Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Drug Discovery (297)
Bibliography

Khosla, C., & Keasling, J. D. (2003). Metabolic engineering for drug discovery and development. Nature Reviews Drug Discovery, 2(12), 1019–1025.

Authors 2
  1. Chaitan Khosla (first)
  2. Jay D. Keasling (additional)
References 83 Referenced 175
  1. Cragg, G. M., Newman, D. J. & Snader, K. M. Natural products in drug discovery and development. J. Nat. Prod. 60, 52–60 (1997). (10.1021/np9604893) / J. Nat. Prod. by GM Cragg (1997)
  2. McCaskill, D. & Croteau, R. Prospects for the bioengineering of isoprenoid biosynthesis. Adv. Biochem. Eng. Biotechnol. 55, 107–146 (1997). / Adv. Biochem. Eng. Biotechnol. by D McCaskill (1997)
  3. McCaskill, D. & Croteau, R. Some caveats for bioengineering terpenoid metabolism in plants. Trends Biotechnol. 16, 349–355 (1998). (10.1016/S0167-7799(98)01231-1) / Trends Biotechnol. by D McCaskill (1998)
  4. Fraga, B. M. in Methods in Plant Biochemistry Vol. 7 (eds Charlwood, B. V. & Banthorpe, D. V.) 145–185 (Academic Press, San Diego, 1991). / Methods in Plant Biochemistry by BM Fraga (1991)
  5. McGarvey, D. J. & Croteau, R. Terpenoid metabolism. Plant Cell 7, 1015–1026 (1995). / Plant Cell by DJ McGarvey (1995)
  6. Raskin, I. et al. Plants and human health in the twenty-first century. Trends Biotechnol. 20, 522–531 (2002). (10.1016/S0167-7799(02)02080-2) / Trends Biotechnol. by I Raskin (2002)
  7. Erkel, G. & Anke, T. Hyphodontal, a new antifungal inhibitor of reverse transcriptases from Hyphodontia sp. (Corticiaceae, Basidomycetes). Z. Naturforsch. [C] 49, 561–570 (1994). / Z. Naturforsch. [C] by G Erkel (1994)
  8. Ferrandiz, M. L. et al. Avarol and avarone, two new anti-inflammatory agents of marine origin. Eur. J. Pharm. 253, 75–82 (1994). (10.1016/0014-2999(94)90759-5) / Eur. J. Pharm. by ML Ferrandiz (1994)
  9. Tan, R. X. et al. Mono- and sesquiterpenes and antifungal constituents from Artemisia species. Planta Med. 65, 64–67 (1999). (10.1055/s-1999-13965) / Planta Med. by RX Tan (1999)
  10. Long, B. H. et al. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol). Cancer Res. 58, 1111–1115 (1998). / Cancer Res. by BH Long (1998)
  11. Hamel, E., Sackett, D. L., Vourloumis, D. & Nicolaou, K. C. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 38, 5490–5498 (1999). (10.1021/bi983023n) / Biochemistry by E Hamel (1999)
  12. Nicolaou, K. C. et al. Total synthesis and chemical biology of the sarcodictyins. Chem. Pharm. Bull. (Tokyo) 47, 1199–1213 (1999). (10.1248/cpb.47.1199) / Chem. Pharm. Bull. (Tokyo) by KC Nicolaou (1999)
  13. Skeel, R. T. (ed.) Handbook of Chemotherapy 5th edn (Lippincott, Williams & Wilkins, Baltimore, 1999). / Handbook of Chemotherapy by RT Skeel (1999)
  14. Jennewein, S. & Croteau, R. Taxol: biosynthesis, molecular genetics, and biotechnological applications. Appl. Microbiol. Biotechnol. 57, 13–19 (2001). (10.1007/s002530100757) / Appl. Microbiol. Biotechnol. by S Jennewein (2001)
  15. Gelb, M. H. et al. The inhibition of protein prenyltransferases by oxygenated metabolites of limonene and perillyl alcohol. Cancer Lett. 91, 169–175 (1995). (10.1016/0304-3835(95)03747-K) / Cancer Lett. by MH Gelb (1995)
  16. Hohl, R. J. Monoterpenes as regulators of malignant cell proliferation. Adv. Exp. Med. Biol. 401, 137–146 (1996). (10.1007/978-1-4613-0399-2_11) / Adv. Exp. Med. Biol. by RJ Hohl (1996)
  17. Gould, M. N. Cancer chemoprevention and therapy by monoterpenes. Environ. Health Perspect. 105, 977–999 (1997). / Environ. Health Perspect. by MN Gould (1997)
  18. Eisenreich, W. et al. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5, R221–R233 (1998). (10.1016/S1074-5521(98)90002-3) / Chem. Biol. by W Eisenreich (1998)
  19. Lange, B. M., Rujan, T., Martin, W. & Croteau, R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl Acad. Sci. USA 97, 13172–13177 (2000). (10.1073/pnas.240454797) / Proc. Natl Acad. Sci. USA by BM Lange (2000)
  20. Steele, C. L., Crock, J., Bohlmann, J. & Croteau, R. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of δ-selinene synthase and γ-humulene synthase. J. Biol. Chem. 273, 2078–2089 (1998). (10.1074/jbc.273.4.2078) / J. Biol. Chem. by CL Steele (1998)
  21. Lupien, S., Karp, F., Ponnamperuma, K., Wildung, M. & Croteau, R. Cytochrome P450 limonene hydroxylases of Mentha species. Drug Metab. Drug Interact. 12, 245–260 (1995). (10.1515/DMDI.1995.12.3-4.245) / Drug Metab. Drug Interact. by S Lupien (1995)
  22. Haudenschild, C., Schalk, M., Karp, F. & Croteau, R. Functional expression of regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae. Arch. Biochem. Biophys. 379, 127–136 (2000). (10.1006/abbi.2000.1864) / Arch. Biochem. Biophys. by C Haudenschild (2000)
  23. Schalk, M. & Croteau, R. A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (−)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc. Natl Acad. Sci. USA 97, 11948–11953 (2000). (10.1073/pnas.97.22.11948) / Proc. Natl Acad. Sci. USA by M Schalk (2000)
  24. Wust, M. & Croteau, R. B. Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylase reveals the mechanism of multiple product formation. Biochemistry 41, 1820–1827 (2002). (10.1021/bi011717h) / Biochemistry by M Wust (2002)
  25. Hefner, J. et al. Cytochrome P450-catalyzed hydroxylation of taxa-4(5),11(12)-diene to taxa-4(20),11(12)-dien-5-α-ol: the first oxygenation step in taxol biosynthesis. Chem. Biol. 3, 479–489 (1996). (10.1016/S1074-5521(96)90096-4) / Chem. Biol. by J Hefner (1996)
  26. Schoendorf, A., Rithner, C. D., Williams, R. M. & Croteau, R. B. Molecular cloning of a cytochrome P450 taxane 10β-hydroxylase cDNA from Taxus and functional expression in yeast. Proc. Natl Acad. Sci. USA 98, 1501–1506 (2001). (10.1073/pnas.98.4.1501) / Proc. Natl Acad. Sci. USA by A Schoendorf (2001)
  27. Walker, K. & Croteau, R. Taxol biosynthetic genes. Phytochemistry 58, 1–7 (2001). (10.1016/S0031-9422(01)00160-1) / Phytochemistry by K Walker (2001)
  28. Jennewein, S., Rithner, C. D., Williams, R. M. & Croteau, R. B. Taxol biosynthesis: taxane 13 α-hydroxylase is a cytochrome P450-dependent monooxygenase. Proc. Natl Acad. Sci. USA 98, 13595–13600 (2001). (10.1073/pnas.251539398) / Proc. Natl Acad. Sci. USA by S Jennewein (2001)
  29. Walker, K. & Croteau, R. Molecular cloning of a 10-deacetylbaccatin III-10-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 583–587 (2000). (10.1073/pnas.97.2.583) / Proc. Natl Acad. Sci. USA by K Walker (2000)
  30. Walker, K. & Croteau, R. Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2α-O-benzoyltransferase cDNA from Taxus and functional expression in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 13591–13596 (2000). (10.1073/pnas.250491997) / Proc. Natl Acad. Sci. USA by K Walker (2000)
  31. Walker, K. et al. Partial purification and characterization of acetyl coenzyme A: Taxa-4(20),11(12)-dien-5α-ol O-acetyl transferase that catalyzes the first acylation step of Taxol biosynthesis. Arch. Biochem. Biophys. 364, 273–279 (1999). (10.1006/abbi.1999.1125) / Arch. Biochem. Biophys. by K Walker (1999)
  32. Walker, K., Schoendorf, A. & Croteau, R. Molecular cloning of a taxa-4(20),11(12)-dien-5α-ol-O-acetyl transferase cDNA from Taxus and functional expression in Escherichia coli. Arch. Biochem. Biophys. 374, 371–380 (2000). (10.1006/abbi.1999.1609) / Arch. Biochem. Biophys. by K Walker (2000)
  33. Tuveson, R. W., Larson, R. A. & Kagan, J. Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules. J. Bacteriol. 170, 4675–4680 (1988). (10.1128/jb.170.10.4675-4680.1988) / J. Bacteriol. by RW Tuveson (1988)
  34. Chamovitz, D., Misawa, N., Sandmann, G. & Hirschberg, J. Molecular cloning and expression in Escherichia coli of a cyanobacterial gene coding for phytoene synthase, a carotenoid biosynthesis enzyme. FEBS Lett. 296, 305–310 (1992). (10.1016/0014-5793(92)80310-D) / FEBS Lett. by D Chamovitz (1992)
  35. Hunter, C. N. et al. Introduction of new carotenoids into the bacterial photosynthetic apparatus by combining the carotenoid biosynthetic pathways of Erwinia herbicola and Rhodobacter sphaeroides. J. Bacteriol. 176, 3692–3697 (1994). (10.1128/jb.176.12.3692-3697.1994) / J. Bacteriol. by CN Hunter (1994)
  36. Martinez-Ferez, I., Fernandez-Gonzalez, B., Sandmann, G. & Vioque, A. Cloning and expression in Escherichia coli of the gene coding for phytoene synthase from the cyanobacterium Synechocystis sp. PCC6803. Biochim. Biophys. Acta 1218, 145–152 (1994). (10.1016/0167-4781(94)90003-5) / Biochim. Biophys. Acta by I Martinez-Ferez (1994)
  37. Misawa, H. et al. Expression of a tomato cDNA for phytoene synthase in Escherichia coli, phytoene formation in vivo and in vitro, and functional analysis of the various truncated gene products. J. Biochem. 116, 980–985 (1994). (10.1093/oxfordjournals.jbchem.a124656) / J. Biochem. by H Misawa (1994)
  38. Yamano, S., Ishii, T., Nakagawa, M., Ikenaga, H. & Misawa, N. Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Biosci. Biotech. Biochem. 58, 1112–1114 (1994). (10.1271/bbb.58.1112) / Biosci. Biotech. Biochem. by S Yamano (1994)
  39. Kajiwara, S. et al. Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol. Biol. 29, 343–352 (1995). (10.1007/BF00043657) / Plant Mol. Biol. by S Kajiwara (1995)
  40. Ruther, A., Misawa, N., Boger, P. & Sandmann, G. Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl. Microbiol. Biotechnol. 48, 162–167 (1997). (10.1007/s002530051032) / Appl. Microbiol. Biotechnol. by A Ruther (1997)
  41. Miura, Y. et al. Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl. Environ. Microbiol. 64, 1226–1229 (1998). (10.1128/AEM.64.4.1226-1229.1998) / Appl. Environ. Microbiol. by Y Miura (1998)
  42. Shimada, H. et al. Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl. Environ. Microbiol. 64, 2676–2680 (1998). (10.1128/AEM.64.7.2676-2680.1998) / Appl. Environ. Microbiol. by H Shimada (1998)
  43. Sandmann, G., Albrecht, M., Schnurr, G., Knorzer, O. & Boger, P. The biotechnological potential and design of novel carotenoids by gene combination in Escherichia coli. Trends Biotechnol. 17, 233–237 (1999). (10.1016/S0167-7799(99)01307-4) / Trends Biotechnol. by G Sandmann (1999)
  44. Wang, C. -W., Oh, M. -K. & Liao, J. C. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62, 235–241 (1999). (10.1002/(SICI)1097-0290(19990120)62:2<235::AID-BIT14>3.0.CO;2-U) / Biotechnol. Bioeng. by C-W Wang (1999)
  45. Martin, V. J. J., Yoshikuni, Y. & Keasling, J. D. The in vivo synthesis of plant sesquiterpenes in Escherichia coli. Biotechnol. Bioeng. 75, 497–503 (2001). (10.1002/bit.10037) / Biotechnol. Bioeng. by VJJ Martin (2001)
  46. Wang, G. & Keasling, J. D. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab. Eng. 4, 193–201 (2002). (10.1006/mben.2002.0225) / Metab. Eng. by G Wang (2002)
  47. Martin, V. J. J., Pitera, D. J., Withers, S. T., Newman, J. D. & Keasling, J. D. Engineering the mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol. 21, 796–802 (2003). (10.1038/nbt833) / Nature Biotechnol. by VJJ Martin (2003)
  48. Cane, D. E., Walsh, C. T. & Khosla, C. Harnessing the biosynthetic code. Combinations, permutations, mutations. Science 282, 63–68 (1998). (10.1126/science.282.5386.63) / Science by DE Cane (1998)
  49. Malpartida, F. & Hopwood, D. A. Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309, 462–464 (1984). (10.1038/309462a0) / Nature by F Malpartida (1984)
  50. Santi, D. V., Siani, M. A., Julien, B., Kupfer, D. & Roe, B. An approach for obtaining perfect hybridization probes for unknown polyketide synthase genes: a search for the epothilone gene cluster. Gene 247, 97–102 (2000). (10.1016/S0378-1119(00)00113-X) / Gene by DV Santi (2000)
  51. Yadav, G., Gokhale, R. S. & Mohanty, D. SEARCHPKS: a program for detection and analysis of polyketide synthase domains. Nucleic Acids Res. 31, 3654–3658 (2003). (10.1093/nar/gkg607) / Nucleic Acids Res. by G Yadav (2003)
  52. Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002). (10.1038/417141a) / Nature by SD Bentley (2002)
  53. Kunst, F. et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997). (10.1038/36786) / Nature by F Kunst (1997)
  54. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998). (10.1038/31159) / Nature by ST Cole (1998)
  55. Minas, W., Brunker, P., Kallio, P. T. & Bailey, J. E. Improved erythromycin production in a genetically engineered industrial strain of Saccharopolyspora erythraea. Biotechnol. Prog. 14, 561–566 (1998). (10.1021/bp980055t) / Biotechnol. Prog. by W Minas (1998)
  56. Askenazi, M. et al. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnol. 21, 150–156 (2003). (10.1038/nbt781) / Nature Biotechnol. by M Askenazi (2003)
  57. Zhang, Y. X. et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644–646 (2002). (10.1038/415644a) / Nature by YX Zhang (2002)
  58. Pfeifer, B. A. & Khosla, C. Biosynthesis of polyketides in heterologous hosts. Microbiol. Mol. Biol. Rev. 65, 106–118 (2001). (10.1128/MMBR.65.1.106-118.2001) / Microbiol. Mol. Biol. Rev. by BA Pfeifer (2001)
  59. Khosla, C., Gokhale, R., Jacobsen, J. R. & Cane, D. E. Tolerance and specificity of polyketide synthases. Ann. Rev. Biochem. 68, 219–253 (1999). (10.1146/annurev.biochem.68.1.219) / Ann. Rev. Biochem. by C Khosla (1999)
  60. Gokhale, R. S., Tsuji, S. Y., Cane, D. E. & Khosla, C. Dissecting and exploiting intermodular communication in polyketide synthases. Science 284, 482–485 (1999). (10.1126/science.284.5413.482) / Science by RS Gokhale (1999)
  61. Ranganathan, A. et al. Knowledge-based design of bimodular and trimodular polyketide synthases based on domain and module swaps: a route to simple statin analogues. Chem. Biol. 6, 731–741 (1999). (10.1016/S1074-5521(00)80020-4) / Chem. Biol. by A Ranganathan (1999)
  62. Stassi, D. L. et al. Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. Proc. Natl Acad. Sci. USA 95, 7305–7309 (1998). (10.1073/pnas.95.13.7305) / Proc. Natl Acad. Sci. USA by DL Stassi (1998)
  63. Jacobsen, J. R., Hutchinson, C. R., Cane, D. E. & Khosla, C. Precursor directed biosynthesis of novel erythromycin analogs by an engineered polyketide synthase. Science 277, 367–369 (1997). (10.1126/science.277.5324.367) / Science by JR Jacobsen (1997)
  64. Pacey, M. S. et al. Novel erythromycins from a recombinant Saccharopolyspora erythraea strain NRRL 2338 pIG1. I. Fermentation, isolation and biological activity. J. Antibiot. 51, 1029–1034 (1998). (10.7164/antibiotics.51.1029) / J. Antibiot. by MS Pacey (1998)
  65. McDaniel, R. et al. Multiple genetic modifications of the erythromycin polyketide synthase to produce a library of novel unnatural natural products. Proc. Natl Acad. Sci. USA 96, 1846–1851 (1999). (10.1073/pnas.96.5.1846) / Proc. Natl Acad. Sci. USA by R McDaniel (1999)
  66. Skatrud, P. L. et al. Use of recombinant DNA to improve production of cephalosporin C by Cephalosporium acremonium. Biotechnology 7, 477–485 (1989). / Biotechnology by PL Skatrud (1989)
  67. van de Sandt, E. J. A. X. & de Vroom, E. Inovations in cephalosporin and penicillin production. Painting the antibiotics industry green. Chem. Today 18, 72–75 (2000). / Chem. Today by EJAX van de Sandt (2000)
  68. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. Modular peptide synthetases involved in non-ribosomal peptide synthesis. Chem. Rev. 97, 2651–2674 (1997). (10.1021/cr960029e) / Chem. Rev. by MA Marahiel (1997)
  69. Mootz, H. D., Schwarzer, D. & Marahiel, M. A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3, 490–504 (2002). (10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N) / Chembiochem by HD Mootz (2002)
  70. Trauger, J. W., Kohli, R. M., Mootz, H. D., Marahiel, M. A. & Walsh, C. T. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407, 215–218 (2000). (10.1038/35025116) / Nature by JW Trauger (2000)
  71. Boddy, C. N., Schneider, T. L., Hotta, K., Walsh, C. T. & Khosla, C. Epothilone C macrolactonization and hydrolysis are catalyzed by the isolated thioesterase domain of epothilone polyketide synthase. J. Am. Chem. Soc. 125, 3428–3429 (2003). (10.1021/ja0298646) / J. Am. Chem. Soc. by CN Boddy (2003)
  72. Kohli, R. M., Walsh, C. T. & Burkhart, M. D. Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature 418, 658–661 (2002). (10.1038/nature00907) / Nature by RM Kohli (2002)
  73. Hugenholtz, J. & Smid, E. J. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biotechnol. 13, 497–507 (2002). (10.1016/S0958-1669(02)00367-1) / Curr. Opin. Biotechnol. by J Hugenholtz (2002)
  74. He, X. M. & Liu, H. W. Formation of unusual sugars: mechanistic studies and biosynthetic applications. Annu. Rev. Biochem. 71, 701–754 (2002). (10.1146/annurev.biochem.71.110601.135339) / Annu. Rev. Biochem. by XM He (2002)
  75. Gaisser, S. et al. Engineered biosynthesis of novel spinosyns bearing altered deoxyhexose substituents. Chem. Comm. 21, 618–619 (2002). (10.1039/b200536k) / Chem. Comm. by S Gaisser (2002)
  76. Madduri, K. et al. Production of the antitumor drug epirubicin (4-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Nature Biotechnol. 16, 69–74 (1998). (10.1038/nbt0198-69) / Nature Biotechnol. by K Madduri (1998)
  77. Rodriguez, L. et al. Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms. A tool to produce novel glycosylated bioactive compounds. Chem. Biol. 9, 721–729 (2002). (10.1016/S1074-5521(02)00154-0) / Chem. Biol. by L Rodriguez (2002)
  78. Borisova, S. A., Zhao, L., Sherman, D. H. & Liu, H. W. Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 1, 133–136 (1999). (10.1021/ol9906007) / Org. Lett. by SA Borisova (1999)
  79. Hoffmeister, D. et al. Engineered urdamycin glycosyltransferases are broadened and altered in substrate specificity. Chem. Biol. 9, 287–295 (2002). (10.1016/S1074-5521(02)00114-X) / Chem. Biol. by D Hoffmeister (2002)
  80. Losey, H. C. et al. Incorporation of glucose analogs by GtfE and GtfD from the vancomycin biosynthetic pathway to generate variant glycopeptides. Chem. Biol. 9, 1305–1314 (2002). (10.1016/S1074-5521(02)00270-3) / Chem. Biol. by HC Losey (2002)
  81. Tang, L. & McDaniel, R. Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem. Biol. 8, 547–555 (2001). (10.1016/S1074-5521(01)00032-1) / Chem. Biol. by L Tang (2001)
  82. Hu, Y. et al. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl Acad. Sci. USA 100, 845–849 (2003). (10.1073/pnas.0235749100) / Proc. Natl Acad. Sci. USA by Y Hu (2003)
  83. Mulichak, A. M. et al. Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. Proc. Natl Acad. Sci. USA 100, 9238–9243 (2003). (10.1073/pnas.1233577100) / Proc. Natl Acad. Sci. USA by AM Mulichak (2003)
Dates
Type When
Created 21 years, 7 months ago (Jan. 4, 2004, 9:48 p.m.)
Deposited 3 years, 4 months ago (April 19, 2022, 7:11 p.m.)
Indexed 33 minutes ago (Aug. 31, 2025, 12:34 a.m.)
Issued 21 years, 8 months ago (Dec. 1, 2003)
Published 21 years, 8 months ago (Dec. 1, 2003)
Published Print 21 years, 8 months ago (Dec. 1, 2003)
Funders 0

None

@article{Khosla_2003, title={Metabolic engineering for drug discovery and development}, volume={2}, ISSN={1474-1784}, url={http://dx.doi.org/10.1038/nrd1256}, DOI={10.1038/nrd1256}, number={12}, journal={Nature Reviews Drug Discovery}, publisher={Springer Science and Business Media LLC}, author={Khosla, Chaitan and Keasling, Jay D.}, year={2003}, month=dec, pages={1019–1025} }