Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Genetics (297)
Bibliography

Allshire, R. C., & Karpen, G. H. (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nature Reviews Genetics, 9(12), 923–937.

Authors 2
  1. Robin C. Allshire (first)
  2. Gary H. Karpen (additional)
References 124 Referenced 490
  1. Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res. 67, 10103–10105 (2007). (10.1158/0008-5472.CAN-07-2266) / Cancer Res. by BA Weaver (2007)
  2. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001). (10.1038/35066065) / Nature Rev. Genet. by T Hassold (2001)
  3. Monaco, Z. L. & Moralli, D. Progress in artificial chromosome technology. Biochem. Soc. Trans. 34, 324–327 (2006). (10.1042/BST0340324) / Biochem. Soc. Trans. by ZL Monaco (2006)
  4. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007). (10.1146/annurev.biochem.76.052705.160607) / Annu. Rev. Biochem. by S Westermann (2007)
  5. Spence, J. M. et al. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J. 21, 5269–5280 (2002). (10.1093/emboj/cdf511) / EMBO J. by JM Spence (2002)
  6. Mitchell, A. R., Jeppesen, P., Nicol, L., Morrison, H. & Kipling, D. Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? J. Cell Sci. 109, 2199–2206 (1996). (10.1242/jcs.109.9.2199) / J. Cell Sci. by AR Mitchell (1996)
  7. Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002). (10.1016/S1534-5807(02)00135-1) / Dev. Cell by MD Blower (2002)
  8. Lam, A. L., Boivin, C. D., Bonney, C. F., Rudd, M. K. & Sullivan, B. A. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc. Natl Acad. Sci. USA 103, 4186–4191 (2006). (10.1073/pnas.0507947103) / Proc. Natl Acad. Sci. USA by AL Lam (2006)
  9. Henikoff, S. & Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15, 177–184 (2005). (10.1016/j.gde.2005.01.004) / Curr. Opin. Genet. Dev. by S Henikoff (2005)
  10. Dawe, R. K. & Henikoff, S. Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31, 662–669 (2006). (10.1016/j.tibs.2006.10.004) / Trends Biochem. Sci. by RK Dawe (2006)
  11. Sullivan, B. A., Blower, M. D. & Karpen, G. H. Determining centromere identity: cyclical stories and forking paths. Nature Rev. Genet. 2, 584–596 (2001). (10.1038/35084512) / Nature Rev. Genet. by BA Sullivan (2001)
  12. Mellone, B. G. & Allshire, R. C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13, 191–198 (2003). (10.1016/S0959-437X(03)00019-4) / Curr. Opin. Genet. Dev. by BG Mellone (2003)
  13. Karpen, G. H. & Allshire, R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496 (1997). (10.1016/S0168-9525(97)01298-5) / Trends Genet. by GH Karpen (1997)
  14. Earnshaw, W. C. & Migeon, B. R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296 (1985). (10.1007/BF00329812) / Chromosoma by WC Earnshaw (1985)
  15. Warburton, P. E. et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997). (10.1016/S0960-9822(06)00382-4) / Curr. Biol. by PE Warburton (1997)
  16. Sullivan, B. A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995). (10.1093/hmg/4.12.2189) / Hum. Mol. Genet. by BA Sullivan (1995)
  17. Sullivan, B. A. & Willard, H. F. Stable dicentric X chromosomes with two functional centromeres. Nature Genet. 20, 227–228 (1998). (10.1038/3024) / Nature Genet. by BA Sullivan (1998)
  18. Agudo, M. et al. A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109, 190–196 (2000). (10.1007/s004120050427) / Chromosoma by M Agudo (2000)
  19. Alonso, A. et al. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol. 8, R148 (2007). (10.1186/gb-2007-8-7-r148) / Genome Biol. by A Alonso (2007)
  20. Warburton, P. E. Chromosomal dynamics of human neocentromere formation. Chromosome Res. 12, 617–626 (2004). (10.1023/B:CHRO.0000036585.44138.4b) / Chromosome Res. by PE Warburton (2004)
  21. Choo, K. H. Domain organization at the centromere and neocentromere. Dev. Cell 1, 165–177 (2001). (10.1016/S1534-5807(01)00028-4) / Dev. Cell by KH Choo (2001)
  22. Lo, A. W. et al. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11, 448–457 (2001). (10.1101/gr.167601) / Genome Res. by AW Lo (2001)
  23. Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet. 18, 30–37 (1998). (10.1038/ng0198-30) / Nature Genet. by BC Williams (1998)
  24. Steiner, N. C. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79, 865–874 (1994). (10.1016/0092-8674(94)90075-2) / Cell by NC Steiner (1994)
  25. Ishii, K. et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321, 1088–1091 (2008). (10.1126/science.1158699) / Science by K Ishii (2008)
  26. Bulazel, K. V., Ferreri, G. C., Eldridge, M. D. & O'Neill, R. J. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol. 8, R170 (2007). (10.1186/gb-2007-8-8-r170) / Genome Biol. by KV Bulazel (2007)
  27. Malik, H. S. & Henikoff, S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12, 711–718 (2002). (10.1016/S0959-437X(02)00351-9) / Curr. Opin. Genet. Dev. by HS Malik (2002)
  28. Murphy, T. D. & Karpen, G. H. Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93, 317–320 (1998). (10.1016/S0092-8674(00)81158-7) / Cell by TD Murphy (1998)
  29. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007). (10.1016/j.cell.2007.02.005) / Cell by T Kouzarides (2007)
  30. Li, B. et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl Acad. Sci. USA 102, 18385–18390 (2005). (10.1073/pnas.0507975102) / Proc. Natl Acad. Sci. USA by B Li (2005)
  31. Raisner, R. M. et al. Histone variant H2A.Z. marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005). (10.1016/j.cell.2005.10.002) / Cell by RM Raisner (2005)
  32. Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003). (10.1016/S0092-8674(03)00123-5) / Cell by MD Meneghini (2003)
  33. Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525–530 (2007). (10.1073/pnas.0607870104) / Proc. Natl Acad. Sci. USA by IK Greaves (2007)
  34. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002). (10.1016/S1097-2765(02)00542-7) / Mol. Cell by K Ahmad (2002)
  35. Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005). (10.1038/ng1637) / Nature Genet. by Y Mito (2005)
  36. Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Rev. Genet. 9, 15–26 (2008). (10.1038/nrg2206) / Nature Rev. Genet. by S Henikoff (2008)
  37. Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004). (10.1126/science.1090701) / Science by G Mizuguchi (2004)
  38. Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004). (10.1016/S0092-8674(03)01064-X) / Cell by H Tagami (2004)
  39. Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998). (10.1016/S0092-8674(00)81602-5) / Cell by PB Meluh (1998)
  40. Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999). (10.1038/44062) / Nature by BJ Buchwitz (1999)
  41. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001). (10.1038/35087045) / Nature Cell Biol. by MD Blower (2001)
  42. Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA 97, 716–721 (2000). (10.1073/pnas.97.2.716) / Proc. Natl Acad. Sci. USA by S Henikoff (2000)
  43. Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995). (10.1101/gad.9.5.573) / Genes Dev. by S Stoler (1995)
  44. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000). (10.1126/science.288.5474.2215) / Science by K Takahashi (2000)
  45. Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994). (10.1083/jcb.127.3.581) / J. Cell Biol. by KF Sullivan (1994)
  46. Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987). (10.1083/jcb.104.4.805) / J. Cell Biol. by DK Palmer (1987)
  47. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006). (10.1016/j.devcel.2006.01.014) / Dev. Cell by P Heun (2006)
  48. Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA 104, 14706–14711 (2007). (10.1073/pnas.0706985104) / Proc. Natl Acad. Sci. USA by S Furuyama (2007)
  49. Yan, H. & Jiang, J. Rice as a model for centromere and heterochromatin research. Chromosome Res. 15, 77–84 (2007). (10.1007/s10577-006-1104-z) / Chromosome Res. by H Yan (2007)
  50. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004). (10.1038/nsmb845) / Nature Struct. Mol. Biol. by BA Sullivan (2004)
  51. Castillo, A. G. et al. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet. 3, e121 (2007). (10.1371/journal.pgen.0030121) / PLoS Genet. by AG Castillo (2007)
  52. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005). (10.1038/ng1602) / Nature Genet. by HP Cam (2005)
  53. Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90 (2008). (10.1016/j.cub.2007.12.019) / Curr. Biol. by E Yeh (2008)
  54. Gregan, J. et al. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr. Biol. 17, 1190–1200 (2007). (10.1016/j.cub.2007.06.044) / Curr. Biol. by J Gregan (2007)
  55. Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004). (10.1038/nature02766) / Nature by BE Black (2004)
  56. Polizzi, C. & Clarke, L. The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J. Cell Biol. 112, 191–201 (1991). (10.1083/jcb.112.2.191) / J. Cell Biol. by C Polizzi (1991)
  57. Takahashi, K. et al. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3, 819–835 (1992). (10.1091/mbc.3.7.819) / Mol. Biol. Cell by K Takahashi (1992)
  58. Baum, M., Sanyal, K., Mishra, P. K., Thaler, N. & Carbon, J. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc. Natl Acad. Sci. USA 103, 14877–14882 (2006). (10.1073/pnas.0606958103) / Proc. Natl Acad. Sci. USA by M Baum (2006)
  59. Yoda, K. et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl Acad. Sci. USA 97, 7266–7271 (2000). (10.1073/pnas.130189697) / Proc. Natl Acad. Sci. USA by K Yoda (2000)
  60. Black, B. E., Brock, M. A., Bedard, S., Woods, V. L. Jr & Cleveland, D. W. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 5008–5013 (2007). (10.1073/pnas.0700390104) / Proc. Natl Acad. Sci. USA by BE Black (2007)
  61. Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370, 555–573 (2007). (10.1016/j.jmb.2007.04.064) / J. Mol. Biol. by N Conde e Silva (2007)
  62. Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007). (10.1016/j.cell.2007.04.026) / Cell by G Mizuguchi (2007)
  63. Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007). (10.1371/journal.pbio.0050218) / PLoS Biol. by Y Dalal (2007)
  64. Black, B. E. & Bassett, E. A. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol. 20, 91–100 (2008). (10.1016/j.ceb.2007.11.007) / Curr. Opin. Cell Biol. by BE Black (2008)
  65. Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006). (10.1038/ncb1397) / Nature Cell Biol. by DR Foltz (2006)
  66. Maruyama, T., Nakamura, T., Hayashi, T. & Yanagida, M. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. EMBO J. 25, 2420–2431 (2006). (10.1038/sj.emboj.7601110) / EMBO J. by T Maruyama (2006)
  67. Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986). (10.1016/0022-2836(86)90390-6) / J. Mol. Biol. by JM Sogo (1986)
  68. Mello, J. A. & Almouzni, G. The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev. 11, 136–141 (2001). (10.1016/S0959-437X(00)00170-2) / Curr. Opin. Genet. Dev. by JA Mello (2001)
  69. Rocha, W. & Verreault, A. Clothing up DNA for all seasons: histone chaperones and nucleosome assembly pathways. FEBS Lett. 582, 1938–1949 (2008). (10.1016/j.febslet.2008.03.006) / FEBS Lett. by W Rocha (2008)
  70. Sugasawa, K. et al. Nonconservative segregation of parental nucleosomes during simian virus 40 chromosome replication in vitro. Proc. Natl Acad. Sci. USA 89, 1055–1059 (1992). (10.1073/pnas.89.3.1055) / Proc. Natl Acad. Sci. USA by K Sugasawa (1992)
  71. Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000). (10.1083/jcb.151.5.1113) / J. Cell Biol. by RD Shelby (2000)
  72. Sullivan, B. & Karpen, G. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154, 683–690 (2001). (10.1083/jcb.200103001) / J. Cell Biol. by B Sullivan (2001)
  73. Kim, S. M., Dubey, D. D. & Huberman, J. A. Early-replicating heterochromatin. Genes Dev. 17, 330–335 (2003). (10.1101/gad.1046203) / Genes Dev. by SM Kim (2003)
  74. Pearson, C. G. et al. Stable kinetochore–microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004). (10.1016/j.cub.2004.09.086) / Curr. Biol. by CG Pearson (2004)
  75. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007). (10.1083/jcb.200701066) / J. Cell Biol. by LE Jansen (2007)
  76. Takayama, Y. et al. Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol. Biol. Cell 19, 682–690 (2008). (10.1091/mbc.e07-05-0504) / Mol. Biol. Cell by Y Takayama (2008)
  77. Chen, E. S., Saitoh, S., Yanagida, M. & Takahashi, K. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol. Cell 11, 175–187 (2003). (10.1016/S1097-2765(03)00011-X) / Mol. Cell by ES Chen (2003)
  78. Takayama, Y. & Takahashi, K. Differential regulation of repeated histone genes during the fission yeast cell cycle. Nucleic Acids Res. 35, 3223–3237 (2007). (10.1093/nar/gkm213) / Nucleic Acids Res. by Y Takayama (2007)
  79. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007). (10.1016/j.cub.2006.11.051) / Curr. Biol. by M Schuh (2007)
  80. Carroll, C. W. & Straight, A. F. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol. 16, 70–78 (2006). (10.1016/j.tcb.2005.12.008) / Trends Cell Biol. by CW Carroll (2006)
  81. Keith, K. C. et al. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol. Cell Biol. 19, 6130–6139 (1999). (10.1128/MCB.19.9.6130) / Mol. Cell Biol. by KC Keith (1999)
  82. Shelby, R. D., Vafa, O. & Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136, 501–513 (1997). (10.1083/jcb.136.3.501) / J. Cell Biol. by RD Shelby (1997)
  83. Vermaak, D., Hayden, H. S. & Henikoff, S. Centromere targeting element within the histone fold domain of Cid. Mol. Cell Biol. 22, 7553–7561 (2002). (10.1128/MCB.22.21.7553-7561.2002) / Mol. Cell Biol. by D Vermaak (2002)
  84. Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007). (10.1016/j.molcel.2007.05.013) / Mol. Cell by R Camahort (2007)
  85. Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA 104, 10571–10576 (2007). (10.1073/pnas.0703178104) / Proc. Natl Acad. Sci. USA by S Stoler (2007)
  86. Saitoh, S., Takahashi, K. & Yanagida, M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90, 131–143 (1997). (10.1016/S0092-8674(00)80320-7) / Cell by S Saitoh (1997)
  87. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004). (10.1016/j.cell.2004.09.002) / Cell by T Hayashi (2004)
  88. Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007). (10.1083/jcb.200701065) / J. Cell Biol. by PS Maddox (2007)
  89. Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell 12, 17–30 (2007). (10.1016/j.devcel.2006.11.002) / Dev. Cell by Y Fujita (2007)
  90. Dunleavy, E. M. et al. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol. Cell 28, 1029–1044 (2007). (10.1016/j.molcel.2007.10.010) / Mol. Cell by EM Dunleavy (2007)
  91. Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006). (10.1038/ncb1396) / Nature Cell Biol. by M Okada (2006)
  92. Erhardt, S., Mellone, B. G., Betts, C. M., Zhang, W., Karpen G. H. & Straight, A. F. Genome-wide analysis reveals a cell-cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. (in the press).
  93. Ahmad, K. & Henikoff, S. Centromeres are specialized replication domains in heterochromatin. J. Cell Biol. 153, 101–110 (2001). (10.1083/jcb.153.1.101) / J. Cell Biol. by K Ahmad (2001)
  94. Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006). (10.1073/pnas.0601686103) / Proc. Natl Acad. Sci. USA by T Furuyama (2006)
  95. Carlson, S. R. et al. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet. 3, 1965–1974 (2007). (10.1371/journal.pgen.0030179) / PLoS Genet. by SR Carlson (2007)
  96. Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustashaw, K. & Willard, H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet. 15, 345–355 (1997). (10.1038/ng0497-345) / Nature Genet. by JJ Harrington (1997)
  97. Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nature Biotechnol. 16, 431–439 (1998). (10.1038/nbt0598-431) / Nature Biotechnol. by M Ikeno (1998)
  98. Hahnenberger, K. M., Baum, M. P., Polizzi, C. M., Carbon, J. & Clarke, L. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 86, 577–581 (1989). (10.1073/pnas.86.2.577) / Proc. Natl Acad. Sci. USA by KM Hahnenberger (1989)
  99. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980). (10.1038/287504a0) / Nature by L Clarke (1980)
  100. Okada, T. et al. CENP-B controls centromere formation depending on the chromatin context. Cell 131, 1287–1300 (2007). (10.1016/j.cell.2007.10.045) / Cell by T Okada (2007)
  101. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008). (10.1016/j.devcel.2008.02.001) / Dev. Cell by M Nakano (2008)
  102. Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008). (10.1126/science.1150944) / Science by HD Folco (2008)
  103. Buhler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nature Struct. Mol. Biol. 14, 1041–1048 (2007). (10.1038/nsmb1315) / Nature Struct. Mol. Biol. by M Buhler (2007)
  104. Grewal, S. I. & Elgin, S. C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007). (10.1038/nature05914) / Nature by SI Grewal (2007)
  105. Grummt, I. Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum. Mol. Genet. 16, R21–R27 (2007). (10.1093/hmg/ddm020) / Hum. Mol. Genet. by I Grummt (2007)
  106. Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. Curr. Top. Microbiol. Immunol. 310, 117–140 (2006). / Curr. Top. Microbiol. Immunol. by S Rea (2006)
  107. Rieder, C. L. Ribonucleoprotein staining of centrioles and kinetochores in newt lung cell spindles. J. Cell Biol. 80, 1–9 (1979). (10.1083/jcb.80.1.1) / J. Cell Biol. by CL Rieder (1979)
  108. Bouzinba-Segard, H., Guais, A. & Francastel, C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc. Natl Acad. Sci. USA 103, 8709–8714 (2006). (10.1073/pnas.0508006103) / Proc. Natl Acad. Sci. USA by H Bouzinba-Segard (2006)
  109. May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L. & Martienssen, R. A. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet. 1, e79 (2005). (10.1371/journal.pgen.0010079) / PLoS Genet. by BP May (2005)
  110. Neumann, P., Yan, H. & Jiang, J. The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176, 749–761 (2007). (10.1534/genetics.107.071902) / Genetics by P Neumann (2007)
  111. Yan, H. et al. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18, 2123–2133 (2006). (10.1105/tpc.106.043794) / Plant Cell by H Yan (2006)
  112. Saffery, R. et al. Transcription within a functional human centromere. Mol. Cell 12, 509–516 (2003). (10.1016/S1097-2765(03)00279-X) / Mol. Cell by R Saffery (2003)
  113. Topp, C. N., Zhong, C. X. & Dawe, R. K. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc. Natl Acad. Sci. USA 101, 15986–15991 (2004). (10.1073/pnas.0407154101) / Proc. Natl Acad. Sci. USA by CN Topp (2004)
  114. Wong, L. H. et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res. 17, 1146–1160 (2007). (10.1101/gr.6022807) / Genome Res. by LH Wong (2007)
  115. Chen, E. S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008). (10.1038/nature06561) / Nature by ES Chen (2008)
  116. Williams, S. K. & Tyler, J. K. Transcriptional regulation by chromatin disassembly and reassembly. Curr. Opin. Genet. Dev. 17, 88–93 (2007). (10.1016/j.gde.2007.02.001) / Curr. Opin. Genet. Dev. by SK Williams (2007)
  117. Reinberg, D. & Sims, R. J. 3rd de FACTo nucleosome dynamics. J. Biol. Chem. 281, 23297–23301 (2006). (10.1074/jbc.R600007200) / J. Biol. Chem. by D Reinberg (2006)
  118. Walfridsson, J. et al. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res. 33, 2868–2879 (2005). (10.1093/nar/gki579) / Nucleic Acids Res. by J Walfridsson (2005)
  119. Izuta, H. et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006). (10.1111/j.1365-2443.2006.00969.x) / Genes Cells by H Izuta (2006)
  120. Aguilera, A. mRNA processing and genomic instability. Nature Struct. Mol. Biol. 12, 737–738 (2005). (10.1038/nsmb0905-737) / Nature Struct. Mol. Biol. by A Aguilera (2005)
  121. Zeitlin, S. G., Patel, S., Kavli, B. & Slupphaug, G. Xenopus CENP-A assembly into chromatin requires base excision repair proteins. DNA Repair (Amst.) 4, 760–772 (2005). (10.1016/j.dnarep.2005.02.007) / DNA Repair (Amst.) by SG Zeitlin (2005)
  122. Maggert, K. A. & Karpen, G. H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158, 1615–1628 (2001). (10.1093/genetics/158.4.1615) / Genetics by KA Maggert (2001)
  123. Saffery, R. et al. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9, 175–185 (2000). (10.1093/hmg/9.2.175) / Hum. Mol. Genet. by R Saffery (2000)
  124. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001). (10.1126/science.1063127) / Science by T Jenuwein (2001)
Dates
Type When
Created 16 years, 9 months ago (Nov. 11, 2008, 4:51 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 11:19 p.m.)
Indexed 1 week, 1 day ago (Aug. 29, 2025, 6:33 a.m.)
Issued 16 years, 9 months ago (Dec. 1, 2008)
Published 16 years, 9 months ago (Dec. 1, 2008)
Published Print 16 years, 9 months ago (Dec. 1, 2008)
Funders 0

None

@article{Allshire_2008, title={Epigenetic regulation of centromeric chromatin: old dogs, new tricks?}, volume={9}, ISSN={1471-0064}, url={http://dx.doi.org/10.1038/nrg2466}, DOI={10.1038/nrg2466}, number={12}, journal={Nature Reviews Genetics}, publisher={Springer Science and Business Media LLC}, author={Allshire, Robin C. and Karpen, Gary H.}, year={2008}, month=dec, pages={923–937} }