Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Genetics (297)
Bibliography

Shorter, J., & Lindquist, S. (2005). Prions as adaptive conduits of memory and inheritance. Nature Reviews Genetics, 6(6), 435–450.

Authors 2
  1. James Shorter (first)
  2. Susan Lindquist (additional)
References 162 Referenced 461
  1. James, L. C. & Tawfik, D. S. Conformational diversity and protein evolution — a 60-year-old hypothesis revisited. Trends Biochem. Sci. 28, 361–368 (2003). (10.1016/S0968-0004(03)00135-X) / Trends Biochem. Sci. by LC James (2003)
  2. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982). (10.1126/science.6801762) / Science by SB Prusiner (1982)
  3. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569 (1994). (10.1126/science.7909170) / Science by RB Wickner (1994)
  4. Si, K., Lindquist, S. & Kandel, E. R. A neuronal isoform of the Aplysia CPEB has prion-like properties. Cell 115, 879–891 (2003). This paper shows that ApCPEB can function as a prion in yeast, and that the prion conformation is the most active in stimulating translation of CPEB-regulated mRNA. Together with data from reference 99, the authors propose that the formation of ApCPEB prions in specifically stimulated synapses helps to maintain long-term synaptic changes that are associated with memory storage. (10.1016/S0092-8674(03)01020-1) / Cell by K Si (2003)
  5. Prusiner, S. B. Prion Biology and Diseases (Cold Spring Harbor Laboratory Press, New York, 2004). / Prion Biology and Diseases by SB Prusiner (2004)
  6. Uptain, S. M. & Lindquist, S. Prions as protein-based genetic elements. Annu. Rev. Microbiol. 56, 703–741 (2002). (10.1146/annurev.micro.56.013002.100603) / Annu. Rev. Microbiol. by SM Uptain (2002)
  7. Wickner, R. B., Liebman, S. W. & Saupe, S. J. in Prion Biology and Diseases (ed. Prusiner, S. B.) 305–372 (Cold Spring Harbor Laboratory Press New York, 2004). / Prion Biology and Diseases by RB Wickner (2004)
  8. Chien, P., Weissman, J. S. & DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004). (10.1146/annurev.biochem.72.121801.161837) / Annu. Rev. Biochem. by P Chien (2004)
  9. Alper, T., Cramp, W. A., Haig, D. A. & Clarke, M. C. Does the agent of scrapie replicate without nucleic acid? Nature 214, 764–766 (1967). (10.1038/214764a0) / Nature by T Alper (1967)
  10. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967). (10.1038/2151043a0) / Nature by JS Griffith (1967)
  11. Prusiner, S. B. et al. Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 35, 349–358 (1983). (10.1016/0092-8674(83)90168-X) / Cell by SB Prusiner (1983)
  12. Kong, Q. et al. in Prion Biology and Diseases (ed. Prusiner, S. B.) 673–775 (Cold Spring Laboratory Press New York, 2004). / Prion Biology and Diseases by Q Kong (2004)
  13. Bueler, H. et al. Mice devoid of PrP are resistant to scrapie. Cell 73, 1339–1347 (1993). (10.1016/0092-8674(93)90360-3) / Cell by H Bueler (1993)
  14. Brandner, S. et al. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343 (1996). (10.1038/379339a0) / Nature by S Brandner (1996)
  15. Safar, J. et al. Eight prion strains have PrPSc molecules with different conformations. Nature Med. 4, 1157–1165 (1998). (10.1038/2654) / Nature Med. by J Safar (1998)
  16. Cox, B. S. [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity 20, 505–521 (1965). (10.1038/hdy.1965.65) / Heredity by BS Cox (1965)
  17. Lacroute, F. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106, 519–522 (1971). (10.1128/JB.106.2.519-522.1971) / J. Bacteriol. by F Lacroute (1971)
  18. Sondheimer, N. & Lindquist, S. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172 (2000). (10.1016/S1097-2765(00)80412-8) / Mol. Cell by N Sondheimer (2000)
  19. Santoso, A., Chien, P., Osherovich, L. Z. & Weissman, J. S. Molecular basis of a yeast prion species barrier. Cell 100, 277–288 (2000). (10.1016/S0092-8674(00)81565-2) / Cell by A Santoso (2000)
  20. Osherovich, L. Z., Cox, B. S., Tuite, M. F. & Weissman, J. S. Dissection and design of yeast prions. PLoS Biol. 2, E86 (2004). (10.1371/journal.pbio.0020086) / PLoS Biol. by LZ Osherovich (2004)
  21. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997). (10.1073/pnas.94.18.9773) / Proc. Natl Acad. Sci. USA by V Coustou (1997)
  22. Baskakov, I. V., Legname, G., Baldwin, M. A., Prusiner, S. B. & Cohen, F. E. Pathway complexity of prion protein assembly into amyloid. J. Biol. Chem. 277, 21140–21148 (2002). (10.1074/jbc.M111402200) / J. Biol. Chem. by IV Baskakov (2002)
  23. Glover, J. R. et al. Self-seeded fibres formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997). (10.1016/S0092-8674(00)80264-0) / Cell by JR Glover (1997)
  24. Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C. & Wickner, R. B. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343 (1999). (10.1126/science.283.5406.1339) / Science by KL Taylor (1999)
  25. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002). (10.1073/pnas.072199199) / Proc. Natl Acad. Sci. USA by ML Maddelein (2002)
  26. Patino, M. M., Liu, J. J., Glover, J. R. & Lindquist, S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626 (1996). (10.1126/science.273.5275.622) / Science by MM Patino (1996)
  27. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [PSI+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134 (1996). (10.1002/j.1460-2075.1996.tb00675.x) / EMBO J. by SV Paushkin (1996)
  28. Masison, D. C. & Wickner, R. B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95 (1995). (10.1126/science.270.5233.93) / Science by DC Masison (1995)
  29. Balguerie, A. et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J. 22, 2071–2081 (2003). (10.1093/emboj/cdg213) / EMBO J. by A Balguerie (2003)
  30. Speransky, V. V., Taylor, K. L., Edskes, H. K., Wickner, R. B. & Steven, A. C. Prion filament networks in [URE3] cells of Saccharomyces cerevisiae. J. Cell Biol. 153, 1327–1336 (2001). (10.1083/jcb.153.6.1327) / J. Cell Biol. by VV Speransky (2001)
  31. Kimura, Y., Koitabashi, S. & Fujita, T. Analysis of yeast prion aggregates with amyloid-staining compound in vivo. Cell Struct. Funct. 28, 187–193 (2003). (10.1247/csf.28.187) / Cell Struct. Funct. by Y Kimura (2003)
  32. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D. & Kushnirov, V. V. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643 (2003). (10.1074/jbc.M307996200) / J. Biol. Chem. by DS Kryndushkin (2003)
  33. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004). (10.1038/nature02391) / Nature by CY King (2004)
  34. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000). (10.1126/science.289.5483.1317) / Science by TR Serio (2000)
  35. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003). (10.1038/nature02261) / Nature by CM Dobson (2003)
  36. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004). References 33 and 36 provide definitive evidence for the yeast prion hypothesis. They establish beyond doubt that [ PSI+] is caused by self-replicating conformers of Sup35, and that distinct, stably propagating Sup35 conformations underpin different [ PSI+] variants. (10.1038/nature02392) / Nature by M Tanaka (2004)
  37. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004). (10.1126/science.1100195) / Science by G Legname (2004)
  38. DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibres. Nature Struct. Biol. 9, 389–396 (2002). / Nature Struct. Biol. by AH DePace (2002)
  39. Baxa, U., Speransky, V., Steven, A. C. & Wickner, R. B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl Acad. Sci. USA 99, 5253–5260 (2002). (10.1073/pnas.082097899) / Proc. Natl Acad. Sci. USA by U Baxa (2002)
  40. Fink, G. R. A transforming principle. Cell 120, 153–154 (2005). (10.1016/j.cell.2005.01.004) / Cell by GR Fink (2005)
  41. Kaneko, K. et al. A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice. J. Mol. Biol. 295, 997–1007 (2000). (10.1006/jmbi.1999.3386) / J. Mol. Biol. by K Kaneko (2000)
  42. Legname, G. et al. Strain-specified characteristics of mouse synthetic prions. Proc. Natl Acad. Sci. USA 102, 2168–2173 (2005). References 37, 41 and 42 provide the initial foundations of definitive evidence for the mammalian prion hypothesis. (10.1073/pnas.0409079102) / Proc. Natl Acad. Sci. USA by G Legname (2005)
  43. Edskes, H. K. & Wickner, R. B. Transmissible spongiform encephalopathies: prion proof in progress. Nature 430, 977–979 (2004). (10.1038/430977a) / Nature by HK Edskes (2004)
  44. Goudsmit, J. et al. Evidence for and against the transmissibility of Alzheimer disease. Neurology 30, 945–950 (1980). (10.1212/WNL.30.9.945) / Neurology by J Goudsmit (1980)
  45. West, M. W. et al. De novo amyloid proteins from designed combinatorial libraries. Proc. Natl Acad. Sci. USA 96, 11211–11216 (1999). (10.1073/pnas.96.20.11211) / Proc. Natl Acad. Sci. USA by MW West (1999)
  46. Medawar, P. B. An Unsolved Problem of Biology (H. K. Lewis, London, 1952). / An Unsolved Problem of Biology by PB Medawar (1952)
  47. Chernoff, Y. O. et al. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876 (2000). (10.1046/j.1365-2958.2000.01761.x) / Mol. Microbiol. by YO Chernoff (2000)
  48. Nakayashiki, T., Ebihara, K., Bannai, H. & Nakamura, Y. Yeast [PSI+] 'prions' that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Mol. Cell 7, 1121–1130 (2001). (10.1016/S1097-2765(01)00259-3) / Mol. Cell by T Nakayashiki (2001)
  49. Baudin-Baillieu, A., Fernandez-Bellot, E., Reine, F., Coissac, E. & Cullin, C. Conservation of the prion properties of Ure2p through evolution. Mol. Biol. Cell 14, 3449–3458 (2003). (10.1091/mbc.e03-01-0007) / Mol. Biol. Cell by A Baudin-Baillieu (2003)
  50. Jensen, M. A., True, H. L., Chernoff, Y. O. & Lindquist, S. Molecular population genetics and evolution of a prion-like protein in Saccharomyces cerevisiae. Genetics 159, 527–535 (2001). (10.1093/genetics/159.2.527) / Genetics by MA Jensen (2001)
  51. Lindquist, S. Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell 89, 495–498 (1997). (10.1016/S0092-8674(00)80231-7) / Cell by S Lindquist (1997)
  52. Berson, J. F. et al. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161, 521–533 (2003). (10.1083/jcb.200302072) / J. Cell Biol. by JF Berson (2003)
  53. Mackay, J. P. et al. The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9, 83–91 (2001). (10.1016/S0969-2126(00)00559-1) / Structure by JP Mackay (2001)
  54. Chapman, M. R. et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851–855 (2002). (10.1126/science.1067484) / Science by MR Chapman (2002)
  55. Kranenburg, O. et al. Tissue-type plasminogen activator is a multiligand cross-β structure receptor. Curr. Biol. 12, 1833–1839 (2002). References 52–55 provide fascinating examples of beneficial amyloid conformers. (10.1016/S0960-9822(02)01224-1) / Curr. Biol. by O Kranenburg (2002)
  56. Gebbink, M. F., Voest, E. E. & Reijerkerk, A. Do antiangiogenic protein fragments have amyloid properties? Blood 104, 1601–1605 (2004). (10.1182/blood-2004-02-0433) / Blood by MF Gebbink (2004)
  57. Nucifora, F. C. Jr. et al. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428 (2001). (10.1126/science.1056784) / Science by FC Nucifora Jr. (2001)
  58. Kayed, R. et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489 (2003). (10.1126/science.1079469) / Science by R Kayed (2003)
  59. Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880–884 (1995). (10.1126/science.7754373) / Science by YO Chernoff (1995)
  60. Moriyama, H., Edskes, H. K. & Wickner, R. B. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell Biol. 20, 8916–8922 (2000). (10.1128/MCB.20.23.8916-8922.2000) / Mol. Cell Biol. by H Moriyama (2000)
  61. Sondheimer, N., Lopez, N., Craig, E. A. & Lindquist, S. The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20, 2435–2442 (2001). (10.1093/emboj/20.10.2435) / EMBO J. by N Sondheimer (2001)
  62. Lopez, N., Aron, R. & Craig, E. A. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ+]. Mol. Biol. Cell. 14, 1172–1181 (2003). (10.1091/mbc.e02-09-0593) / Mol. Biol. Cell. by N Lopez (2003)
  63. Mallucci, G. et al. Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874 (2003). This remarkable paper shows that prion diseases might be treated post infection by downregulating endogenous PrP. (10.1126/science.1090187) / Science by G Mallucci (2003)
  64. Dorn, G. et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32, e49 (2004). (10.1093/nar/gnh044) / Nucleic Acids Res. by G Dorn (2004)
  65. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nature Med. 10, 816–820 (2004). (10.1038/nm1076) / Nature Med. by H Xia (2004)
  66. Komar, A. A. et al. Internal initiation drives the synthesis of Ure2 protein lacking the prion domain and affects [URE3] propagation in yeast cells. EMBO J. 22, 1199–1209 (2003). (10.1093/emboj/cdg103) / EMBO J. by AA Komar (2003)
  67. True, H. L. & Lindquist, S. L. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000). (10.1038/35035005) / Nature by HL True (2000)
  68. Uptain, S. M., Sawicki, G. J., Caughey, B. & Lindquist, S. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 20, 6236–6245 (2001). (10.1093/emboj/20.22.6236) / EMBO J. by SM Uptain (2001)
  69. Bidou, L. et al. Nonsense-mediated decay mutants do not affect programmed-1 frameshifting. RNA 6, 952–961 (2000). (10.1017/S1355838200000443) / RNA by L Bidou (2000)
  70. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003). (10.1038/nature01644) / Nature by M Kellis (2003)
  71. True, H. L., Berlin, I. & Lindquist, S. L. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187 (2004). Together with reference 67, this paper makes a compelling case for [ PSI+] as a beneficial prion. (10.1038/nature02885) / Nature by HL True (2004)
  72. Eaglestone, S. S., Cox, B. S. & Tuite, M. F. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18, 1974–1981 (1999). (10.1093/emboj/18.7.1974) / EMBO J. by SS Eaglestone (1999)
  73. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–949 (1998). (10.1111/j.1558-5646.1998.tb01823.x) / Evolution by HA Orr (1998)
  74. Partridge, L. & Barton, N. H. Evolving evolvability. Nature 407, 457–458 (2000). (10.1038/35035173) / Nature by L Partridge (2000)
  75. Brookfield, J. F. Evolution: the evolvability enigma. Curr. Biol. 11, R106–R108 (2001). (10.1016/S0960-9822(01)00041-0) / Curr. Biol. by JF Brookfield (2001)
  76. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998). (10.1073/pnas.95.15.8420) / Proc. Natl Acad. Sci. USA by M Kirschner (1998)
  77. Masel, J. & Bergman, A. The evolution of the evolvability properties of the yeast prion [PSI+]. Evolution Int. J. Org. Evolution 57, 1498–1512 (2003). A convincing modelling study suggesting that [ PSI+] has probably been maintained owing to the evolvability properties that it confers. (10.1111/j.0014-3820.2003.tb00358.x) / Evolution Int. J. Org. Evolution by J Masel (2003)
  78. Earl, D. J. & Deem, M. W. Evolvability is a selectable trait. Proc. Natl Acad. Sci. USA 101, 11531–11536 (2004). (10.1073/pnas.0404656101) / Proc. Natl Acad. Sci. USA by DJ Earl (2004)
  79. Resende, C. G., Outeiro, T. F., Sands, L., Lindquist, S. & Tuite, M. F. Prion protein gene polymorphisms in Saccharomyces cerevisiae. Mol. Microbiol. 49, 1005–1017 (2003). (10.1046/j.1365-2958.2003.03608.x) / Mol. Microbiol. by CG Resende (2003)
  80. Lindquist, S. But yeast prion offers clues about evolution. Nature 408, 17–18 (2000). (10.1038/35040758) / Nature by S Lindquist (2000)
  81. Harrison, P. et al. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J. Mol. Biol. 316, 409–419 (2002). (10.1006/jmbi.2001.5343) / J. Mol. Biol. by P Harrison (2002)
  82. Namy, O., Duchateau-Nguyen, G. & Rousset, J. P. Translational readthrough of the PDE2 stop codon modulates cAMP levels in Saccharomyces cerevisiae. Mol. Microbiol. 43, 641–652 (2002). (10.1046/j.1365-2958.2002.02770.x) / Mol. Microbiol. by O Namy (2002)
  83. Dalstra, H. J., Swart, K., Debets, A. J., Saupe, S. J. & Hoekstra, R. F. Sexual transmission of the [Het-s] prion leads to meiotic drive in Podospora anserina. Proc. Natl Acad. Sci. USA 100, 6616–6621 (2003). (10.1073/pnas.1030058100) / Proc. Natl Acad. Sci. USA by HJ Dalstra (2003)
  84. Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519 (1997). (10.1093/genetics/147.2.507) / Genetics by IL Derkatch (1997)
  85. Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182 (2001). (10.1016/S0092-8674(01)00427-5) / Cell by IL Derkatch (2001)
  86. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion 'strains' in yeast. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16392–16399 (2002). (10.1073/pnas.152330699) / Proc. Natl Acad. Sci. USA by ME Bradley (2002)
  87. Salmon, J. M. & Barre, P. Improvement of nitrogen assimilation and fermentation kinetics under enological conditions by derepression of alternative nitrogen-assimilatory pathways in an industrial Saccharomyces cerevisiae strain. Appl. Environ. Microbiol. 64, 3831–3837 (1998). (10.1128/AEM.64.10.3831-3837.1998) / Appl. Environ. Microbiol. by JM Salmon (1998)
  88. Crespo, J. L., Daicho, K., Ushimaru, T. & Hall, M. N. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J. Biol. Chem. 276, 34441–34444 (2001). (10.1074/jbc.M103601200) / J. Biol. Chem. by JL Crespo (2001)
  89. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549–552 (2003). This remarkable study indicates that many, if not all, genes expose phenotypic variation when functionally compromised, and that the availability of loss-of-function mutations expedites adaptation to new phenotypic optima. Therefore, evolutionary capacitors might be more widespread than previously anticipated. (10.1038/nature01765) / Nature by A Bergman (2003)
  90. Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000). (10.1016/S0092-8674(00)00015-5) / Cell by TR Hughes (2000)
  91. Sangster, T. A., Lindquist, S. & Queitsch, C. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays 26, 348–362 (2004). (10.1002/bies.20020) / Bioessays by TA Sangster (2004)
  92. Michelitsch, M. D. & Weissman, J. S. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl Acad. Sci. USA 97, 11910–11915 (2000). (10.1073/pnas.97.22.11910) / Proc. Natl Acad. Sci. USA by MD Michelitsch (2000)
  93. Harrison, P. M. & Gerstein, M. A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol. 4, R40 (2003). (10.1186/gb-2003-4-6-r40) / Genome Biol. by PM Harrison (2003)
  94. Flechsig, E. et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27, 399–408 (2000). (10.1016/S0896-6273(00)00046-5) / Neuron by E Flechsig (2000)
  95. Liu, J. J. & Lindquist, S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 400, 573–576 (1999). (10.1038/23048) / Nature by JJ Liu (1999)
  96. Krishnan, R. & Lindquist, S. L. New structural insights on a yeast prion illuminate nucleation and strain diversity. Nature (in the press). This paper defines which regions of the Sup35 prion domain make intermolecular contacts in assembled prion fibres. It also describes how variations in these intermolecular contacts facilitate the construction of different prion variants.
  97. Ross, E. D., Baxa, U. & Wickner, R. B. Scrambled prion domains form prions and amyloid. Mol. Cell Biol. 24, 7206–7213 (2004). (10.1128/MCB.24.16.7206-7213.2004) / Mol. Cell Biol. by ED Ross (2004)
  98. Uversky, V. N. & Fink, A. L. Conformational constraints for amyloid fibrillation: the importance of being unfolded. Biochim. Biophys. Acta 1698, 131–153 (2004). (10.1016/j.bbapap.2003.12.008) / Biochim. Biophys. Acta by VN Uversky (2004)
  99. Si, K. et al. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. Cell 115, 893–904 (2003). This paper establishes that neurotransmitter cues upregulate ApCPEB at specific synapses, and that consequent ApCPEB-stimulated translation has a crucial role in the maintenance of synaptic growth associated with long-term facilitation. Together with reference 4, this paper makes a compelling argument that ApCPEB prions function in long-term memory formation. (10.1016/S0092-8674(03)01021-3) / Cell by K Si (2003)
  100. Bailey, C. H., Kandel, E. R. & Si, K. The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron 44, 49–57 (2004). (10.1016/j.neuron.2004.09.017) / Neuron by CH Bailey (2004)
  101. Lisman, J., Schulman, H. & Cline, H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nature Rev. Neurosci. 3, 175–190 (2002). (10.1038/nrn753) / Nature Rev. Neurosci. by J Lisman (2002)
  102. Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999). (10.1126/science.283.5400.381) / Science by US Bhalla (1999)
  103. Thayer, M. J. et al. Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241–248 (1989). (10.1016/0092-8674(89)90838-6) / Cell by MJ Thayer (1989)
  104. Way, J. C. & Chalfie, M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 3, 1823–1833 (1989). (10.1101/gad.3.12a.1823) / Genes Dev. by JC Way (1989)
  105. Mendez, R. & Richter, J. D. Translational control by CPEB: a means to the end. Nature Rev. Mol. Cell Biol. 2, 521–529 (2001). (10.1038/35080081) / Nature Rev. Mol. Cell Biol. by R Mendez (2001)
  106. Uversky, V. N., Gillespie, J. R. & Fink, A. L. Why are 'natively unfolded' proteins unstructured under physiologic conditions? Proteins 41, 415–427 (2000). (10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7) / Proteins by VN Uversky (2000)
  107. Sajikumar, S. & Frey, J. U. Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25 (2004). (10.1016/j.nlm.2004.03.003) / Neurobiol. Learn. Mem. by S Sajikumar (2004)
  108. Theis, M., Si, K. & Kandel, E. R. Two previously undescribed members of the mouse CPEB family of genes and their inducible expression in the principal cell layers of the hippocampus. Proc. Natl Acad. Sci. USA 100, 9602–9607 (2003). (10.1073/pnas.1133424100) / Proc. Natl Acad. Sci. USA by M Theis (2003)
  109. Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661–664 (2000). (10.1126/science.287.5453.661) / Science by L Li (2000)
  110. Ter-Avanesyan, M. D. et al. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7, 683–692 (1993). (10.1111/j.1365-2958.1993.tb01159.x) / Mol. Microbiol. by MD Ter-Avanesyan (1993)
  111. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the polycomb and trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004). (10.1146/annurev.genet.38.072902.091907) / Annu. Rev. Genet. by L Ringrose (2004)
  112. Kim, C. A., Gingery, M., Pilpa, R. M. & Bowie, J. U. The SAM domain of polyhomeotic forms a helical polymer. Nature Struct. Biol. 9, 453–457 (2002). / Nature Struct. Biol. by CA Kim (2002)
  113. Qiao, F. et al. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Cell 118, 163–173 (2004). (10.1016/j.cell.2004.07.010) / Cell by F Qiao (2004)
  114. Roberts, C. W. & Orkin, S. H. The SWI/SNF complex — chromatin and cancer. Nature Rev. Cancer 4, 133–142 (2004). (10.1038/nrc1273) / Nature Rev. Cancer by CW Roberts (2004)
  115. Sudarsanam, P., Iyer, V. R., Brown, P. O. & Winston, F. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 97, 3364–3369 (2000). (10.1073/pnas.97.7.3364) / Proc. Natl Acad. Sci. USA by P Sudarsanam (2000)
  116. Gilks, N. et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383–5398 (2004). (10.1091/mbc.e04-08-0715) / Mol. Biol. Cell by N Gilks (2004)
  117. Roberts, B. T. & Wickner, R. B. Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev. 17, 2083–2087 (2003). (10.1101/gad.1115803) / Genes Dev. by BT Roberts (2003)
  118. Collin, P., Beauregard, P. B., Elagoz, A. & Rokeach, L. A. A non-chromosomal factor allows viability of Schizosaccharomyces pombe lacking the essential chaperone calnexin. J. Cell Sci. 117, 907–918 (2004). (10.1242/jcs.00943) / J. Cell Sci. by P Collin (2004)
  119. Ball, A. J., Wong, D. K. & Elliott, J. J. Glucosamine resistance in yeast. I. A preliminary genetic analysis. Genetics 84, 311–317 (1976). (10.1093/genetics/84.2.311) / Genetics by AJ Ball (1976)
  120. Silar, P., Haedens, V., Rossignol, M. & Lalucque, H. Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics 151, 87–95 (1999). (10.1093/genetics/151.1.87) / Genetics by P Silar (1999)
  121. Talloczy, Z., Menon, S., Neigeborn, L. & Leibowitz, M. J. The [KIL-d] cytoplasmic genetic element of yeast results in epigenetic regulation of viral M double-stranded RNA gene expression. Genetics 150, 21–30 (1998). (10.1093/genetics/150.1.21) / Genetics by Z Talloczy (1998)
  122. Volkov, K. V. et al. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 160, 25–36 (2002). (10.1093/genetics/160.1.25) / Genetics by KV Volkov (2002)
  123. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996). (10.1093/genetics/144.4.1375) / Genetics by IL Derkatch (1996)
  124. Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994). (10.1093/genetics/137.3.671) / Genetics by MD Ter-Avanesyan (1994)
  125. Liu, J. J., Sondheimer, N. & Lindquist, S. L. Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16446–16453 (2002). (10.1073/pnas.252652099) / Proc. Natl Acad. Sci. USA by JJ Liu (2002)
  126. Bagriantsev, S. & Liebman, S. W. Specificity of prion assembly in vivo. [PSI+] and [PIN+] form separate structures in yeast. J. Biol. Chem. 279, 51042–51048 (2004). (10.1074/jbc.M410611200) / J. Biol. Chem. by S Bagriantsev (2004)
  127. Schlumpberger, M., Prusiner, S. B. & Herskowitz, I. Induction of distinct [URE3] yeast prion strains. Mol. Cell Biol. 21, 7035–7046 (2001). (10.1128/MCB.21.20.7035-7046.2001) / Mol. Cell Biol. by M Schlumpberger (2001)
  128. Osherovich, L. Z. & Weissman, J. S. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106, 183–194 (2001). (10.1016/S0092-8674(01)00440-8) / Cell by LZ Osherovich (2001)
  129. Derkatch, I. L. et al. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+]prion in yeast and aggregation of Sup35 in vitro. Proc. Natl Acad. Sci. USA 101, 12934–12939 (2004). (10.1073/pnas.0404968101) / Proc. Natl Acad. Sci. USA by IL Derkatch (2004)
  130. Derkatch, I. L. et al. Dependence and independence of [PSI+] and [PIN+]: a two-prion system in yeast? EMBO J. 19, 1942–1952 (2000). (10.1093/emboj/19.9.1942) / EMBO J. by IL Derkatch (2000)
  131. Bradley, M. E. & Liebman, S. W. Destabilizing interactions among [PSI+] and [PIN+] yeast prion variants. Genetics 165, 1675–1685 (2003). (10.1093/genetics/165.4.1675) / Genetics by ME Bradley (2003)
  132. Baker, H. F., Ridley, R. M., Duchen, L. W., Crow, T. J. & Bruton, C. J. Induction of β(A4)-amyloid in primates by injection of Alzheimer's disease brain homogenate. Comparison with transmission of spongiform encephalopathy. Mol. Neurobiol. 8, 25–39 (1994). (10.1007/BF02778005) / Mol. Neurobiol. by HF Baker (1994)
  133. Lundmark, K. et al. Transmissibility of systemic amyloidosis by a prion-like mechanism. Proc. Natl Acad. Sci. USA 99, 6979–6984 (2002). (10.1073/pnas.092205999) / Proc. Natl Acad. Sci. USA by K Lundmark (2002)
  134. Xing, Y. et al. Induction of protein conformational change in mouse senile amyloidosis. J. Biol. Chem. 277, 33164–33169 (2002). (10.1074/jbc.M111570200) / J. Biol. Chem. by Y Xing (2002)
  135. Prinz, M. et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. Nature 425, 957–962 (2003). (10.1038/nature02072) / Nature by M Prinz (2003)
  136. Tanaka, M., Chien, P., Yonekura, K. & Weissman, J. S. Mechanism of cross-species prion transmission; an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121, 49–62 (2005). (10.1016/j.cell.2005.03.008) / Cell by M Tanaka (2005)
  137. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004). A delineation of how Hsp104 directly regulates Sup35 prion conformers. (10.1126/science.1098007) / Science by J Shorter (2004)
  138. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibres and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003). (10.1073/pnas.0431081100) / Proc. Natl Acad. Sci. USA by T Scheibel (2003)
  139. Masel, J., Jansen, V. A. & Nowak, M. A. Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77, 139–152 (1999). (10.1016/S0301-4622(99)00016-2) / Biophys. Chem. by J Masel (1999)
  140. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996). (10.1038/382525a0) / Nature by DH Lee (1996)
  141. Lee, D. H., Severin, K., Yokobayashi, Y. & Ghadiri, M. R. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591–594 (1997). (10.1038/37569) / Nature by DH Lee (1997)
  142. Saghatelian, A., Yokobayashi, Y., Soltani, K. & Ghadiri, M. R. A chiroselective peptide replicator. Nature 409, 797–801 (2001). References 140–142 describe a remarkable set of short α -helical peptides that can undergo chemical and conformational replication, and which might even help to explain the origins of homochirality. / Nature by A Saghatelian (2001)
  143. Pan, K. M. et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc. Natl Acad. Sci. USA 90, 10962–10966 (1993). (10.1073/pnas.90.23.10962) / Proc. Natl Acad. Sci. USA by KM Pan (1993)
  144. Wille, H., Zhang, G. F., Baldwin, M. A., Cohen, F. E. & Prusiner, S. B. Separation of scrapie prion infectivity from PrP amyloid polymers. J. Mol. Biol. 259, 608–621 (1996). (10.1006/jmbi.1996.0343) / J. Mol. Biol. by H Wille (1996)
  145. Parsell, D. A., Kowal, A. S., Singer, M. A. & Lindquist, S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372, 475–478 (1994). (10.1038/372475a0) / Nature by DA Parsell (1994)
  146. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998). (10.1016/S0092-8674(00)81223-4) / Cell by JR Glover (1998)
  147. Wegrzyn, R. D., Bapat, K., Newnam, G. P., Zink, A. D. & Chernoff, Y. O. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell Biol. 21, 4656–4669 (2001). (10.1128/MCB.21.14.4656-4669.2001) / Mol. Cell Biol. by RD Wegrzyn (2001)
  148. Hattendorf, D. A. & Lindquist, S. L. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Proc. Natl Acad. Sci. USA 99, 2732–2737 (2002). (10.1073/pnas.261693199) / Proc. Natl Acad. Sci. USA by DA Hattendorf (2002)
  149. Hattendorf, D. A. & Lindquist, S. L. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. EMBO J. 21, 12–21 (2002). (10.1093/emboj/21.1.12) / EMBO J. by DA Hattendorf (2002)
  150. Grimminger, V., Richter, K., Imhof, A., Buchner, J. & Walter, S. The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J. Biol. Chem. 279, 7378–7383 (2004). (10.1074/jbc.M312403200) / J. Biol. Chem. by V Grimminger (2004)
  151. Ripaud, L., Maillet, L. & Cullin, C. The mechanisms of [URE3] prion elimination demonstrate that large aggregates of Ure2p are dead-end products. EMBO J. 22, 5251–5259 (2003). (10.1093/emboj/cdg488) / EMBO J. by L Ripaud (2003)
  152. Collins, S. R., Douglass, A., Vale, R. D. & Weissman, J. S. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol. 2, e321 (2004). (10.1371/journal.pbio.0020321) / PLoS Biol. by SR Collins (2004)
  153. Inoue, Y., Taguchi, H., Kishimoto, A. & Yoshida, M. Hsp104 binds to yeast Sup35 prion fibre but needs other factor(s) to sever it. J. Biol. Chem. 279, 52319–52323 (2004). (10.1074/jbc.M408159200) / J. Biol. Chem. by Y Inoue (2004)
  154. Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S. & Tuite, M. F. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40, 1357–1369 (2001). (10.1046/j.1365-2958.2001.02478.x) / Mol. Microbiol. by PC Ferreira (2001)
  155. Shorter, J. & Lindquist, S. Navigating the ClpB channel to solution. Nature Struct. Mol. Biol. 12, 4–6 (2005). (10.1038/nsmb0105-4) / Nature Struct. Mol. Biol. by J Shorter (2005)
  156. Serio T. R. & Lindquist S. L. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol. 10, 98–105 (2000). (10.1016/S0962-8924(99)01711-0) / Trends Cell Biol. by TR Serio (2000)
  157. Leeds, P., Peltz, S. W., Jacobson, A. & Culbertson, M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5, 2303–2314 (1991). (10.1101/gad.5.12a.2303) / Genes Dev. by P Leeds (1991)
  158. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002). (10.1126/science.1067338) / Science by PA Frischmeyer (2002)
  159. Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–155 (2001). (10.1126/science.292.5521.1552) / Science by NF Bence (2001)
  160. Venkatraman, P., Wetzel, R., Tanaka, M., Nukina, N. & Goldberg, A. L. Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol. Cell 14, 95–104 (2004). (10.1016/S1097-2765(04)00151-0) / Mol. Cell by P Venkatraman (2004)
  161. Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005). (10.1016/j.cell.2005.02.011) / Cell by J Castilla (2005)
  162. Zou, W. Q. & Gambetti, P. From microbes to prions the final proof of the prion hypothesis. Cell 121, 155–157 (2005). (10.1016/j.cell.2005.04.002) / Cell by WQ Zou (2005)
Dates
Type When
Created 20 years, 2 months ago (June 1, 2005, 11:28 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, midnight)
Indexed 6 days, 5 hours ago (Aug. 21, 2025, 1:37 p.m.)
Issued 20 years, 2 months ago (June 1, 2005)
Published 20 years, 2 months ago (June 1, 2005)
Published Print 20 years, 2 months ago (June 1, 2005)
Funders 0

None

@article{Shorter_2005, title={Prions as adaptive conduits of memory and inheritance}, volume={6}, ISSN={1471-0064}, url={http://dx.doi.org/10.1038/nrg1616}, DOI={10.1038/nrg1616}, number={6}, journal={Nature Reviews Genetics}, publisher={Springer Science and Business Media LLC}, author={Shorter, James and Lindquist, Susan}, year={2005}, month=jun, pages={435–450} }