Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Drug Discovery (297)
References
111
Referenced
285
-
Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).
(
10.1016/0092-8674(92)90115-S
) / Cell by RO Hynes (1992) -
Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multi-step paradigm. Cell 76, 301–314 (1994).
(
10.1016/0092-8674(94)90337-9
) / Cell by TA Springer (1994) -
Humphries, M. J. Integrin structure. Biochem. Soc. Trans. 28, 311–339 (2000).
(
10.1042/bst0280311
) / Biochem. Soc. Trans. by MJ Humphries (2000) -
Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002). Comprehensively reviews conformational changes of integrins with emphasis on the conformational regulation of ligand binding by I domains.
(
10.1146/annurev.biophys.31.101101.140922
) / Annu. Rev. Biophys. Biomol. Struct. by M Shimaoka (2002) -
Curley, G. P., Blum, H. & Humphries, M. J. Integrin antagonists. Cell. Mol. Life Sci. 56, 427–441 (1999).
(
10.1007/s000180050443
) / Cell. Mol. Life Sci. by GP Curley (1999) -
Scarborough, R. M. & Gretler, D. D. Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: novel parenteral and potential oral antithrombotic agents. J. Med. Chem. 43, 3453–3473 (2000).
(
10.1021/jm000022w
) / J. Med. Chem. by RM Scarborough (2000) - Varner, J. A. & Cheresh, D. A. Tumor angiogenesis and the role of vascular cell integrin αvβ3. Important Adv. Oncol. 69–87 (1996).
- Giblin, P. A. & Kelly, T. A. Antagonists of β2 integrin-mediated cell adhesion. Annu. Rep. Med. Chem. 36, 181–190 (2001). / Annu. Rep. Med. Chem. by PA Giblin (2001)
-
Yusuf-Makagiansar, H., Anderson, M. E., Yakovleva, T. V., Murray, J. S. & Siahaan, T. J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 22, 146–167 (2002).
(
10.1002/med.10001
) / Med. Res. Rev. by H Yusuf-Makagiansar (2002) -
Bennett, J. S. Novel platelet inhibitors. Annu. Rev. Med. 52, 161–184 (2001).
(
10.1146/annurev.med.52.1.161
) / Annu. Rev. Med. by JS Bennett (2001) -
Cather, J. C. & Menter, A. Modulating T cell responses for the treatment of psoriasis: a focus on efalizumab. Expert Opin. Biol. Ther. 3, 361–370 (2003).
(
10.1517/14712598.3.2.361
) / Expert Opin. Biol. Ther. by JC Cather (2003) -
Harlan, J. M. & Winn, R. K. Leukocyte–endothelial interactions: clinical trials of anti-adhesion therapy. Crit. Care Med. 30, S214–S219 (2002).
(
10.1097/00003246-200205001-00007
) / Crit. Care Med. by JM Harlan (2002) - Harlan, J. M., Winn, R. K., Vedder, N. B., Doerschuk, C. M. & Rice, C. L. in Adhesion: Its Role in Inflammatory Disease (eds Harlan, J. R. & Liu, D.) 117–150 (W. H. Freeman, New York, 1992). / Adhesion: Its Role in Inflammatory Disease by JM Harlan (1992)
-
Jackson, D. Y. α4 integrin antagonists. Curr. Pharm. Des. 8, 1229–1253 (2002).
(
10.2174/1381612023394737
) / Curr. Pharm. Des. by DY Jackson (2002) -
Lin, K. C. & Castro, A. C. Very late antigen 4 (VLA4) antagonists as anti-inflammatory agents. Curr. Opin. Chem. Biol. 2, 453–457 (1998).
(
10.1016/S1367-5931(98)80120-8
) / Curr. Opin. Chem. Biol. by KC Lin (1998) -
Liu, G. Inhibitors of LFA-1/ICAM-1 interaction: from monoclonal antibodies to small molecules. Drugs Future 26, 767–778 (2001).
(
10.1358/dof.2001.026.08.858713
) / Drugs Future by G Liu (2001) -
Tilley, J. W., Chen, L., Sidduri, A. & Fotouhi, N. The discovery of VLA-4 antagonists. Curr. Med. Chem. Rev. (in the press).
(
10.2174/1568026043387502
) -
Xiong, J. -P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001). The landmark determination of the crystal structure of αvβ3, which demonstrated an unexpected V-shape, or the bent conformation.
(
10.1126/science.1064535
) / Science by J-P Xiong (2001) -
Beglova, N., Blacklow, S. C., Takagi, J. & Springer, T. A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nature Struct. Biol. 9, 282–287 (2002). NMR structure determination of integrin EGF-like domains where activating and activation-dependent epitopes map. Superposition of the integrin EGF-like domains onto the structure of αvβ3 showed these epitopes buried in the bent conformation, strongly indicating that it represents the low-affinity conformation.
(
10.1038/nsb779
) / Nature Struct. Biol. by N Beglova (2002) -
Du, X. et al. Long range propagation of conformational changes in integrin αIIbβ3. J. Biol. Chem. 268, 23087–23092 (1993).
(
10.1016/S0021-9258(19)49429-5
) / J. Biol. Chem. by X Du (1993) -
Takagi, J., Erickson, H. P. & Springer, T. A. C-terminal opening mimics 'inside-out' activation of integrin α5β1. Nature Struct. Biol. 8, 412–416 (2001).
(
10.1038/87569
) / Nature Struct. Biol. by J Takagi (2001) -
Weisel, J. W., Nagaswami, C., Vilaire, G. & Bennett, J. S. Examination of the platelet membrane glycoprotein IIb–IIIa complex and its interaction with fibrinogen and other ligands by electron microscopy. J. Biol. Chem. 267, 16637–16643 (1992).
(
10.1016/S0021-9258(18)42050-9
) / J. Biol. Chem. by JW Weisel (1992) -
Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002). EM image reconstruction, hydrodynamic and ligand-binding studies on αvβ3 revealed that low-affinity bent conformation is converted by activation to the high-affinity extended conformation, which is further stabilized by ligand binding.
(
10.1016/S0092-8674(02)00935-2
) / Cell by J Takagi (2002) -
Luo, B. -H., Springer, T. A. & Takagi, J. Stabilizing the open conformation of the integrin headpiece with a glycan wedge increases affinity for ligand. Proc. Natl Acad. Sci. USA 100, 2403–2408 (2003).
(
10.1073/pnas.0438060100
) / Proc. Natl Acad. Sci. USA by B-H Luo (2003) -
Lee, J. -O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631–638 (1995).
(
10.1016/0092-8674(95)90517-0
) / Cell by J-O Lee (1995) -
Huang, C., Zang, Q., Takagi, J. & Springer, T. A. Structural and functional studies with antibodies to the integrin β2 subunit: a model for the I-like domain. J. Biol. Chem. 275, 21514–21524 (2000).
(
10.1074/jbc.M002286200
) / J. Biol. Chem. by C Huang (2000) -
Springer, T. A. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propeller domain. Proc. Natl Acad. Sci. USA 94, 65–72 (1997).
(
10.1073/pnas.94.1.65
) / Proc. Natl Acad. Sci. USA by TA Springer (1997) -
Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L. & Springer, T. A. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031–1043 (1993).
(
10.1083/jcb.120.4.1031
) / J. Cell Biol. by MS Diamond (1993) -
Michishita, M., Videm, V. & Arnaout, M. A. A novel divalent cation-binding site in the A domain of the β2 integrin CR3 (CD11b/CD18) is essential for ligand binding. Cell 72, 857–867 (1993).
(
10.1016/0092-8674(93)90575-B
) / Cell by M Michishita (1993) -
Shimaoka, M., Lu, C., Palframan, R., von Andrian, U. H., Takagi, J. & Springer, T. A. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo. Proc. Natl Acad. Sci. USA 98, 6009–6014 (2001). An engineered disulphide bridge to lock the open conformation of the αL I domain resulted in 10,000-fold increase in ligand-binding affinity to ICAM-1.
(
10.1073/pnas.101130498
) / Proc. Natl Acad. Sci. USA by M Shimaoka (2001) -
Huth, J. R. et al. NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Proc. Natl Acad. Sci. USA 97, 5231–5236 (2000).
(
10.1073/pnas.97.10.5231
) / Proc. Natl Acad. Sci. USA by JR Huth (2000) -
Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003). Crystal structure determination of the multiple conformations of the αL I domain with distinct ligand-binding affinity demonstrated shape-shifting pathway for activation by a downward movement of the C-terminal helix.
(
10.1016/S0092-8674(02)01257-6
) / Cell by M Shimaoka (2003) -
Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000). The important determination of the open conformation of the α2 I domain in complex with collagen-like peptides demonstrated the significance of the conformational changes induced by ligand binding.
(
10.1016/S0092-8674(00)80622-4
) / Cell by J Emsley (2000) -
Takagi, J., Kamata, T., Meredith, J., Puzon-McLaughlin, W. & Takada, Y. Changing ligand specificities of αvβ1 and αvβ3 integrins by swapping a short diverse sequence of the β subunit. J. Biol. Chem. 272, 19794–19800 (1997).
(
10.1074/jbc.272.32.19794
) / J. Biol. Chem. by J Takagi (1997) -
Xiong, J. P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).
(
10.1126/science.1069040
) / Science by JP Xiong (2002) -
Takagi, J. & Springer, T. A. Integrin activation and structural rearrangement. Immunological Rev. 186, 141–163 (2002).
(
10.1034/j.1600-065X.2002.18613.x
) / Immunological Rev. by J Takagi (2002) -
Puzon-McLaughlin, W., Kamata, T. & Takada, Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin αIIbβ3. J. Biol. Chem. 275, 7795–7802 (2000).
(
10.1074/jbc.275.11.7795
) / J. Biol. Chem. by W Puzon-McLaughlin (2000) -
Kamata, T., Tieu, K. K., Springer, T. A. & Takada, Y. Amino acid residues in the αIIb subunit that are critical for ligand binding to integrin αIIbβ3 are clustered in the β-propeller model. J. Biol. Chem. 276, 44275–44283 (2001).
(
10.1074/jbc.M107021200
) / J. Biol. Chem. by T Kamata (2001) -
Luo, B. -H., Springer, T. A. & Takagi, J. High affinity ligand binding by integrins does not involve head separation. J. Biol. Chem. 178, 17185–17189 (2003).
(
10.1074/jbc.M301516200
) / J. Biol. Chem. by B-H Luo (2003) -
Lu, C., Shimaoka, M., Ferzly, M., Oxvig, C., Takagi, J. & Springer, T. A. An isolated, surface-expressed I domain of the integrin αLβ2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide. Proc. Natl Acad. Sci. USA 98, 2387–2392 (2001).
(
10.1073/pnas.041606398
) / Proc. Natl Acad. Sci. by C Lu (2001) -
Lu, C., Shimaoka, M., Zang, Q., Takagi, J. & Springer, T. A. Locking in alternate conformations of the integrin αLβ2 I domain with disulfide bonds reveals functional relationships among integrin domains. Proc. Natl Acad. Sci. USA 98, 2393–2398 (2001).
(
10.1073/pnas.041618598
) / Proc. Natl Acad. Sci. USA by C Lu (2001) -
Alonso, J. L., Essafi, M., Xiong, J. P., Stehle, T. & Arnaout, M. A. Does the integrin αA domain act as a ligand for its βA domain? Curr. Biol. 12, R340–R342 (2002).
(
10.1016/S0960-9822(02)00852-7
) / Curr. Biol. by JL Alonso (2002) -
Salas, A., Shimaoka, M., Chen, S., Carman, C. V. & Springer, T. A. Transition from rolling to firm adhesion is regulated by the conformation of the I domain of the integrin LFA-1. J. Biol. Chem. 277, 50255–50262 (2002).
(
10.1074/jbc.M209822200
) / J. Biol. Chem. by A Salas (2002) -
Dustin, M. L. & Springer, T. A. T cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).
(
10.1038/341619a0
) / Nature by ML Dustin (1989) -
Lollo, B. A., Chan, K. W. H., Hanson, E. M., Moy, V. T. & Brian, A. A. Direct evidence for two affinity states for lymphocyte function-associated antigen 1 on activated T cells. J. Biol. Chem. 268, 21693–21700 (1993).
(
10.1016/S0021-9258(20)80597-3
) / J. Biol. Chem. by BA Lollo (1993) -
Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).
(
10.1016/S1074-7613(00)00074-1
) / Immunity by G Constantin (2000) -
Vinogradova, O. et al. A structural mechanism of integrin αIIbβ3 'inside-out' activation as regulated by its cytoplasmic face. Cell 110, 587–597 (2002). A direct association of the αIIb and β3 cytoplasmic tails was demonstrated by NMR structure determination. The association was perturbed by talin head domain or activating mutations in the tail, supporting integrin activation by separation of the cytoplasmic tails.
(
10.1016/S0092-8674(02)00906-6
) / Cell by O Vinogradova (2002) -
Lu, C., Takagi, J. & Springer, T. A. Association of the membrane-proximal regions of the α and β subunit cytoplasmic domains constrains an integrin in the inactive state. J. Biol. Chem. 276, 14642–14648 (2001).
(
10.1074/jbc.M100600200
) / J. Biol. Chem. by C Lu (2001) - Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science (in the press). FRET analysis using CFP and YFP fused to the αL and β2 cytoplasmic tails demonstrated separation of the tails in living cells on activation by chemokine and talin head domain as well as on ligand-binding to ICAM-1 in the presence of Mn2+.
- Bednar, R. A. et al. Identification of low molecular weight GP IIb/IIIa antagonists that bind preferentially to activated platelets. J. Pharmacol. Exp. Ther. 285, 1317–1326 (1998). / J. Pharmacol. Exp. Ther. by RA Bednar (1998)
-
Duggan, M. E. et al. Nonpeptide αVβ3 antagonists. 1. Transformation of a potent, integrin-selective αIIbβ3 antagonist into a potent αVβ3 antagonist. J. Med. Chem. 43, 3736–3745 (2000).
(
10.1021/jm000133v
) / J. Med. Chem. by ME Duggan (2000) -
Shih, D. T., Edelman, J. M., Horwitz, A. F., Grunwald, G. B. & Buck, C. A. Structure/function analysis of the integrin β1 subunit by epitope mapping. J. Cell Biol. 122, 1361–1371 (1993).
(
10.1083/jcb.122.6.1361
) / J. Cell Biol. by DT Shih (1993) -
Bazzoni, G., Shih, D. -T., Buck, C. A. & Hemler, M. A. Monoclonal antibody 9EG7 defines a novel β1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium. J. Biol. Chem. 270, 25570–25577 (1995).
(
10.1074/jbc.270.43.25570
) / J. Biol. Chem. by G Bazzoni (1995) -
Takagi, J., Isobe, T., Takada, Y. & Saito, Y. Structural interlock between ligand-binding site and stalk-like region of β1 integrin revealed by a monoclonal antibody recognizing conformation-dependent epitope. J. Biochem. (Tokyo) 121, 914–921 (1997).
(
10.1093/oxfordjournals.jbchem.a021673
) / J. Biochem. (Tokyo) by J Takagi (1997) -
Lu, C., Ferzly, M., Takagi, J. & Springer, T. A. Epitope mapping of antibodies to the C-terminal region of the integrin β2 subunit reveals regions that become exposed upon receptor activation. J. Immunol. 166, 5629–5637 (2001).
(
10.4049/jimmunol.166.9.5629
) / J. Immunol. by C Lu (2001) -
Du, X. et al. Ligands 'activate' integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 65, 409–416 (1991).
(
10.1016/0092-8674(91)90458-B
) / Cell by X Du (1991) -
Kouns, W. C. et al. Reversible conformational changes induced in glycoprotein IIb-IIIa by a potent and selective peptidomimetic inhibitor. Blood 80, 2539–2547 (1992).
(
10.1182/blood.V80.10.2539.2539
) / Blood by WC Kouns (1992) -
Honda, S. et al. Association between ligand-induced conformational changes of integrin αIIbβ3 and αIIbβ3-mediated intracellular Ca2+ signaling. Blood 92, 3675–3683 (1998).
(
10.1182/blood.V92.10.3675
) / Blood by S Honda (1998) -
Muller, B., Zerwes, H. G., Tangemann, K., Peter, J. & Engel, J. Two-step binding mechanism of fibrinogen to αIIbβ3 integrin reconstituted into planar lipid bilayers. J. Biol. Chem. 268, 6800–6808 (1993).
(
10.1016/S0021-9258(18)53320-2
) / J. Biol. Chem. by B Muller (1993) -
Huber, W. et al. Determination of kinetic constants for the interaction between the platelet glycoprotein IIb-IIIa and fibrinogen by means of surface plasmon resonance. Eur. J. Biochem. 227, 647–656 (1995).
(
10.1111/j.1432-1033.1995.tb20184.x
) / Eur. J. Biochem. by W Huber (1995) -
Bednar, B. et al. Flow cytometric measurement of kinetic and equilibrium binding parameters of arginine-glycine-aspartic acid ligands in binding to glycoprotein IIb/IIIa on platelets. Cytometry 28, 58–65 (1997).
(
10.1002/(SICI)1097-0320(19970501)28:1<58::AID-CYTO7>3.0.CO;2-D
) / Cytometry by B Bednar (1997) - Murphy, N. P., Pratico, D. & Fitzgerald, D. J. Functional relevance of the expression of ligand-induced binding sites in the response to platelet GP IIb/IIIa antagonists in vivo. J. Pharmacol. Exp. Ther. 286, 945–951 (1998). / J. Pharmacol. Exp. Ther. by NP Murphy (1998)
-
Thibault, G. Sodium dodecyl sulfate-stable complexes of echistatin and RGD-dependent integrins: a novel approach to study integrins. Mol. Pharmacol. 58, 1137–1145 (2001).
(
10.1124/mol.58.5.1137
) / Mol. Pharmacol. by G Thibault (2001) - Thibault, G., Tardif, P. & Lapalme, G. Comparative specificity of platelet αIIbβ3 integrin antagonists. J. Pharmacol. Exp. Ther. 296, 690–696 (2000). / J. Pharmacol. Exp. Ther. by G Thibault (2000)
-
Zolotarjova, N. I., Hollis, G. F. & Wynn, R. Unusually stable and long-lived ligand-induced conformations of integrins. J. Biol. Chem. 276, 17063–17068 (2001). References 64 and 65 describe an 'unusually' tight stabilization by α/β I-like competitive antagonists of integrin α- and β-subunit association.
(
10.1074/jbc.M009627200
) / J. Biol. Chem. by NI Zolotarjova (2001) -
Billheimer, J. T. et al. Evidence that thrombocytopenia observed in humans treated with orally bioavailable glycoprotein IIb/IIIa antagonists is immune mediated. Blood 99, 1–7 (2002).
(
10.1182/blood.V99.10.3540
) / Blood by JT Billheimer (2002) -
Peter, K., Schwarz, M., Nordt, T. & Bode, C. Intrinsic activating properties of GP IIb/IIIa blockers. Thromb. Res. 103, S21–S27 (2001).
(
10.1016/S0049-3848(01)00300-0
) / Thromb. Res. by K Peter (2001) -
Frelinger, A. L., Furman, M. I., Krueger, L. A., Barnard, M. R. & Michelson, A. D. Dissociation of glycoprotein IIb/IIIa antagonists from platelets does not result in fibrinogen binding or platelet aggregation. Circulation 104, 1374–1379 (2001).
(
10.1161/hc3701.095950
) / Circulation by AL Frelinger (2001) -
Schneider, D. J., Taatjes, D. J. & Sobel, B. E. Paradoxical inhibition of fibrinogen binding and potentiation of α-granule release by specific types of inhibitors of glycoprotein IIb-IIIa. Cardiovasc. Res. 45, 437–446 (2000).
(
10.1016/S0008-6363(99)00253-9
) / Cardiovasc. Res. by DJ Schneider (2000) -
Brown, E. J. & Gresham, R. D. in Structure, Function, and Regulation of Molecules Involved in Leukocyte Adhesion Vol. 1 (eds Lipsky, P. E., Rothlein, R., Kishimoto, T. K., Faanes, R. B. & Smith, C. W.) 78–91 (Springer, New York, 1993).
(
10.1007/978-1-4613-9266-8_8
) / Structure, Function, and Regulation of Molecules Involved in Leukocyte Adhesion by EJ Brown (1993) -
Varner, J. A. & Cheresh, D. A. Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730 (1996).
(
10.1016/S0955-0674(96)80115-3
) / Curr. Opin. Cell Biol. by JA Varner (1996) -
Hynes, R. O. A reevaluation of integrins as regulators of angiogenesis. Nature Med. 8, 918–921 (2002).
(
10.1038/nm0902-918
) / Nature Med. by RO Hynes (2002) -
Engleman, V. W. et al. A peptidomimetic antagonist of the αVβ3 integrin inhibits bone resorption in vitro and prevents osteoporosis in vivo. J. Clin. Invest. 99, 2284–2292 (1997).
(
10.1172/JCI119404
) / J. Clin. Invest. by VW Engleman (1997) -
Bach, A. C. et al. Type II' to type I β-turn swap changes specificity for integrins. J. Am. Chem. Soc. 118, 293–294 (1996).
(
10.1021/ja953163+
) / J. Am. Chem. Soc. by AC Bach (1996) -
Bazzoni, G. & Hemler, M. E. Are changes in integrin affinity and conformation overemphasized? Trends Biochem. Sci. 23, 30–34 (1998).
(
10.1016/S0968-0004(97)01141-9
) / Trends Biochem. Sci. by G Bazzoni (1998) -
Honda, S. et al. Ligand binding to integrin αvβ3 requires tyrosine 178 in the αv subunit. Blood 97, 175–182 (2001).
(
10.1182/blood.V97.1.175
) / Blood by S Honda (2001) -
Legler, D. F., Wiedle, G., Ross, F. P. & Imhof, B. A. Superactivation of integrin αVβ3 by low antagonist concentrations. J. Cell Sci. 114, 1545–1553 (2001).
(
10.1242/jcs.114.8.1545
) / J. Cell Sci. by DF Legler (2001) -
Hynes, R. O. Integrins: bi-directional, allosteric, signalling machines. Cell 110, 673–687 (2002). Excellently reviews the latest developments in integrin biology and structure.
(
10.1016/S0092-8674(02)00971-6
) / Cell by RO Hynes (2002) -
Yednock, T. A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).
(
10.1038/356063a0
) / Nature by TA Yednock (1992) -
Miller, D. H. et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 348, 15–23 (2003).
(
10.1056/NEJMoa020696
) / N. Engl. J. Med. by DH Miller (2003) -
Ghosh, S. et al. Natalizumab for active Crohn's disease. N. Engl. J. Med. 348, 24–32 (2003).
(
10.1056/NEJMoa020732
) / N. Engl. J. Med. by S Ghosh (2003) -
Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).
(
10.1126/science.272.5258.60
) / Science by EC Butcher (1996) -
Wang, J. -H. & Springer, T. A. Structural specializations of immunoglobulin superfamily members for adhesion to integrins and viruses. Immunol. Rev. 163, 197–215 (1998).
(
10.1111/j.1600-065X.1998.tb01198.x
) / Immunol. Rev. by J-H Wang (1998) -
Copie, V. et al. Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J. Mol. Biol. 277, 663–682 (1998).
(
10.1006/jmbi.1998.1616
) / J. Mol. Biol. by V Copie (1998) -
Chen, L. L. et al. Identification of ligand binding sites on integrin α4β1 through chemical cross-linking. Biochemistry 37, 8743–8753 (1998).
(
10.1021/bi980311a
) / Biochemistry by LL Chen (1998) -
Irie, A., Kamata, T. & Takada, Y. Multiple loop structures critical for ligand binding of the integrin α4 subunit in the upper face of the β-propeller models. Proc. Natl Acad. Sci. USA 94, 7198–7203 (1997).
(
10.1073/pnas.94.14.7198
) / Proc. Natl Acad. Sci. USA by A Irie (1997) -
Yednock, T. A. et al. α4β1 integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand. J. Biol. Chem. 270, 28740–28750 (1995).
(
10.1074/jbc.270.48.28740
) / J. Biol. Chem. by TA Yednock (1995) -
Chigaev, A. et al. Real-time analysis of the affinity regulation of α4-integrin: the physiologically activated receptor is intermediate in affinity between resting and Mn2+ or antibody activation. J. Biol. Chem. 276, 48670–48678 (2001).
(
10.1074/jbc.M103194200
) / J. Biol. Chem. by A Chigaev (2001) - Dustin, M. L. & Springer, T. A. in Guidebook to the Extracellular Matrix and Adhesion Proteins (eds Kreis, T. & Vale, R.) 228–232 (Sambrook and Tooze, New York, 1999). / Guidebook to the Extracellular Matrix and Adhesion Proteins by ML Dustin (1999)
-
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).
(
10.1126/science.285.5425.221
) / Science by A Grakoui (1999) -
Gottlieb, A. et al. Effects of administration of a single dose of a humanized monoclonal antibody to CD11a on the immunobiology and clinical activity of psoriasis. J. Am. Acad. Dermatol. 42, 428–435 (2000).
(
10.1016/S0190-9622(00)90214-7
) / J. Am. Acad. Dermatol. by A Gottlieb (2000) - Dustin, M. L. & Springer, T. A. in Guidebook to the Extracellular Matrix and Adhesion Proteins (eds Kreis, T. & Vale, R.) 216–220 (Sambrook and Tooze, New York, 1999). / Guidebook to the Extracellular Matrix and Adhesion Proteins by ML Dustin (1999)
-
Diamond, M. S., Staunton, D. E., Marlin, S. D. & Springer, T. A. Binding of the integrin Mac-1 (CD11b/CD18) to the third Ig-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991).
(
10.1016/0092-8674(91)90548-D
) / Cell by MS Diamond (1991) -
Huang, C. & Springer, T. A. A binding interface on the I domain of lymphocyte function associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J. Biol. Chem. 270, 19008–19016 (1995).
(
10.1074/jbc.270.32.19008
) / J. Biol. Chem. by C Huang (1995) -
Kallen, J. et al. Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J. Mol. Biol. 292, 1–9 (1999).
(
10.1006/jmbi.1999.3047
) / J. Mol. Biol. by J Kallen (1999) -
Last-Barney, K. et al. Binding site elucidation of hydantoin-based antagonists of LFA-1 using multidisciplinary technologies: evidence for the allosteric inhibition of a protein–protein interaction. J. Am. Chem. Soc. 123, 5643–5650 (2001).
(
10.1021/ja0104249
) / J. Am. Chem. Soc. by K Last-Barney (2001) -
Liu, G. et al. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J. Med. Chem. 44, 1202–1210 (2001). References 95, 96 and 97 crystallographically demonstrated that a class of small-molecule antagonists to αLβ2 bound beneath the C-terminal α-helix of the αL I domain, providing a structural basis for α I allosteric antagonists.
(
10.1021/jm000503f
) / J. Med. Chem. by G Liu (2001) -
Welzenbach, K., Hommel, U. & Weitz-Schmidt, G. Small molecule inhibitors induce conformational changes in the I domain and the I-like domain of lymphocyte function-associated antigen-1: molecular insights into integrin inhibition. J. Biol. Chem. 277, 10590–10598 (2002).
(
10.1074/jbc.M110521200
) / J. Biol. Chem. by K Welzenbach (2002) -
Woska, J. R. Jr et al. A small-molecule antagonist of LFA-1 blocks a conformational change important for LFA-1 function. J. Leukoc. Biol. 70, 329–334 (2001).
(
10.1189/jlb.70.2.329
) / J. Leukoc. Biol. by JR Woska Jr (2001) - Shimaoka, M., Salas, A., Yang, W., Weitz-Schmidt, G. & Springer, T. A. Small molecule integrin antagonists that bind to the β2 subunit I-like domain and activate signals in one direction and block them in another. Immunity (in the press). Describes a novel mechanistic class of integrin inhibitors, α/β I-like allosteric antagonists that bind to the MIDAS of the β2 I-like domain and disrupt interdomain communication between the I and I-like domains. While blocking conformational signal transmission to the I domain, the antagonists activate the I-like domain by mimicking an internal ligand, a conserved acidic residue in the I domain linker.
- Fotouhi, N., Gillespie, P., Guthrie, R., Pietranico-Cole, S. & Yun, W. Diaminopropionic acid derivatives. PCT Int. Appl. Hoffmann–La Roche, Switzerland, WO0021920 (1999).
- Burdick, D. J. Antagonists for treatment of CD11/CD18 adhesion receptor mediated disorders. PCT Int. Appl. Genentech, USA, WO9949856 (1999).
-
Gadek, T. R. et al. Generation of an LFA-1 antagonist by the transfer of the ICAM-1 immunoregulatory epitope to a small molecule. Science 295, 1086–1089 (2002).
(
10.1126/science.295.5557.1086
) / Science by TR Gadek (2002) -
Hesterberg, P. E. et al. Rapid resolution of chronic colitis with an antibody to a gut homing integrin α4β7. Gastroenterology 111, 1373–1380 (1996).
(
10.1053/gast.1996.v111.pm8898653
) / Gastroenterology by PE Hesterberg (1996) -
de Fougerolles, A. R. et al. Regulation of inflammation by collagen-binding integrins α1β1 and α2β1 in models of hypersensitivity and arthritis. J. Clin. Invest. 105, 721–729 (2000).
(
10.1172/JCI7911
) / J. Clin. Invest. by AR de Fougerolles (2000) -
Doolittle, R. F. Fibrinogen and fibrin. Sci. Am. 245, 126–135 (1981).
(
10.1038/scientificamerican1281-126
) / Sci. Am. by RF Doolittle (1981) -
Henschen, A., Lottspeich, F., Kehl, M. & Southan, C. Covalent structure of fibrinogen. Ann. NY Acad. Sci. 408, 28–43 (1983).
(
10.1111/j.1749-6632.1983.tb23232.x
) / Ann. NY Acad. Sci. by A Henschen (1983) -
Springer, T. A. Predicted and experimental structures of integrins and β-propellers. Curr. Opin. Struct. Biol. 12, 802–813 (2002).
(
10.1016/S0959-440X(02)00384-6
) / Curr. Opin. Struct. Biol. by TA Springer (2002) -
Coleman, P. J. et al. Non-peptide αVβ3 antagonists. Part 3: identification of potent RGD mimetics incorporating novel β-amino acids as aspartic acid replacements. Bioorg. Med. Chem. Lett. 12, 31–34 (2002).
(
10.1016/S0960-894X(01)00666-7
) / Bioorg. Med. Chem. Lett. by PJ Coleman (2002) - Ward, K. W. et al. Preclinical pharmacokinetics and interspecies scaling of a novel vitronectin receptor antagonist. Drug Metab. Dispos. 27, 1232–1241 (1999). / Drug Metab. Dispos. by KW Ward (1999)
-
Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med. 7, 687–692 (2001).
(
10.1038/89058
) / Nature Med. by G Weitz-Schmidt (2001)
@article{Shimaoka_2003, title={Therapeutic antagonists and conformational regulation of integrin function}, volume={2}, ISSN={1474-1784}, url={http://dx.doi.org/10.1038/nrd1174}, DOI={10.1038/nrd1174}, number={9}, journal={Nature Reviews Drug Discovery}, publisher={Springer Science and Business Media LLC}, author={Shimaoka, Motomu and Springer, Timothy A.}, year={2003}, month=sep, pages={703–716} }