Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Genetics (297)
References
124
Referenced
490
-
Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res. 67, 10103–10105 (2007).
(
10.1158/0008-5472.CAN-07-2266
) / Cancer Res. by BA Weaver (2007) -
Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).
(
10.1038/35066065
) / Nature Rev. Genet. by T Hassold (2001) -
Monaco, Z. L. & Moralli, D. Progress in artificial chromosome technology. Biochem. Soc. Trans. 34, 324–327 (2006).
(
10.1042/BST0340324
) / Biochem. Soc. Trans. by ZL Monaco (2006) -
Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007).
(
10.1146/annurev.biochem.76.052705.160607
) / Annu. Rev. Biochem. by S Westermann (2007) -
Spence, J. M. et al. Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X alpha-satellite array. EMBO J. 21, 5269–5280 (2002).
(
10.1093/emboj/cdf511
) / EMBO J. by JM Spence (2002) -
Mitchell, A. R., Jeppesen, P., Nicol, L., Morrison, H. & Kipling, D. Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? J. Cell Sci. 109, 2199–2206 (1996).
(
10.1242/jcs.109.9.2199
) / J. Cell Sci. by AR Mitchell (1996) -
Blower, M. D., Sullivan, B. A. & Karpen, G. H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).
(
10.1016/S1534-5807(02)00135-1
) / Dev. Cell by MD Blower (2002) -
Lam, A. L., Boivin, C. D., Bonney, C. F., Rudd, M. K. & Sullivan, B. A. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc. Natl Acad. Sci. USA 103, 4186–4191 (2006).
(
10.1073/pnas.0507947103
) / Proc. Natl Acad. Sci. USA by AL Lam (2006) -
Henikoff, S. & Dalal, Y. Centromeric chromatin: what makes it unique? Curr. Opin. Genet. Dev. 15, 177–184 (2005).
(
10.1016/j.gde.2005.01.004
) / Curr. Opin. Genet. Dev. by S Henikoff (2005) -
Dawe, R. K. & Henikoff, S. Centromeres put epigenetics in the driver's seat. Trends Biochem. Sci. 31, 662–669 (2006).
(
10.1016/j.tibs.2006.10.004
) / Trends Biochem. Sci. by RK Dawe (2006) -
Sullivan, B. A., Blower, M. D. & Karpen, G. H. Determining centromere identity: cyclical stories and forking paths. Nature Rev. Genet. 2, 584–596 (2001).
(
10.1038/35084512
) / Nature Rev. Genet. by BA Sullivan (2001) -
Mellone, B. G. & Allshire, R. C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13, 191–198 (2003).
(
10.1016/S0959-437X(03)00019-4
) / Curr. Opin. Genet. Dev. by BG Mellone (2003) -
Karpen, G. H. & Allshire, R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489–496 (1997).
(
10.1016/S0168-9525(97)01298-5
) / Trends Genet. by GH Karpen (1997) -
Earnshaw, W. C. & Migeon, B. R. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma 92, 290–296 (1985).
(
10.1007/BF00329812
) / Chromosoma by WC Earnshaw (1985) -
Warburton, P. E. et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997).
(
10.1016/S0960-9822(06)00382-4
) / Curr. Biol. by PE Warburton (1997) -
Sullivan, B. A. & Schwartz, S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum. Mol. Genet. 4, 2189–2197 (1995).
(
10.1093/hmg/4.12.2189
) / Hum. Mol. Genet. by BA Sullivan (1995) -
Sullivan, B. A. & Willard, H. F. Stable dicentric X chromosomes with two functional centromeres. Nature Genet. 20, 227–228 (1998).
(
10.1038/3024
) / Nature Genet. by BA Sullivan (1998) -
Agudo, M. et al. A dicentric chromosome of Drosophila melanogaster showing alternate centromere inactivation. Chromosoma 109, 190–196 (2000).
(
10.1007/s004120050427
) / Chromosoma by M Agudo (2000) -
Alonso, A. et al. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol. 8, R148 (2007).
(
10.1186/gb-2007-8-7-r148
) / Genome Biol. by A Alonso (2007) -
Warburton, P. E. Chromosomal dynamics of human neocentromere formation. Chromosome Res. 12, 617–626 (2004).
(
10.1023/B:CHRO.0000036585.44138.4b
) / Chromosome Res. by PE Warburton (2004) -
Choo, K. H. Domain organization at the centromere and neocentromere. Dev. Cell 1, 165–177 (2001).
(
10.1016/S1534-5807(01)00028-4
) / Dev. Cell by KH Choo (2001) -
Lo, A. W. et al. A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res. 11, 448–457 (2001).
(
10.1101/gr.167601
) / Genome Res. by AW Lo (2001) -
Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nature Genet. 18, 30–37 (1998).
(
10.1038/ng0198-30
) / Nature Genet. by BC Williams (1998) -
Steiner, N. C. & Clarke, L. A novel epigenetic effect can alter centromere function in fission yeast. Cell 79, 865–874 (1994).
(
10.1016/0092-8674(94)90075-2
) / Cell by NC Steiner (1994) -
Ishii, K. et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321, 1088–1091 (2008).
(
10.1126/science.1158699
) / Science by K Ishii (2008) -
Bulazel, K. V., Ferreri, G. C., Eldridge, M. D. & O'Neill, R. J. Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol. 8, R170 (2007).
(
10.1186/gb-2007-8-8-r170
) / Genome Biol. by KV Bulazel (2007) -
Malik, H. S. & Henikoff, S. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12, 711–718 (2002).
(
10.1016/S0959-437X(02)00351-9
) / Curr. Opin. Genet. Dev. by HS Malik (2002) -
Murphy, T. D. & Karpen, G. H. Centromeres take flight: alpha satellite and the quest for the human centromere. Cell 93, 317–320 (1998).
(
10.1016/S0092-8674(00)81158-7
) / Cell by TD Murphy (1998) -
Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).
(
10.1016/j.cell.2007.02.005
) / Cell by T Kouzarides (2007) -
Li, B. et al. Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc. Natl Acad. Sci. USA 102, 18385–18390 (2005).
(
10.1073/pnas.0507975102
) / Proc. Natl Acad. Sci. USA by B Li (2005) -
Raisner, R. M. et al. Histone variant H2A.Z. marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123, 233–248 (2005).
(
10.1016/j.cell.2005.10.002
) / Cell by RM Raisner (2005) -
Meneghini, M. D., Wu, M. & Madhani, H. D. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112, 725–736 (2003).
(
10.1016/S0092-8674(03)00123-5
) / Cell by MD Meneghini (2003) -
Greaves, I. K., Rangasamy, D., Ridgway, P. & Tremethick, D. J. H2A.Z contributes to the unique 3D structure of the centromere. Proc. Natl Acad. Sci. USA 104, 525–530 (2007).
(
10.1073/pnas.0607870104
) / Proc. Natl Acad. Sci. USA by IK Greaves (2007) -
Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).
(
10.1016/S1097-2765(02)00542-7
) / Mol. Cell by K Ahmad (2002) -
Mito, Y., Henikoff, J. G. & Henikoff, S. Genome-scale profiling of histone H3.3 replacement patterns. Nature Genet. 37, 1090–1097 (2005).
(
10.1038/ng1637
) / Nature Genet. by Y Mito (2005) -
Henikoff, S. Nucleosome destabilization in the epigenetic regulation of gene expression. Nature Rev. Genet. 9, 15–26 (2008).
(
10.1038/nrg2206
) / Nature Rev. Genet. by S Henikoff (2008) -
Mizuguchi, G. et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303, 343–348 (2004).
(
10.1126/science.1090701
) / Science by G Mizuguchi (2004) -
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61 (2004).
(
10.1016/S0092-8674(03)01064-X
) / Cell by H Tagami (2004) -
Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D. & Smith, M. M. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94, 607–613 (1998).
(
10.1016/S0092-8674(00)81602-5
) / Cell by PB Meluh (1998) -
Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B. & Henikoff, S. A histone-H3-like protein in C. elegans. Nature 401, 547–548 (1999).
(
10.1038/44062
) / Nature by BJ Buchwitz (1999) -
Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001).
(
10.1038/35087045
) / Nature Cell Biol. by MD Blower (2001) -
Henikoff, S., Ahmad, K., Platero, J. S. & van Steensel, B. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl Acad. Sci. USA 97, 716–721 (2000).
(
10.1073/pnas.97.2.716
) / Proc. Natl Acad. Sci. USA by S Henikoff (2000) -
Stoler, S., Keith, K. C., Curnick, K. E. & Fitzgerald-Hayes, M. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9, 573–586 (1995).
(
10.1101/gad.9.5.573
) / Genes Dev. by S Stoler (1995) -
Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).
(
10.1126/science.288.5474.2215
) / Science by K Takahashi (2000) -
Sullivan, K. F., Hechenberger, M. & Masri, K. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127, 581–592 (1994).
(
10.1083/jcb.127.3.581
) / J. Cell Biol. by KF Sullivan (1994) -
Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S. & Margolis, R. L. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104, 805–815 (1987).
(
10.1083/jcb.104.4.805
) / J. Cell Biol. by DK Palmer (1987) -
Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell 10, 303–315 (2006).
(
10.1016/j.devcel.2006.01.014
) / Dev. Cell by P Heun (2006) -
Furuyama, S. & Biggins, S. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc. Natl Acad. Sci. USA 104, 14706–14711 (2007).
(
10.1073/pnas.0706985104
) / Proc. Natl Acad. Sci. USA by S Furuyama (2007) -
Yan, H. & Jiang, J. Rice as a model for centromere and heterochromatin research. Chromosome Res. 15, 77–84 (2007).
(
10.1007/s10577-006-1104-z
) / Chromosome Res. by H Yan (2007) -
Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004).
(
10.1038/nsmb845
) / Nature Struct. Mol. Biol. by BA Sullivan (2004) -
Castillo, A. G. et al. Plasticity of fission yeast CENP-A chromatin driven by relative levels of histone H3 and H4. PLoS Genet. 3, e121 (2007).
(
10.1371/journal.pgen.0030121
) / PLoS Genet. by AG Castillo (2007) -
Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).
(
10.1038/ng1602
) / Nature Genet. by HP Cam (2005) -
Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90 (2008).
(
10.1016/j.cub.2007.12.019
) / Curr. Biol. by E Yeh (2008) -
Gregan, J. et al. The kinetochore proteins Pcs1 and Mde4 and heterochromatin are required to prevent merotelic orientation. Curr. Biol. 17, 1190–1200 (2007).
(
10.1016/j.cub.2007.06.044
) / Curr. Biol. by J Gregan (2007) -
Black, B. E. et al. Structural determinants for generating centromeric chromatin. Nature 430, 578–582 (2004).
(
10.1038/nature02766
) / Nature by BE Black (2004) -
Polizzi, C. & Clarke, L. The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J. Cell Biol. 112, 191–201 (1991).
(
10.1083/jcb.112.2.191
) / J. Cell Biol. by C Polizzi (1991) -
Takahashi, K. et al. A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol. Biol. Cell 3, 819–835 (1992).
(
10.1091/mbc.3.7.819
) / Mol. Biol. Cell by K Takahashi (1992) -
Baum, M., Sanyal, K., Mishra, P. K., Thaler, N. & Carbon, J. Formation of functional centromeric chromatin is specified epigenetically in Candida albicans. Proc. Natl Acad. Sci. USA 103, 14877–14882 (2006).
(
10.1073/pnas.0606958103
) / Proc. Natl Acad. Sci. USA by M Baum (2006) -
Yoda, K. et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc. Natl Acad. Sci. USA 97, 7266–7271 (2000).
(
10.1073/pnas.130189697
) / Proc. Natl Acad. Sci. USA by K Yoda (2000) -
Black, B. E., Brock, M. A., Bedard, S., Woods, V. L. Jr & Cleveland, D. W. An epigenetic mark generated by the incorporation of CENP-A into centromeric nucleosomes. Proc. Natl Acad. Sci. USA 104, 5008–5013 (2007).
(
10.1073/pnas.0700390104
) / Proc. Natl Acad. Sci. USA by BE Black (2007) -
Conde e Silva, N. et al. CENP-A-containing nucleosomes: easier disassembly versus exclusive centromeric localization. J. Mol. Biol. 370, 555–573 (2007).
(
10.1016/j.jmb.2007.04.064
) / J. Mol. Biol. by N Conde e Silva (2007) -
Mizuguchi, G., Xiao, H., Wisniewski, J., Smith, M. M. & Wu, C. Nonhistone Scm3 and histones CenH3–H4 assemble the core of centromere-specific nucleosomes. Cell 129, 1153–1164 (2007).
(
10.1016/j.cell.2007.04.026
) / Cell by G Mizuguchi (2007) -
Dalal, Y., Wang, H., Lindsay, S. & Henikoff, S. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol. 5, e218 (2007).
(
10.1371/journal.pbio.0050218
) / PLoS Biol. by Y Dalal (2007) -
Black, B. E. & Bassett, E. A. The histone variant CENP-A and centromere specification. Curr. Opin. Cell Biol. 20, 91–100 (2008).
(
10.1016/j.ceb.2007.11.007
) / Curr. Opin. Cell Biol. by BE Black (2008) -
Foltz, D. R. et al. The human CENP-A centromeric nucleosome-associated complex. Nature Cell Biol. 8, 458–469 (2006).
(
10.1038/ncb1397
) / Nature Cell Biol. by DR Foltz (2006) -
Maruyama, T., Nakamura, T., Hayashi, T. & Yanagida, M. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. EMBO J. 25, 2420–2431 (2006).
(
10.1038/sj.emboj.7601110
) / EMBO J. by T Maruyama (2006) -
Sogo, J. M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J. Mol. Biol. 189, 189–204 (1986).
(
10.1016/0022-2836(86)90390-6
) / J. Mol. Biol. by JM Sogo (1986) -
Mello, J. A. & Almouzni, G. The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev. 11, 136–141 (2001).
(
10.1016/S0959-437X(00)00170-2
) / Curr. Opin. Genet. Dev. by JA Mello (2001) -
Rocha, W. & Verreault, A. Clothing up DNA for all seasons: histone chaperones and nucleosome assembly pathways. FEBS Lett. 582, 1938–1949 (2008).
(
10.1016/j.febslet.2008.03.006
) / FEBS Lett. by W Rocha (2008) -
Sugasawa, K. et al. Nonconservative segregation of parental nucleosomes during simian virus 40 chromosome replication in vitro. Proc. Natl Acad. Sci. USA 89, 1055–1059 (1992).
(
10.1073/pnas.89.3.1055
) / Proc. Natl Acad. Sci. USA by K Sugasawa (1992) -
Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000).
(
10.1083/jcb.151.5.1113
) / J. Cell Biol. by RD Shelby (2000) -
Sullivan, B. & Karpen, G. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154, 683–690 (2001).
(
10.1083/jcb.200103001
) / J. Cell Biol. by B Sullivan (2001) -
Kim, S. M., Dubey, D. D. & Huberman, J. A. Early-replicating heterochromatin. Genes Dev. 17, 330–335 (2003).
(
10.1101/gad.1046203
) / Genes Dev. by SM Kim (2003) -
Pearson, C. G. et al. Stable kinetochore–microtubule attachment constrains centromere positioning in metaphase. Curr. Biol. 14, 1962–1967 (2004).
(
10.1016/j.cub.2004.09.086
) / Curr. Biol. by CG Pearson (2004) -
Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).
(
10.1083/jcb.200701066
) / J. Cell Biol. by LE Jansen (2007) -
Takayama, Y. et al. Biphasic incorporation of centromeric histone CENP-A in fission yeast. Mol. Biol. Cell 19, 682–690 (2008).
(
10.1091/mbc.e07-05-0504
) / Mol. Biol. Cell by Y Takayama (2008) -
Chen, E. S., Saitoh, S., Yanagida, M. & Takahashi, K. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol. Cell 11, 175–187 (2003).
(
10.1016/S1097-2765(03)00011-X
) / Mol. Cell by ES Chen (2003) -
Takayama, Y. & Takahashi, K. Differential regulation of repeated histone genes during the fission yeast cell cycle. Nucleic Acids Res. 35, 3223–3237 (2007).
(
10.1093/nar/gkm213
) / Nucleic Acids Res. by Y Takayama (2007) -
Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007).
(
10.1016/j.cub.2006.11.051
) / Curr. Biol. by M Schuh (2007) -
Carroll, C. W. & Straight, A. F. Centromere formation: from epigenetics to self-assembly. Trends Cell Biol. 16, 70–78 (2006).
(
10.1016/j.tcb.2005.12.008
) / Trends Cell Biol. by CW Carroll (2006) -
Keith, K. C. et al. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol. Cell Biol. 19, 6130–6139 (1999).
(
10.1128/MCB.19.9.6130
) / Mol. Cell Biol. by KC Keith (1999) -
Shelby, R. D., Vafa, O. & Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136, 501–513 (1997).
(
10.1083/jcb.136.3.501
) / J. Cell Biol. by RD Shelby (1997) -
Vermaak, D., Hayden, H. S. & Henikoff, S. Centromere targeting element within the histone fold domain of Cid. Mol. Cell Biol. 22, 7553–7561 (2002).
(
10.1128/MCB.22.21.7553-7561.2002
) / Mol. Cell Biol. by D Vermaak (2002) -
Camahort, R. et al. Scm3 is essential to recruit the histone H3 variant Cse4 to centromeres and to maintain a functional kinetochore. Mol. Cell 26, 853–865 (2007).
(
10.1016/j.molcel.2007.05.013
) / Mol. Cell by R Camahort (2007) -
Stoler, S. et al. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl Acad. Sci. USA 104, 10571–10576 (2007).
(
10.1073/pnas.0703178104
) / Proc. Natl Acad. Sci. USA by S Stoler (2007) -
Saitoh, S., Takahashi, K. & Yanagida, M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90, 131–143 (1997).
(
10.1016/S0092-8674(00)80320-7
) / Cell by S Saitoh (1997) -
Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).
(
10.1016/j.cell.2004.09.002
) / Cell by T Hayashi (2004) -
Maddox, P. S., Hyndman, F., Monen, J., Oegema, K. & Desai, A. Functional genomics identifies a Myb domain-containing protein family required for assembly of CENP-A chromatin. J. Cell Biol. 176, 757–763 (2007).
(
10.1083/jcb.200701065
) / J. Cell Biol. by PS Maddox (2007) -
Fujita, Y. et al. Priming of centromere for CENP-A recruitment by human hMis18alpha, hMis18beta, and M18BP1. Dev. Cell 12, 17–30 (2007).
(
10.1016/j.devcel.2006.11.002
) / Dev. Cell by Y Fujita (2007) -
Dunleavy, E. M. et al. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres. Mol. Cell 28, 1029–1044 (2007).
(
10.1016/j.molcel.2007.10.010
) / Mol. Cell by EM Dunleavy (2007) -
Okada, M. et al. The CENP-H-I complex is required for the efficient incorporation of newly synthesized CENP-A into centromeres. Nature Cell Biol. 8, 446–457 (2006).
(
10.1038/ncb1396
) / Nature Cell Biol. by M Okada (2006) - Erhardt, S., Mellone, B. G., Betts, C. M., Zhang, W., Karpen G. H. & Straight, A. F. Genome-wide analysis reveals a cell-cycle-dependent mechanism controlling centromere propagation. J. Cell Biol. (in the press).
-
Ahmad, K. & Henikoff, S. Centromeres are specialized replication domains in heterochromatin. J. Cell Biol. 153, 101–110 (2001).
(
10.1083/jcb.153.1.101
) / J. Cell Biol. by K Ahmad (2001) -
Furuyama, T., Dalal, Y. & Henikoff, S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc. Natl Acad. Sci. USA 103, 6172–6177 (2006).
(
10.1073/pnas.0601686103
) / Proc. Natl Acad. Sci. USA by T Furuyama (2006) -
Carlson, S. R. et al. Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet. 3, 1965–1974 (2007).
(
10.1371/journal.pgen.0030179
) / PLoS Genet. by SR Carlson (2007) -
Harrington, J. J., Van Bokkelen, G., Mays, R. W., Gustashaw, K. & Willard, H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nature Genet. 15, 345–355 (1997).
(
10.1038/ng0497-345
) / Nature Genet. by JJ Harrington (1997) -
Ikeno, M. et al. Construction of YAC-based mammalian artificial chromosomes. Nature Biotechnol. 16, 431–439 (1998).
(
10.1038/nbt0598-431
) / Nature Biotechnol. by M Ikeno (1998) -
Hahnenberger, K. M., Baum, M. P., Polizzi, C. M., Carbon, J. & Clarke, L. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc. Natl Acad. Sci. USA 86, 577–581 (1989).
(
10.1073/pnas.86.2.577
) / Proc. Natl Acad. Sci. USA by KM Hahnenberger (1989) -
Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).
(
10.1038/287504a0
) / Nature by L Clarke (1980) -
Okada, T. et al. CENP-B controls centromere formation depending on the chromatin context. Cell 131, 1287–1300 (2007).
(
10.1016/j.cell.2007.10.045
) / Cell by T Okada (2007) -
Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).
(
10.1016/j.devcel.2008.02.001
) / Dev. Cell by M Nakano (2008) -
Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).
(
10.1126/science.1150944
) / Science by HD Folco (2008) -
Buhler, M. & Moazed, D. Transcription and RNAi in heterochromatic gene silencing. Nature Struct. Mol. Biol. 14, 1041–1048 (2007).
(
10.1038/nsmb1315
) / Nature Struct. Mol. Biol. by M Buhler (2007) -
Grewal, S. I. & Elgin, S. C. Transcription and RNA interference in the formation of heterochromatin. Nature 447, 399–406 (2007).
(
10.1038/nature05914
) / Nature by SI Grewal (2007) -
Grummt, I. Different epigenetic layers engage in complex crosstalk to define the epigenetic state of mammalian rRNA genes. Hum. Mol. Genet. 16, R21–R27 (2007).
(
10.1093/hmg/ddm020
) / Hum. Mol. Genet. by I Grummt (2007) - Rea, S. & Akhtar, A. MSL proteins and the regulation of gene expression. Curr. Top. Microbiol. Immunol. 310, 117–140 (2006). / Curr. Top. Microbiol. Immunol. by S Rea (2006)
-
Rieder, C. L. Ribonucleoprotein staining of centrioles and kinetochores in newt lung cell spindles. J. Cell Biol. 80, 1–9 (1979).
(
10.1083/jcb.80.1.1
) / J. Cell Biol. by CL Rieder (1979) -
Bouzinba-Segard, H., Guais, A. & Francastel, C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc. Natl Acad. Sci. USA 103, 8709–8714 (2006).
(
10.1073/pnas.0508006103
) / Proc. Natl Acad. Sci. USA by H Bouzinba-Segard (2006) -
May, B. P., Lippman, Z. B., Fang, Y., Spector, D. L. & Martienssen, R. A. Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet. 1, e79 (2005).
(
10.1371/journal.pgen.0010079
) / PLoS Genet. by BP May (2005) -
Neumann, P., Yan, H. & Jiang, J. The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176, 749–761 (2007).
(
10.1534/genetics.107.071902
) / Genetics by P Neumann (2007) -
Yan, H. et al. Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18, 2123–2133 (2006).
(
10.1105/tpc.106.043794
) / Plant Cell by H Yan (2006) -
Saffery, R. et al. Transcription within a functional human centromere. Mol. Cell 12, 509–516 (2003).
(
10.1016/S1097-2765(03)00279-X
) / Mol. Cell by R Saffery (2003) -
Topp, C. N., Zhong, C. X. & Dawe, R. K. Centromere-encoded RNAs are integral components of the maize kinetochore. Proc. Natl Acad. Sci. USA 101, 15986–15991 (2004).
(
10.1073/pnas.0407154101
) / Proc. Natl Acad. Sci. USA by CN Topp (2004) -
Wong, L. H. et al. Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res. 17, 1146–1160 (2007).
(
10.1101/gr.6022807
) / Genome Res. by LH Wong (2007) -
Chen, E. S. et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 451, 734–737 (2008).
(
10.1038/nature06561
) / Nature by ES Chen (2008) -
Williams, S. K. & Tyler, J. K. Transcriptional regulation by chromatin disassembly and reassembly. Curr. Opin. Genet. Dev. 17, 88–93 (2007).
(
10.1016/j.gde.2007.02.001
) / Curr. Opin. Genet. Dev. by SK Williams (2007) -
Reinberg, D. & Sims, R. J. 3rd de FACTo nucleosome dynamics. J. Biol. Chem. 281, 23297–23301 (2006).
(
10.1074/jbc.R600007200
) / J. Biol. Chem. by D Reinberg (2006) -
Walfridsson, J. et al. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res. 33, 2868–2879 (2005).
(
10.1093/nar/gki579
) / Nucleic Acids Res. by J Walfridsson (2005) -
Izuta, H. et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes Cells 11, 673–684 (2006).
(
10.1111/j.1365-2443.2006.00969.x
) / Genes Cells by H Izuta (2006) -
Aguilera, A. mRNA processing and genomic instability. Nature Struct. Mol. Biol. 12, 737–738 (2005).
(
10.1038/nsmb0905-737
) / Nature Struct. Mol. Biol. by A Aguilera (2005) -
Zeitlin, S. G., Patel, S., Kavli, B. & Slupphaug, G. Xenopus CENP-A assembly into chromatin requires base excision repair proteins. DNA Repair (Amst.) 4, 760–772 (2005).
(
10.1016/j.dnarep.2005.02.007
) / DNA Repair (Amst.) by SG Zeitlin (2005) -
Maggert, K. A. & Karpen, G. H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158, 1615–1628 (2001).
(
10.1093/genetics/158.4.1615
) / Genetics by KA Maggert (2001) -
Saffery, R. et al. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum. Mol. Genet. 9, 175–185 (2000).
(
10.1093/hmg/9.2.175
) / Hum. Mol. Genet. by R Saffery (2000) -
Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).
(
10.1126/science.1063127
) / Science by T Jenuwein (2001)
Dates
Type | When |
---|---|
Created | 16 years, 9 months ago (Nov. 11, 2008, 4:51 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 11:19 p.m.) |
Indexed | 1 week, 1 day ago (Aug. 29, 2025, 6:33 a.m.) |
Issued | 16 years, 9 months ago (Dec. 1, 2008) |
Published | 16 years, 9 months ago (Dec. 1, 2008) |
Published Print | 16 years, 9 months ago (Dec. 1, 2008) |
@article{Allshire_2008, title={Epigenetic regulation of centromeric chromatin: old dogs, new tricks?}, volume={9}, ISSN={1471-0064}, url={http://dx.doi.org/10.1038/nrg2466}, DOI={10.1038/nrg2466}, number={12}, journal={Nature Reviews Genetics}, publisher={Springer Science and Business Media LLC}, author={Allshire, Robin C. and Karpen, Gary H.}, year={2008}, month=dec, pages={923–937} }