing machinery. Nucleic Acids Res. 37, 4873–4886 (2009).
(
10.1093/nar/gkp471
) / Nucleic Acids Res. by E Melamud (2009) -
Xing, Y. & Lee, C. Alternative splicing and RNA selection pressure — evolutionary consequences for eukaryotic genomes. Nature Rev. Genet. 7, 499–509 (2006).
(
10.1038/nrg1896
) / Nature Rev. Genet. by Y Xing (2006) -
Ermakova, E. O., Nurtdinov, R. N. & Gelfand, M. S. Fast rate of evolution in alternatively spliced coding regions of mammalian genes. BMC Genomics 7, 84 (2006).
(
10.1186/1471-2164-7-84
) / BMC Genomics by EO Ermakova (2006) -
Wang, Z. & Burge, C. B. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14, 802–813 (2008).
(
10.1261/rna.876308
) / RNA by Z Wang (2008) -
Plass, M. & Eyras, E. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation. BMC Evol. Biol. 6, 50 (2006).
(
10.1186/1471-2148-6-50
) / BMC Evol. Biol. by M Plass (2006) -
Sakabe, N. J. & de Souza, S. J. Sequence features responsible for intron retention in human. BMC Genomics 8, 59 (2007).
(
10.1186/1471-2164-8-59
) / BMC Genomics by NJ Sakabe (2007) -
Tilgner, H. et al. Nucleosome positioning as a determinant of exon recognition. Nature Struct. Mol. Biol. 16, 996–1001 (2009). The authors found stronger nucleosome occupancy in exons than in exons with weak splice sites and in pseudoexons.
(
10.1038/nsmb.1658
) / Nature Struct. Mol. Biol. by H Tilgner (2009) -
Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C. & Komorowski, J. Nucleosomes are well positioned in exons and carry characteristic histone modifications. Genome Res. 19, 1732–1741 (2009). The authors found higher nucleosome occupancy in exons. The exons were enriched with specific histone modifications.
(
10.1101/gr.092353.109
) / Genome Res. by R Andersson (2009) -
Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M. & Bustamante, C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325, 626–628 (2009).
(
10.1126/science.1172926
) / Science by C Hodges (2009) -
Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nature Genet. 41, 376–381 (2009).
(
10.1038/ng.322
) / Nature Genet. by P Kolasinska-Zwierz (2009) -
Luco, R. F. et al. Regulation of alternative splicing by histone modifications. Science 327, 996–1000 (2010). The authors show the first direct link between histone modification and AS: the modulation of AS resulted in splice-site switching.
(
10.1126/science.1184208
) / Science by RF Luco (2010) -
Nahkuri, S., Taft, R. J. & Mattick, J. S. Nucleosomes are preferentially positioned at exons in somatic and sperm cells. Cell Cycle 8, 3420–3424 (2009).
(
10.4161/cc.8.20.9916
) / Cell Cycle by S Nahkuri (2009) -
Lavelle, C. & Prunell, A. Chromatin polymorphism and the nucleosome superfamily: a genealogy. Cell Cycle 6, 2113–2119 (2007).
(
10.4161/cc.6.17.4631
) / Cell Cycle by C Lavelle (2007) -
Sivolob, A. & Prunell, A. Nucleosome conformational flexibility and implications for chromatin dynamics. Philos. Transact. A Math. Phys. Eng. Sci. 362, 1519–1547 (2004).
(
10.1098/rsta.2004.1387
) / Philos. Transact. A Math. Phys. Eng. Sci. by A Sivolob (2004) -
Alilat, M., Sivolob, A., Revet, B. & Prunell, A. Nucleosome dynamics. Protein and DNA contributions in the chiral transition of the tetrasome, the histone (H3–H4)2 tetramer–DNA particle. J. Mol. Biol. 291, 815–841 (1999).
(
10.1006/jmbi.1999.2988
) / J. Mol. Biol. by M Alilat (1999) -
Kaplan, C. D. Revealing the hidden relationship between nucleosomes and splicing. Cell Cycle 8, 3633–3634 (2009).
(
10.4161/cc.8.22.10289
) / Cell Cycle by CD Kaplan (2009) -
Garcia-Blanco, M. A., Baraniak, A. P. & Lasda, E. L. Alternative splicing in disease and therapy. Nature Biotech. 22, 535–546 (2004).
(
10.1038/nbt964
) / Nature Biotech. by MA Garcia-Blanco (2004) -
Wood, M., Yin, H. & McClorey, G. Modulating the expression of disease genes with RNA-based therapy. PLoS Genet. 3, e109 (2007).
(
10.1371/journal.pgen.0030109
) / PLoS Genet. by M Wood (2007) - Sugnet, C. W., Kent, W. J., Ares, M. Jr & Haussler, D. Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac. Symp. Biocomput. 9, 66–77 (2004). / Pac. Symp. Biocomput. by CW Sugnet (2004)
-
Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).
(
10.1146/annurev.biochem.72.121801.161720
) / Annu. Rev. Biochem. by DL Black (2003) -
Labrador, M. & Corces, V. G. Extensive exon reshuffling over evolutionary time coupled to trans-splicing in Drosophila. Genome Res. 13, 2220–2228 (2003).
(
10.1101/gr.1440703
) / Genome Res. by M Labrador (2003) -
van Rijk, A. & Bloemendal, H. Molecular mechanisms of exon shuffling: illegitimate recombination. Genetica 118, 245–249 (2003).
(
10.1023/A:1024138600624
) / Genetica by A van Rijk (2003) -
Babushok, D. V., Ostertag, E. M. & Kazazian, H. H. Jr. Current topics in genome evolution: molecular mechanisms of new gene formation. Cell. Mol. Life Sci. 64, 542–554 (2007).
(
10.1007/s00018-006-6453-4
) / Cell. Mol. Life Sci. by DV Babushok (2007) -
Patthy, L. Exon shuffling and other ways of module exchange. Matrix Biol. 15, 301–310; discussion 311–312 (1996).
(
10.1016/S0945-053X(96)90131-6
) / Matrix Biol. by L Patthy (1996) -
van Rijk, A. A., de Jong, W. W. & Bloemendal, H. Exon shuffling mimicked in cell culture. Proc. Natl Acad. Sci. USA 96, 8074–8079 (1999).
(
10.1073/pnas.96.14.8074
) / Proc. Natl Acad. Sci. USA by AA van Rijk (1999) -
Bass, B. L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).
(
10.1146/annurev.biochem.71.110601.135501
) / Annu. Rev. Biochem. by BL Bass (2002) -
Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).
(
10.1371/journal.pbio.0020391
) / PLoS Biol. by A Athanasiadis (2004) -
Lev-Maor, G. et al. RNA-editing-mediated exon evolution. Genome Biol. 8, R29 (2007).
(
10.1186/gb-2007-8-2-r29
) / Genome Biol. by G Lev-Maor (2007) -
Moller-Krull, M., Zemann, A., Roos, C., Brosius, J. & Schmitz, J. Beyond DNA: RNA editing and steps toward Alu exonization in primates. J. Mol. Biol. 382, 601–609 (2008).
(
10.1016/j.jmb.2008.07.014
) / J. Mol. Biol. by M Moller-Krull (2008) -
Gommans, W. M., Mullen, S. P. & Maas, S. RNA editing: a driving force for adaptive evolution? Bioessays 31, 1137–1145 (2009).
(
10.1002/bies.200900045
) / Bioessays by WM Gommans (2009)
Dates
Type | When |
---|---|
Created | 15 years, 4 months ago (April 8, 2010, 12:01 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 11:22 p.m.) |
Indexed | 1 day, 16 hours ago (Aug. 29, 2025, 6:13 a.m.) |
Issued | 15 years, 4 months ago (April 8, 2010) |
Published | 15 years, 4 months ago (April 8, 2010) |
Published Online | 15 years, 4 months ago (April 8, 2010) |
Published Print | 15 years, 3 months ago (May 1, 2010) |
@article{Keren_2010, title={Alternative splicing and evolution: diversification, exon definition and function}, volume={11}, ISSN={1471-0064}, url={http://dx.doi.org/10.1038/nrg2776}, DOI={10.1038/nrg2776}, number={5}, journal={Nature Reviews Genetics}, publisher={Springer Science and Business Media LLC}, author={Keren, Hadas and Lev-Maor, Galit and Ast, Gil}, year={2010}, month=apr, pages={345–355} }