Crossref
journal-article
Springer Science and Business Media LLC
Nature Reviews Cancer (297)
References
122
Referenced
1,396
-
Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).
(
10.1126/science.124.3215.269
) / Science by O Warburg (1956) -
Milosevic, M., Fyles, A., Hedley, D. & Hill, R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin. Radiat. Oncol. 14, 249–258 (2004).
(
10.1016/j.semradonc.2004.04.006
) / Semin. Radiat. Oncol. by M Milosevic (2004) - Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998). / Cancer Res. by JM Brown (1998)
-
Dasu, A., Toma-Dasu, I. & Karlsson, M. Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48, 2829–2842 (2003).
(
10.1088/0031-9155/48/3/308
) / Phys. Med. Biol. by A Dasu (2003) -
Denko, N. C. et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22, 5907–5914 (2003).
(
10.1038/sj.onc.1206703
) / Oncogene by NC Denko (2003) -
Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001).
(
10.1093/jnci/93.4.266
) / J. Natl Cancer Inst. by M Hockel (2001) -
Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998).
(
10.1101/gad.12.2.149
) / Genes Dev. by NV Iyer (1998) -
Bardos, J. I. & Ashcroft, M. Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26, 262–269 (2004).
(
10.1002/bies.20002
) / Bioessays by JI Bardos (2004) -
Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Rev. Cancer 5, 857–866 (2005).
(
10.1038/nrc1737
) / Nature Rev. Cancer by E Gottlieb (2005) -
Brahimi-Horn, M. C., Chiche, J. & Pouyssegur, J. Hypoxia signalling controls metabolic demand. Curr. Opin. Cell Biol. 19, 223–229 (2007).
(
10.1016/j.ceb.2007.02.003
) / Curr. Opin. Cell Biol. by MC Brahimi-Horn (2007) -
Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006).
(
10.1016/j.cmet.2006.02.002
) / Cell. Metab. by JW Kim (2006) -
Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187–197 (2006).
(
10.1016/j.cmet.2006.01.012
) / Cell. Metab. by I Papandreou (2006) -
Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007).
(
10.1016/j.ccr.2007.04.001
) / Cancer Cell by H Zhang (2007) -
Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180 (1996).
(
10.1152/ajpcell.1996.271.4.C1172
) / Am. J. Physiol. by BH Jiang (1996) -
Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003).
(
10.1128/MCB.23.24.9361-9374.2003
) / Mol. Cell. Biol. by CJ Hu (2003) -
Hu, C. J., Sataur, A., Wang, L., Chen, H. & Simon, M. C. The N-terminal transactivation domain confers target gene specificity of hypoxia inducible factors HIF-1α and HIF-2α. Mol. Biol. Cell (2007).
(
10.1091/mbc.e06-05-0419
) -
Gordan, J. D., Thompson, C. B. & Simon, M. C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007).
(
10.1016/j.ccr.2007.07.006
) / Cancer Cell by JD Gordan (2007) -
Ivan, M. et al. HIF α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).
(
10.1126/science.1059817
) / Science by M Ivan (2001) -
Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).
(
10.1126/science.1066373
) / Science by RK Bruick (2001) -
Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).
(
10.1016/S0092-8674(01)00507-4
) / Cell by AC Epstein (2001) -
Jaakkola, P. et al. Targeting of HIFα to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).
(
10.1126/science.1059796
) / Science by P Jaakkola (2001) -
Stiehl, D. P. et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J. Biol. Chem. 281, 23482–23491 (2006).
(
10.1074/jbc.M601719200
) / J. Biol. Chem. by DP Stiehl (2006) -
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).
(
10.1038/20459
) / Nature by PH Maxwell (1999) -
Stickle, N. H. et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol. Cell. Biol. 24, 3251–3261 (2004).
(
10.1128/MCB.24.8.3251-3261.2004
) / Mol. Cell. Biol. by NH Stickle (2004) -
Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).
(
10.1016/S1535-6108(02)00043-0
) / Cancer Cell by K Kondo (2002) - Mazure, N. M., Chen, E. Y., Yeh, P., Laderoute, K. R. & Giaccia, A. J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 56, 3436–3440 (1996). / Cancer Res. by NM Mazure (1996)
-
Sheta, E. A., Trout, H., Gildea, J. J., Harding, M. A. & Theodorescu, D. Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways. Oncogene 20, 7624–7634 (2001).
(
10.1038/sj.onc.1204972
) / Oncogene by EA Sheta (2001) - Jiang, B. H., Agani, F., Passaniti, A. & Semenza, G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57, 5328–5335 (1997). / Cancer Res. by BH Jiang (1997)
-
Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21, 3995–4004 (2001).
(
10.1128/MCB.21.12.3995-4004.2001
) / Mol. Cell. Biol. by E Laughner (2001) -
Zundel, W. et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14, 391–396 (2000).
(
10.1101/gad.14.4.391
) / Genes Dev. by W Zundel (2000) - Blancher, C., Moore, J. W., Robertson, N. & Harris, A. L. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 61, 7349–7355 (2001). / Cancer Res. by C Blancher (2001)
-
Chan, D. A., Sutphin, P. D., Denko, N. C. & Giaccia, A. J. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem. 277, 40112–40117 (2002).
(
10.1074/jbc.M206922200
) / J. Biol. Chem. by DA Chan (2002) -
Pore, N. et al. Akt1 activation can augment hypoxia-inducible factor-1α expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol. Cancer Res. 4, 471–479 (2006).
(
10.1158/1541-7786.MCR-05-0234
) / Mol. Cancer Res. by N Pore (2006) -
Lu, H. et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939 (2005).
(
10.1074/jbc.M508718200
) / J. Biol. Chem. by H Lu (2005) -
MacKenzie, E. D. et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007).
(
10.1128/MCB.01927-06
) / Mol. Cell. Biol. by ED MacKenzie (2007) -
Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000).
(
10.1074/jbc.M001914200
) / J. Biol. Chem. by NS Chandel (2000) -
Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998).
(
10.1073/pnas.95.20.11715
) / Proc. Natl Acad. Sci. USA by NS Chandel (1998) -
Brunelle, J. K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell. Metab. 1, 409–414 (2005).
(
10.1016/j.cmet.2005.05.002
) / Cell. Metab. by JK Brunelle (2005) -
Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell. Metab. 1, 401–408 (2005).
(
10.1016/j.cmet.2005.05.001
) / Cell. Metab. by RD Guzy (2005) -
Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell. Metab. 1, 393–399 (2005).
(
10.1016/j.cmet.2005.05.003
) / Cell. Metab. by KD Mansfield (2005) -
Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004).
(
10.1016/j.cell.2004.08.025
) / Cell by D Gerald (2004) -
Vaux, E. C., Metzen, E., Yeates, K. M. & Ratcliffe, P. J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98, 296–302 (2001).
(
10.1182/blood.V98.2.296
) / Blood by EC Vaux (2001) -
Srinivas, V. et al. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J. Biol. Chem. 276, 21995–21998 (2001).
(
10.1074/jbc.C100177200
) / J. Biol. Chem. by V Srinivas (2001) -
Chi, J. T. et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47 (2006).
(
10.1371/journal.pmed.0030047
) / PLoS Med. by JT Chi (2006) -
Allen, J. W., Khetani, S. R., Johnson, R. S. & Bhatia, S. N. In vitro liver tissue model established from transgenic mice: role of HIF-1alpha on hypoxic gene expression. Tissue Eng. 12, 3135–3147 (2006).
(
10.1089/ten.2006.12.3135
) / Tissue Eng. by JW Allen (2006) -
Vengellur, A., Woods, B. G., Ryan, H. E., Johnson, R. S. & LaPres, J. J. Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1α null mouse embryonic fibroblasts. Gene Expr. 11, 181–197 (2003).
(
10.3727/000000003108749062
) / Gene Expr. by A Vengellur (2003) -
Lum, J. J. et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21, 1037–1049 (2007).
(
10.1101/gad.1529107
) / Genes Dev. by JJ Lum (2007) -
Maxwell, P. H. et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).
(
10.1073/pnas.94.15.8104
) / Proc. Natl Acad. Sci. USA by PH Maxwell (1997) -
Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F. & Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 276, 9519–9525 (2001).
(
10.1074/jbc.M010144200
) / J. Biol. Chem. by C Chen (2001) -
Airley, R. E. & Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53, 233–256 (2007).
(
10.1159/000104457
) / Chemotherapy by RE Airley (2007) -
Brown, G. K. Glucose transporters: structure, function and consequences of deficiency. J. Inherit. Metab. Dis. 23, 237–246 (2000).
(
10.1023/A:1005632012591
) / J. Inherit. Metab. Dis. by GK Brown (2000) -
Ozbudak, I. H., Karaveli, S., Simsek, T., Erdogan, G. & Pestereli, E. Neoangiogenesis and expression of hypoxia-inducible factor 1α, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecol. Oncol. 108, 603–608 (2008).
(
10.1016/j.ygyno.2007.11.028
) / Gynecol. Oncol. by IH Ozbudak (2008) -
Mathupala, S. P., Rempel, A. & Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 276, 43407–43412 (2001).
(
10.1074/jbc.M108181200
) / J. Biol. Chem. by SP Mathupala (2001) -
Seagroves, T. N. et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol. 21, 3436–3444 (2001).
(
10.1128/MCB.21.10.3436-3444.2001
) / Mol. Cell. Biol. by TN Seagroves (2001) -
Minchenko, A. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277, 6183–6187 (2002).
(
10.1074/jbc.M110978200
) / J. Biol. Chem. by A Minchenko (2002) -
Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006).
(
10.1016/j.cell.2006.05.036
) / Cell by K Bensaad (2006) -
Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).
(
10.1016/j.ccr.2006.04.023
) / Cancer Cell by VR Fantin (2006) -
Firth, J. D., Ebert, B. L. & Ratcliffe, P. J. Hypoxic regulation of lactate dehydrogenase, A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J. Biol. Chem. 270, 21021–21027 (1995).
(
10.1074/jbc.270.36.21021
) / J. Biol. Chem. by JD Firth (1995) -
Ullah, M. S., Davies, A. J. & Halestrap, A. P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 281, 9030–9037 (2006).
(
10.1074/jbc.M511397200
) / J. Biol. Chem. by MS Ullah (2006) -
Baggetto, L. G. Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74, 959–974 (1992).
(
10.1016/0300-9084(92)90016-8
) / Biochimie by LG Baggetto (1992) -
Patel, M. S. & Korotchkina, L. G. Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Exp. Mol. Med. 33, 191–197 (2001).
(
10.1038/emm.2001.32
) / Exp. Mol. Med. by MS Patel (2001) -
Roche, T. E. et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 70, 33–75 (2001).
(
10.1016/S0079-6603(01)70013-X
) / Prog. Nucleic Acid Res. Mol. Biol. by TE Roche (2001) -
Corn, P. G. et al. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol. Ther. 4, 1285–1294 (2005).
(
10.4161/cbt.4.11.2299
) / Cancer Biol. Ther. by PG Corn (2005) -
Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225–6234 (2005).
(
10.1128/MCB.25.14.6225-6234.2005
) / Mol. Cell. Biol. by F Li (2005) -
Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007).
(
10.1128/MCB.00440-07
) / Mol. Cell. Biol. by JW Kim (2007) -
Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007).
(
10.1016/j.cell.2007.01.047
) / Cell by R Fukuda (2007) -
Allen, L. A., Zhao, X. J., Caughey, W. & Poyton, R. O. Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c. J. Biol. Chem. 270, 110–118 (1995).
(
10.1074/jbc.270.1.110
) / J. Biol. Chem. by LA Allen (1995) -
David, P. S. & Poyton, R. O. Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain: implications for hypoxic gene induction. Biochim. Biophys. Acta 1709, 169–180 (2005).
(
10.1016/j.bbabio.2005.07.002
) / Biochim. Biophys. Acta by PS David (2005) -
Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).
(
10.1038/nrc1478
) / Nature Rev. Cancer by RA Gatenby (2004) -
Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).
(
10.1152/physrev.00018.2001
) / Physiol. Rev. by W Droge (2002) -
Collins, P., Jones, C., Choudhury, S., Damelin, L. & Hodgson, H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int. 25, 880–887 (2005).
(
10.1111/j.1478-3231.2005.01104.x
) / Liver Int. by P Collins (2005) - Muschel, R. J., Bernhard, E. J., Garza, L., McKenna, W. G. & Koch, C. J. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Res. 55, 995–998 (1995). / Cancer Res. by RJ Muschel (1995)
-
Yoshida, T., Maulik, N., Engelman, R. M., Ho, Y. S. & Das, D. K. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ. Res. 86, 264–269 (2000).
(
10.1161/01.RES.86.3.264
) / Circ. Res. by T Yoshida (2000) -
Siraki, A. G., Pourahmad, J., Chan, T. S., Khan, S. & O'Brien, P. J. Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. 32, 2–10 (2002).
(
10.1016/S0891-5849(01)00764-X
) / Free Radic. Biol. Med. by AG Siraki (2002) -
Li, C., Wright, M. M. & Jackson, R. M. Reactive species mediated injury of human lung epithelial cells after hypoxia-reoxygenation. Exp. Lung Res. 28, 373–389 (2002).
(
10.1080/01902140290092001
) / Exp. Lung Res. by C Li (2002) -
Tuttle, S. W. et al. Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1α stabilization under moderate hypoxia. J. Biol. Chem. 282, 36790–36796 (2007).
(
10.1074/jbc.M700327200
) / J. Biol. Chem. by SW Tuttle (2007) -
Chandel, N. S. & Schumacker, P. T. Cellular oxygen sensing by mitochondria: old questions, new insight. J. Appl. Physiol. 88, 1880–1889 (2000).
(
10.1152/jappl.2000.88.5.1880
) / J. Appl. Physiol. by NS Chandel (2000) -
Papandreou, I. et al. Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res. 65, 3171–3178 (2005).
(
10.1158/0008-5472.CAN-04-3395
) / Cancer Res. by I Papandreou (2005) -
Brunelle, J. K. et al. c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J. Biol. Chem. 279, 4305–4312 (2004).
(
10.1074/jbc.M312241200
) / J. Biol. Chem. by JK Brunelle (2004) -
Deberardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).
(
10.1016/j.gde.2008.02.003
) / Curr. Opin. Genet. Dev. by RJ Deberardinis (2008) -
Buzzai, M. et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24, 4165–4173 (2005).
(
10.1038/sj.onc.1208622
) / Oncogene by M Buzzai (2005) -
Ramanathan, A., Wang, C. & Schreiber, S. L. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc. Natl Acad. Sci. USA 102, 5992–5997 (2005).
(
10.1073/pnas.0502267102
) / Proc. Natl Acad. Sci. USA by A Ramanathan (2005) -
Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005).
(
10.1016/j.ccr.2005.09.008
) / Cancer Cell by G Hatzivassiliou (2005) -
DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).
(
10.1073/pnas.0709747104
) / Proc. Natl Acad. Sci. USA by RJ DeBerardinis (2007) -
Wilson, D. F. & Erecinska, M. The oxygen dependence of cellular energy metabolism. Adv. Exp. Med. Biol. 194, 229–239 (1986).
(
10.1007/978-1-4684-5107-8_17
) / Adv. Exp. Med. Biol. by DF Wilson (1986) -
Chandel, N., Budinger, G. R., Kemp, R. A. & Schumacker, P. T. Inhibition of cytochrome-c oxidase activity during prolonged hypoxia. Am. J. Physiol. 268, L918–L925 (1995).
(
10.1152/ajpcell.1995.268.4.C918
) / Am. J. Physiol. by N Chandel (1995) -
Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).
(
10.1038/bjc.1955.55
) / Br. J. Cancer by RH Thomlinson (1955) -
Secomb, T. W., Hsu, R., Ong, E. T., Gross, J. F. & Dewhirst, M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34, 313–316 (1995).
(
10.3109/02841869509093981
) / Acta Oncol. by TW Secomb (1995) -
Evans, S. M., Hahn, S. M., Magarelli, D. P. & Koch, C. J. Hypoxic heterogeneity in human tumors: EF5 binding, vasculature, necrosis, and proliferation. Am. J. Clin. Oncol. 24, 467–472 (2001).
(
10.1097/00000421-200110000-00011
) / Am. J. Clin. Oncol. by SM Evans (2001) -
Shen, J. et al. Oxygen consumption rates and oxygen concentration in molt-4 cells and their mtDNA depleted (rho0) mutants. Biophys. J. 84, 1291–1298 (2003).
(
10.1016/S0006-3495(03)74944-3
) / Biophys. J. by J Shen (2003) -
Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 1975–1978 (2003).
(
10.1126/science.1088805
) / Science by T Hagen (2003) -
Tu, B. P. & Weissman, J. S. The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 10, 983–994 (2002).
(
10.1016/S1097-2765(02)00696-2
) / Mol. Cell by BP Tu (2002) -
Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).
(
10.1016/j.febslet.2005.03.015
) / FEBS Lett. by F Forneris (2005) -
Herst, P. M. & Berridge, M. V. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim. Biophys. Acta 1767, 170–177 (2007).
(
10.1016/j.bbabio.2006.11.018
) / Biochim. Biophys. Acta by PM Herst (2007) -
Rosenfeld, E., Beauvoit, B., Rigoulet, M. & Salmon, J. M. Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization. Yeast 19, 1299–1321 (2002).
(
10.1002/yea.918
) / Yeast by E Rosenfeld (2002) - Akakura, N. et al. Constitutive expression of hypoxia-inducible factor-1α renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 61, 6548–6554 (2001). / Cancer Res. by N Akakura (2001)
-
Chen, J. et al. Dominant-negative hypoxia-inducible factor-1α reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol. 162, 1283–1291 (2003).
(
10.1016/S0002-9440(10)63924-7
) / Am. J. Pathol. by J Chen (2003) -
Kim, W. et al. Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol. Cancer Ther. 6, 2554–2562 (2007).
(
10.1158/1535-7163.MCT-07-0115
) / Mol. Cancer Ther. by W Kim (2007) -
Di Cosimo, S. et al. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc.) 39, 157–174 (2003).
(
10.1358/dot.2003.39.3.799451
) / Drugs Today (Barc.) by S Di Cosimo (2003) - Tannock, I. F., Guttman, P. & Rauth, A. M. Failure of 2-deoxy-D-glucose and 5-thio-D-glucose to kill hypoxic cells of two murine tumors. Cancer Res. 43, 980–983 (1983). / Cancer Res. by IF Tannock (1983)
-
Maher, J. C., Savaraj, N., Priebe, W., Liu, H. & Lampidis, T. J. Differential sensitivity to 2-deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas 30, e34–39 (2005).
(
10.1097/01.mpa.0000153327.46945.26
) / Pancreas by JC Maher (2005) -
Liu, H., Savaraj, N., Priebe, W. & Lampidis, T. J. Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem. Pharmacol. 64, 1745–1751 (2002).
(
10.1016/S0006-2952(02)01456-9
) / Biochem. Pharmacol. by H Liu (2002) -
Singh, D. et al. Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther. Onkol. 181, 507–514 (2005).
(
10.1007/s00066-005-1320-z
) / Strahlenther. Onkol. by D Singh (2005) -
Maschek, G. et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64, 31–34 (2004).
(
10.1158/0008-5472.CAN-03-3294
) / Cancer Res. by G Maschek (2004) -
Jha, B. & Pohlit, W. Reversibility of inhibition of DNA double strand break repair by 2-deoxy-D-glucose in Ehrlich ascites tumour cells. Int. J. Radiat. Biol. 63, 459–467 (1993).
(
10.1080/09553009314550611
) / Int. J. Radiat. Biol. by B Jha (1993) -
Varshney, R., Dwarakanath, B. & Jain, V. Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int. J. Radiat. Biol. 81, 397–408 (2005).
(
10.1080/09553000500148590
) / Int. J. Radiat. Biol. by R Varshney (2005) -
Fulda, S. & Debatin, K. M. HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle 6, 790–792 (2007).
(
10.4161/cc.6.7.4084
) / Cell Cycle by S Fulda (2007) -
Tanaka, T., Kurose, A., Halicka, H. D., Traganos, F. & Darzynkiewicz, Z. 2-deoxy-D-glucose reduces the level of constitutive activation of ATM and phosphorylation of histone H2AX. Cell Cycle 5, 878–82 (2006).
(
10.4161/cc.5.8.2681
) / Cell Cycle by T Tanaka (2006) -
Kurtoglu, M. et al. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol. Cancer Ther. 6, 3049–3058 (2007).
(
10.1158/1535-7163.MCT-07-0310
) / Mol. Cancer Ther. by M Kurtoglu (2007) -
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).
(
10.1038/nrc1187
) / Nature Rev. Cancer by GL Semenza (2003) -
Giaccia, A., Siim, B. G. & Johnson, R. S. HIF-1 as a target for drug development. Nature Rev. Drug Discov. 2, 803–811 (2003).
(
10.1038/nrd1199
) / Nature Rev. Drug Discov. by A Giaccia (2003) -
Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 26, 341–352 (2007).
(
10.1007/s10555-007-9059-x
) / Cancer Metastasis Rev. by G Melillo (2007) -
Cairns, R. A., Papandreou, I., Sutphin, P. D. & Denko, N. C. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc. Natl Acad. Sci. USA 104, 9445–9450 (2007).
(
10.1073/pnas.0611662104
) / Proc. Natl Acad. Sci. USA by RA Cairns (2007) -
Beck, R. et al. Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J. Nucl. Med. 48, 973–80 (2007).
(
10.2967/jnumed.106.038570
) / J. Nucl. Med. by R Beck (2007) -
Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–104 (2006).
(
10.1200/JCO.2005.05.2878
) / J. Clin. Oncol. by D Rischin (2006) -
Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006).
(
10.1126/science.1126863
) / Science by S Matoba (2006) -
McFate, T. et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 9 Jun 2008 (doi:10.1074/jbc.M801765200).
(
10.1074/jbc.M801765200
) / Journal of Biological Chemistry by Thomas McFate (2008) -
Bonnet, S. et al. A mitochondria–K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).
(
10.1016/j.ccr.2006.10.020
) / Cancer Cell by S Bonnet (2007) -
Gleadle, J. M. & Ratcliffe, P. J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 89, 503–509 (1997).
(
10.1182/blood.V89.2.503
) / Blood by JM Gleadle (1997) -
Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).
(
10.1016/S0021-9258(17)31580-6
) / J. Biol. Chem. by GL Semenza (1994) -
Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).
(
10.1038/386403a0
) / Nature by E Maltepe (1997) -
Minchenko, O., Opentanova, I. & Caro, J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1–4) expression in vivo. FEBS Lett. 554, 264–270 (2003).
(
10.1016/S0014-5793(03)01179-7
) / FEBS Lett. by O Minchenko (2003)
Dates
Type | When |
---|---|
Created | 17 years ago (Aug. 14, 2008, 2:01 a.m.) |
Deposited | 2 years, 3 months ago (May 19, 2023, 12:07 p.m.) |
Indexed | 48 minutes ago (Aug. 29, 2025, 2:08 p.m.) |
Issued | 17 years ago (Aug. 14, 2008) |
Published | 17 years ago (Aug. 14, 2008) |
Published Online | 17 years ago (Aug. 14, 2008) |
Published Print | 16 years, 11 months ago (Sept. 1, 2008) |
@article{Denko_2008, title={Hypoxia, HIF1 and glucose metabolism in the solid tumour}, volume={8}, ISSN={1474-1768}, url={http://dx.doi.org/10.1038/nrc2468}, DOI={10.1038/nrc2468}, number={9}, journal={Nature Reviews Cancer}, publisher={Springer Science and Business Media LLC}, author={Denko, Nicholas C.}, year={2008}, month=aug, pages={705–713} }