Crossref journal-article
Springer Science and Business Media LLC
Nature Reviews Cancer (297)
Bibliography

Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews Cancer, 8(9), 705–713.

Authors 1
  1. Nicholas C. Denko (first)
References 122 Referenced 1,396
  1. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956). (10.1126/science.124.3215.269) / Science by O Warburg (1956)
  2. Milosevic, M., Fyles, A., Hedley, D. & Hill, R. The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Semin. Radiat. Oncol. 14, 249–258 (2004). (10.1016/j.semradonc.2004.04.006) / Semin. Radiat. Oncol. by M Milosevic (2004)
  3. Brown, J. M. & Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58, 1408–1416 (1998). / Cancer Res. by JM Brown (1998)
  4. Dasu, A., Toma-Dasu, I. & Karlsson, M. Theoretical simulation of tumour oxygenation and results from acute and chronic hypoxia. Phys. Med. Biol. 48, 2829–2842 (2003). (10.1088/0031-9155/48/3/308) / Phys. Med. Biol. by A Dasu (2003)
  5. Denko, N. C. et al. Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22, 5907–5914 (2003). (10.1038/sj.onc.1206703) / Oncogene by NC Denko (2003)
  6. Hockel, M. & Vaupel, P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J. Natl Cancer Inst. 93, 266–276 (2001). (10.1093/jnci/93.4.266) / J. Natl Cancer Inst. by M Hockel (2001)
  7. Iyer, N. V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12, 149–162 (1998). (10.1101/gad.12.2.149) / Genes Dev. by NV Iyer (1998)
  8. Bardos, J. I. & Ashcroft, M. Hypoxia-inducible factor-1 and oncogenic signalling. Bioessays 26, 262–269 (2004). (10.1002/bies.20002) / Bioessays by JI Bardos (2004)
  9. Gottlieb, E. & Tomlinson, I. P. Mitochondrial tumour suppressors: a genetic and biochemical update. Nature Rev. Cancer 5, 857–866 (2005). (10.1038/nrc1737) / Nature Rev. Cancer by E Gottlieb (2005)
  10. Brahimi-Horn, M. C., Chiche, J. & Pouyssegur, J. Hypoxia signalling controls metabolic demand. Curr. Opin. Cell Biol. 19, 223–229 (2007). (10.1016/j.ceb.2007.02.003) / Curr. Opin. Cell Biol. by MC Brahimi-Horn (2007)
  11. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell. Metab. 3, 177–185 (2006). (10.1016/j.cmet.2006.02.002) / Cell. Metab. by JW Kim (2006)
  12. Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L. & Denko, N. C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell. Metab. 3, 187–197 (2006). (10.1016/j.cmet.2006.01.012) / Cell. Metab. by I Papandreou (2006)
  13. Zhang, H. et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11, 407–420 (2007). (10.1016/j.ccr.2007.04.001) / Cancer Cell by H Zhang (2007)
  14. Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180 (1996). (10.1152/ajpcell.1996.271.4.C1172) / Am. J. Physiol. by BH Jiang (1996)
  15. Hu, C. J., Wang, L. Y., Chodosh, L. A., Keith, B. & Simon, M. C. Differential roles of hypoxia-inducible factor 1α (HIF-1α) and HIF-2α in hypoxic gene regulation. Mol. Cell. Biol. 23, 9361–9374 (2003). (10.1128/MCB.23.24.9361-9374.2003) / Mol. Cell. Biol. by CJ Hu (2003)
  16. Hu, C. J., Sataur, A., Wang, L., Chen, H. & Simon, M. C. The N-terminal transactivation domain confers target gene specificity of hypoxia inducible factors HIF-1α and HIF-2α. Mol. Biol. Cell (2007). (10.1091/mbc.e06-05-0419)
  17. Gordan, J. D., Thompson, C. B. & Simon, M. C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007). (10.1016/j.ccr.2007.07.006) / Cancer Cell by JD Gordan (2007)
  18. Ivan, M. et al. HIF α targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001). (10.1126/science.1059817) / Science by M Ivan (2001)
  19. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001). (10.1126/science.1066373) / Science by RK Bruick (2001)
  20. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001). (10.1016/S0092-8674(01)00507-4) / Cell by AC Epstein (2001)
  21. Jaakkola, P. et al. Targeting of HIFα to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001). (10.1126/science.1059796) / Science by P Jaakkola (2001)
  22. Stiehl, D. P. et al. Increased prolyl 4-hydroxylase domain proteins compensate for decreased oxygen levels. Evidence for an autoregulatory oxygen-sensing system. J. Biol. Chem. 281, 23482–23491 (2006). (10.1074/jbc.M601719200) / J. Biol. Chem. by DP Stiehl (2006)
  23. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999). (10.1038/20459) / Nature by PH Maxwell (1999)
  24. Stickle, N. H. et al. pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol. Cell. Biol. 24, 3251–3261 (2004). (10.1128/MCB.24.8.3251-3261.2004) / Mol. Cell. Biol. by NH Stickle (2004)
  25. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W. G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002). (10.1016/S1535-6108(02)00043-0) / Cancer Cell by K Kondo (2002)
  26. Mazure, N. M., Chen, E. Y., Yeh, P., Laderoute, K. R. & Giaccia, A. J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res. 56, 3436–3440 (1996). / Cancer Res. by NM Mazure (1996)
  27. Sheta, E. A., Trout, H., Gildea, J. J., Harding, M. A. & Theodorescu, D. Cell density mediated pericellular hypoxia leads to induction of HIF-1α via nitric oxide and Ras/MAP kinase mediated signaling pathways. Oncogene 20, 7624–7634 (2001). (10.1038/sj.onc.1204972) / Oncogene by EA Sheta (2001)
  28. Jiang, B. H., Agani, F., Passaniti, A. & Semenza, G. L. V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res. 57, 5328–5335 (1997). / Cancer Res. by BH Jiang (1997)
  29. Laughner, E., Taghavi, P., Chiles, K., Mahon, P. C. & Semenza, G. L. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1α (HIF-1α) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell. Biol. 21, 3995–4004 (2001). (10.1128/MCB.21.12.3995-4004.2001) / Mol. Cell. Biol. by E Laughner (2001)
  30. Zundel, W. et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 14, 391–396 (2000). (10.1101/gad.14.4.391) / Genes Dev. by W Zundel (2000)
  31. Blancher, C., Moore, J. W., Robertson, N. & Harris, A. L. Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res. 61, 7349–7355 (2001). / Cancer Res. by C Blancher (2001)
  32. Chan, D. A., Sutphin, P. D., Denko, N. C. & Giaccia, A. J. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem. 277, 40112–40117 (2002). (10.1074/jbc.M206922200) / J. Biol. Chem. by DA Chan (2002)
  33. Pore, N. et al. Akt1 activation can augment hypoxia-inducible factor-1α expression by increasing protein translation through a mammalian target of rapamycin-independent pathway. Mol. Cancer Res. 4, 471–479 (2006). (10.1158/1541-7786.MCR-05-0234) / Mol. Cancer Res. by N Pore (2006)
  34. Lu, H. et al. Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1. J. Biol. Chem. 280, 41928–41939 (2005). (10.1074/jbc.M508718200) / J. Biol. Chem. by H Lu (2005)
  35. MacKenzie, E. D. et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol. Cell. Biol. 27, 3282–3289 (2007). (10.1128/MCB.01927-06) / Mol. Cell. Biol. by ED MacKenzie (2007)
  36. Chandel, N. S. et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138 (2000). (10.1074/jbc.M001914200) / J. Biol. Chem. by NS Chandel (2000)
  37. Chandel, N. S. et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl Acad. Sci. USA 95, 11715–11720 (1998). (10.1073/pnas.95.20.11715) / Proc. Natl Acad. Sci. USA by NS Chandel (1998)
  38. Brunelle, J. K. et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell. Metab. 1, 409–414 (2005). (10.1016/j.cmet.2005.05.002) / Cell. Metab. by JK Brunelle (2005)
  39. Guzy, R. D. et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell. Metab. 1, 401–408 (2005). (10.1016/j.cmet.2005.05.001) / Cell. Metab. by RD Guzy (2005)
  40. Mansfield, K. D. et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation. Cell. Metab. 1, 393–399 (2005). (10.1016/j.cmet.2005.05.003) / Cell. Metab. by KD Mansfield (2005)
  41. Gerald, D. et al. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118, 781–794 (2004). (10.1016/j.cell.2004.08.025) / Cell by D Gerald (2004)
  42. Vaux, E. C., Metzen, E., Yeates, K. M. & Ratcliffe, P. J. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98, 296–302 (2001). (10.1182/blood.V98.2.296) / Blood by EC Vaux (2001)
  43. Srinivas, V. et al. Oxygen sensing and HIF-1 activation does not require an active mitochondrial respiratory chain electron-transfer pathway. J. Biol. Chem. 276, 21995–21998 (2001). (10.1074/jbc.C100177200) / J. Biol. Chem. by V Srinivas (2001)
  44. Chi, J. T. et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med. 3, e47 (2006). (10.1371/journal.pmed.0030047) / PLoS Med. by JT Chi (2006)
  45. Allen, J. W., Khetani, S. R., Johnson, R. S. & Bhatia, S. N. In vitro liver tissue model established from transgenic mice: role of HIF-1alpha on hypoxic gene expression. Tissue Eng. 12, 3135–3147 (2006). (10.1089/ten.2006.12.3135) / Tissue Eng. by JW Allen (2006)
  46. Vengellur, A., Woods, B. G., Ryan, H. E., Johnson, R. S. & LaPres, J. J. Gene expression profiling of the hypoxia signaling pathway in hypoxia-inducible factor 1α null mouse embryonic fibroblasts. Gene Expr. 11, 181–197 (2003). (10.3727/000000003108749062) / Gene Expr. by A Vengellur (2003)
  47. Lum, J. J. et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21, 1037–1049 (2007). (10.1101/gad.1529107) / Genes Dev. by JJ Lum (2007)
  48. Maxwell, P. H. et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997). (10.1073/pnas.94.15.8104) / Proc. Natl Acad. Sci. USA by PH Maxwell (1997)
  49. Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F. & Maity, A. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem. 276, 9519–9525 (2001). (10.1074/jbc.M010144200) / J. Biol. Chem. by C Chen (2001)
  50. Airley, R. E. & Mobasheri, A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy 53, 233–256 (2007). (10.1159/000104457) / Chemotherapy by RE Airley (2007)
  51. Brown, G. K. Glucose transporters: structure, function and consequences of deficiency. J. Inherit. Metab. Dis. 23, 237–246 (2000). (10.1023/A:1005632012591) / J. Inherit. Metab. Dis. by GK Brown (2000)
  52. Ozbudak, I. H., Karaveli, S., Simsek, T., Erdogan, G. & Pestereli, E. Neoangiogenesis and expression of hypoxia-inducible factor 1α, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecol. Oncol. 108, 603–608 (2008). (10.1016/j.ygyno.2007.11.028) / Gynecol. Oncol. by IH Ozbudak (2008)
  53. Mathupala, S. P., Rempel, A. & Pedersen, P. L. Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J. Biol. Chem. 276, 43407–43412 (2001). (10.1074/jbc.M108181200) / J. Biol. Chem. by SP Mathupala (2001)
  54. Seagroves, T. N. et al. Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol. Cell. Biol. 21, 3436–3444 (2001). (10.1128/MCB.21.10.3436-3444.2001) / Mol. Cell. Biol. by TN Seagroves (2001)
  55. Minchenko, A. et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 277, 6183–6187 (2002). (10.1074/jbc.M110978200) / J. Biol. Chem. by A Minchenko (2002)
  56. Bensaad, K. et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107–120 (2006). (10.1016/j.cell.2006.05.036) / Cell by K Bensaad (2006)
  57. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006). (10.1016/j.ccr.2006.04.023) / Cancer Cell by VR Fantin (2006)
  58. Firth, J. D., Ebert, B. L. & Ratcliffe, P. J. Hypoxic regulation of lactate dehydrogenase, A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J. Biol. Chem. 270, 21021–21027 (1995). (10.1074/jbc.270.36.21021) / J. Biol. Chem. by JD Firth (1995)
  59. Ullah, M. S., Davies, A. J. & Halestrap, A. P. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1α-dependent mechanism. J. Biol. Chem. 281, 9030–9037 (2006). (10.1074/jbc.M511397200) / J. Biol. Chem. by MS Ullah (2006)
  60. Baggetto, L. G. Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74, 959–974 (1992). (10.1016/0300-9084(92)90016-8) / Biochimie by LG Baggetto (1992)
  61. Patel, M. S. & Korotchkina, L. G. Regulation of mammalian pyruvate dehydrogenase complex by phosphorylation: complexity of multiple phosphorylation sites and kinases. Exp. Mol. Med. 33, 191–197 (2001). (10.1038/emm.2001.32) / Exp. Mol. Med. by MS Patel (2001)
  62. Roche, T. E. et al. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. Prog. Nucleic Acid Res. Mol. Biol. 70, 33–75 (2001). (10.1016/S0079-6603(01)70013-X) / Prog. Nucleic Acid Res. Mol. Biol. by TE Roche (2001)
  63. Corn, P. G. et al. Mxi1 is induced by hypoxia in a HIF-1-dependent manner and protects cells from c-Myc-induced apoptosis. Cancer Biol. Ther. 4, 1285–1294 (2005). (10.4161/cbt.4.11.2299) / Cancer Biol. Ther. by PG Corn (2005)
  64. Li, F. et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol. Cell. Biol. 25, 6225–6234 (2005). (10.1128/MCB.25.14.6225-6234.2005) / Mol. Cell. Biol. by F Li (2005)
  65. Kim, J. W., Gao, P., Liu, Y. C., Semenza, G. L. & Dang, C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol. Cell. Biol. 27, 7381–7393 (2007). (10.1128/MCB.00440-07) / Mol. Cell. Biol. by JW Kim (2007)
  66. Fukuda, R. et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007). (10.1016/j.cell.2007.01.047) / Cell by R Fukuda (2007)
  67. Allen, L. A., Zhao, X. J., Caughey, W. & Poyton, R. O. Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c. J. Biol. Chem. 270, 110–118 (1995). (10.1074/jbc.270.1.110) / J. Biol. Chem. by LA Allen (1995)
  68. David, P. S. & Poyton, R. O. Effects of a transition from normoxia to anoxia on yeast cytochrome c oxidase and the mitochondrial respiratory chain: implications for hypoxic gene induction. Biochim. Biophys. Acta 1709, 169–180 (2005). (10.1016/j.bbabio.2005.07.002) / Biochim. Biophys. Acta by PS David (2005)
  69. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004). (10.1038/nrc1478) / Nature Rev. Cancer by RA Gatenby (2004)
  70. Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002). (10.1152/physrev.00018.2001) / Physiol. Rev. by W Droge (2002)
  71. Collins, P., Jones, C., Choudhury, S., Damelin, L. & Hodgson, H. Increased expression of uncoupling protein 2 in HepG2 cells attenuates oxidative damage and apoptosis. Liver Int. 25, 880–887 (2005). (10.1111/j.1478-3231.2005.01104.x) / Liver Int. by P Collins (2005)
  72. Muschel, R. J., Bernhard, E. J., Garza, L., McKenna, W. G. & Koch, C. J. Induction of apoptosis at different oxygen tensions: evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Res. 55, 995–998 (1995). / Cancer Res. by RJ Muschel (1995)
  73. Yoshida, T., Maulik, N., Engelman, R. M., Ho, Y. S. & Das, D. K. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ. Res. 86, 264–269 (2000). (10.1161/01.RES.86.3.264) / Circ. Res. by T Yoshida (2000)
  74. Siraki, A. G., Pourahmad, J., Chan, T. S., Khan, S. & O'Brien, P. J. Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. 32, 2–10 (2002). (10.1016/S0891-5849(01)00764-X) / Free Radic. Biol. Med. by AG Siraki (2002)
  75. Li, C., Wright, M. M. & Jackson, R. M. Reactive species mediated injury of human lung epithelial cells after hypoxia-reoxygenation. Exp. Lung Res. 28, 373–389 (2002). (10.1080/01902140290092001) / Exp. Lung Res. by C Li (2002)
  76. Tuttle, S. W. et al. Detection of reactive oxygen species via endogenous oxidative pentose phosphate cycle activity in response to oxygen concentration: implications for the mechanism of HIF-1α stabilization under moderate hypoxia. J. Biol. Chem. 282, 36790–36796 (2007). (10.1074/jbc.M700327200) / J. Biol. Chem. by SW Tuttle (2007)
  77. Chandel, N. S. & Schumacker, P. T. Cellular oxygen sensing by mitochondria: old questions, new insight. J. Appl. Physiol. 88, 1880–1889 (2000). (10.1152/jappl.2000.88.5.1880) / J. Appl. Physiol. by NS Chandel (2000)
  78. Papandreou, I. et al. Anoxia is necessary for tumor cell toxicity caused by a low-oxygen environment. Cancer Res. 65, 3171–3178 (2005). (10.1158/0008-5472.CAN-04-3395) / Cancer Res. by I Papandreou (2005)
  79. Brunelle, J. K. et al. c-Myc sensitization to oxygen deprivation-induced cell death is dependent on Bax/Bak, but is independent of p53 and hypoxia-inducible factor-1. J. Biol. Chem. 279, 4305–4312 (2004). (10.1074/jbc.M312241200) / J. Biol. Chem. by JK Brunelle (2004)
  80. Deberardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008). (10.1016/j.gde.2008.02.003) / Curr. Opin. Genet. Dev. by RJ Deberardinis (2008)
  81. Buzzai, M. et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 24, 4165–4173 (2005). (10.1038/sj.onc.1208622) / Oncogene by M Buzzai (2005)
  82. Ramanathan, A., Wang, C. & Schreiber, S. L. Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc. Natl Acad. Sci. USA 102, 5992–5997 (2005). (10.1073/pnas.0502267102) / Proc. Natl Acad. Sci. USA by A Ramanathan (2005)
  83. Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005). (10.1016/j.ccr.2005.09.008) / Cancer Cell by G Hatzivassiliou (2005)
  84. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007). (10.1073/pnas.0709747104) / Proc. Natl Acad. Sci. USA by RJ DeBerardinis (2007)
  85. Wilson, D. F. & Erecinska, M. The oxygen dependence of cellular energy metabolism. Adv. Exp. Med. Biol. 194, 229–239 (1986). (10.1007/978-1-4684-5107-8_17) / Adv. Exp. Med. Biol. by DF Wilson (1986)
  86. Chandel, N., Budinger, G. R., Kemp, R. A. & Schumacker, P. T. Inhibition of cytochrome-c oxidase activity during prolonged hypoxia. Am. J. Physiol. 268, L918–L925 (1995). (10.1152/ajpcell.1995.268.4.C918) / Am. J. Physiol. by N Chandel (1995)
  87. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955). (10.1038/bjc.1955.55) / Br. J. Cancer by RH Thomlinson (1955)
  88. Secomb, T. W., Hsu, R., Ong, E. T., Gross, J. F. & Dewhirst, M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34, 313–316 (1995). (10.3109/02841869509093981) / Acta Oncol. by TW Secomb (1995)
  89. Evans, S. M., Hahn, S. M., Magarelli, D. P. & Koch, C. J. Hypoxic heterogeneity in human tumors: EF5 binding, vasculature, necrosis, and proliferation. Am. J. Clin. Oncol. 24, 467–472 (2001). (10.1097/00000421-200110000-00011) / Am. J. Clin. Oncol. by SM Evans (2001)
  90. Shen, J. et al. Oxygen consumption rates and oxygen concentration in molt-4 cells and their mtDNA depleted (rho0) mutants. Biophys. J. 84, 1291–1298 (2003). (10.1016/S0006-3495(03)74944-3) / Biophys. J. by J Shen (2003)
  91. Hagen, T., Taylor, C. T., Lam, F. & Moncada, S. Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1α. Science 302, 1975–1978 (2003). (10.1126/science.1088805) / Science by T Hagen (2003)
  92. Tu, B. P. & Weissman, J. S. The FAD- and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 10, 983–994 (2002). (10.1016/S1097-2765(02)00696-2) / Mol. Cell by BP Tu (2002)
  93. Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005). (10.1016/j.febslet.2005.03.015) / FEBS Lett. by F Forneris (2005)
  94. Herst, P. M. & Berridge, M. V. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. Biochim. Biophys. Acta 1767, 170–177 (2007). (10.1016/j.bbabio.2006.11.018) / Biochim. Biophys. Acta by PM Herst (2007)
  95. Rosenfeld, E., Beauvoit, B., Rigoulet, M. & Salmon, J. M. Non-respiratory oxygen consumption pathways in anaerobically-grown Saccharomyces cerevisiae: evidence and partial characterization. Yeast 19, 1299–1321 (2002). (10.1002/yea.918) / Yeast by E Rosenfeld (2002)
  96. Akakura, N. et al. Constitutive expression of hypoxia-inducible factor-1α renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 61, 6548–6554 (2001). / Cancer Res. by N Akakura (2001)
  97. Chen, J. et al. Dominant-negative hypoxia-inducible factor-1α reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol. 162, 1283–1291 (2003). (10.1016/S0002-9440(10)63924-7) / Am. J. Pathol. by J Chen (2003)
  98. Kim, W. et al. Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol. Cancer Ther. 6, 2554–2562 (2007). (10.1158/1535-7163.MCT-07-0115) / Mol. Cancer Ther. by W Kim (2007)
  99. Di Cosimo, S. et al. Lonidamine: efficacy and safety in clinical trials for the treatment of solid tumors. Drugs Today (Barc.) 39, 157–174 (2003). (10.1358/dot.2003.39.3.799451) / Drugs Today (Barc.) by S Di Cosimo (2003)
  100. Tannock, I. F., Guttman, P. & Rauth, A. M. Failure of 2-deoxy-D-glucose and 5-thio-D-glucose to kill hypoxic cells of two murine tumors. Cancer Res. 43, 980–983 (1983). / Cancer Res. by IF Tannock (1983)
  101. Maher, J. C., Savaraj, N., Priebe, W., Liu, H. & Lampidis, T. J. Differential sensitivity to 2-deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas 30, e34–39 (2005). (10.1097/01.mpa.0000153327.46945.26) / Pancreas by JC Maher (2005)
  102. Liu, H., Savaraj, N., Priebe, W. & Lampidis, T. J. Hypoxia increases tumor cell sensitivity to glycolytic inhibitors: a strategy for solid tumor therapy (Model C). Biochem. Pharmacol. 64, 1745–1751 (2002). (10.1016/S0006-2952(02)01456-9) / Biochem. Pharmacol. by H Liu (2002)
  103. Singh, D. et al. Optimizing cancer radiotherapy with 2-deoxy-D-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther. Onkol. 181, 507–514 (2005). (10.1007/s00066-005-1320-z) / Strahlenther. Onkol. by D Singh (2005)
  104. Maschek, G. et al. 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64, 31–34 (2004). (10.1158/0008-5472.CAN-03-3294) / Cancer Res. by G Maschek (2004)
  105. Jha, B. & Pohlit, W. Reversibility of inhibition of DNA double strand break repair by 2-deoxy-D-glucose in Ehrlich ascites tumour cells. Int. J. Radiat. Biol. 63, 459–467 (1993). (10.1080/09553009314550611) / Int. J. Radiat. Biol. by B Jha (1993)
  106. Varshney, R., Dwarakanath, B. & Jain, V. Radiosensitization by 6-aminonicotinamide and 2-deoxy-D-glucose in human cancer cells. Int. J. Radiat. Biol. 81, 397–408 (2005). (10.1080/09553000500148590) / Int. J. Radiat. Biol. by R Varshney (2005)
  107. Fulda, S. & Debatin, K. M. HIF-1-regulated glucose metabolism: a key to apoptosis resistance? Cell Cycle 6, 790–792 (2007). (10.4161/cc.6.7.4084) / Cell Cycle by S Fulda (2007)
  108. Tanaka, T., Kurose, A., Halicka, H. D., Traganos, F. & Darzynkiewicz, Z. 2-deoxy-D-glucose reduces the level of constitutive activation of ATM and phosphorylation of histone H2AX. Cell Cycle 5, 878–82 (2006). (10.4161/cc.5.8.2681) / Cell Cycle by T Tanaka (2006)
  109. Kurtoglu, M. et al. Under normoxia, 2-deoxy-D-glucose elicits cell death in select tumor types not by inhibition of glycolysis but by interfering with N-linked glycosylation. Mol. Cancer Ther. 6, 3049–3058 (2007). (10.1158/1535-7163.MCT-07-0310) / Mol. Cancer Ther. by M Kurtoglu (2007)
  110. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003). (10.1038/nrc1187) / Nature Rev. Cancer by GL Semenza (2003)
  111. Giaccia, A., Siim, B. G. & Johnson, R. S. HIF-1 as a target for drug development. Nature Rev. Drug Discov. 2, 803–811 (2003). (10.1038/nrd1199) / Nature Rev. Drug Discov. by A Giaccia (2003)
  112. Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev. 26, 341–352 (2007). (10.1007/s10555-007-9059-x) / Cancer Metastasis Rev. by G Melillo (2007)
  113. Cairns, R. A., Papandreou, I., Sutphin, P. D. & Denko, N. C. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc. Natl Acad. Sci. USA 104, 9445–9450 (2007). (10.1073/pnas.0611662104) / Proc. Natl Acad. Sci. USA by RA Cairns (2007)
  114. Beck, R. et al. Pretreatment 18F-FAZA PET predicts success of hypoxia-directed radiochemotherapy using tirapazamine. J. Nucl. Med. 48, 973–80 (2007). (10.2967/jnumed.106.038570) / J. Nucl. Med. by R Beck (2007)
  115. Rischin, D. et al. Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J. Clin. Oncol. 24, 2098–104 (2006). (10.1200/JCO.2005.05.2878) / J. Clin. Oncol. by D Rischin (2006)
  116. Matoba, S. et al. p53 regulates mitochondrial respiration. Science 312, 1650–1653 (2006). (10.1126/science.1126863) / Science by S Matoba (2006)
  117. McFate, T. et al. Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J. Biol. Chem. 9 Jun 2008 (doi:10.1074/jbc.M801765200). (10.1074/jbc.M801765200) / Journal of Biological Chemistry by Thomas McFate (2008)
  118. Bonnet, S. et al. A mitochondria–K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007). (10.1016/j.ccr.2006.10.020) / Cancer Cell by S Bonnet (2007)
  119. Gleadle, J. M. & Ratcliffe, P. J. Induction of hypoxia-inducible factor-1, erythropoietin, vascular endothelial growth factor, and glucose transporter-1 by hypoxia: evidence against a regulatory role for Src kinase. Blood 89, 503–509 (1997). (10.1182/blood.V89.2.503) / Blood by JM Gleadle (1997)
  120. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994). (10.1016/S0021-9258(17)31580-6) / J. Biol. Chem. by GL Semenza (1994)
  121. Maltepe, E., Schmidt, J. V., Baunoch, D., Bradfield, C. A. & Simon, M. C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997). (10.1038/386403a0) / Nature by E Maltepe (1997)
  122. Minchenko, O., Opentanova, I. & Caro, J. Hypoxic regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene family (PFKFB-1–4) expression in vivo. FEBS Lett. 554, 264–270 (2003). (10.1016/S0014-5793(03)01179-7) / FEBS Lett. by O Minchenko (2003)
Dates
Type When
Created 17 years ago (Aug. 14, 2008, 2:01 a.m.)
Deposited 2 years, 3 months ago (May 19, 2023, 12:07 p.m.)
Indexed 48 minutes ago (Aug. 29, 2025, 2:08 p.m.)
Issued 17 years ago (Aug. 14, 2008)
Published 17 years ago (Aug. 14, 2008)
Published Online 17 years ago (Aug. 14, 2008)
Published Print 16 years, 11 months ago (Sept. 1, 2008)
Funders 0

None

@article{Denko_2008, title={Hypoxia, HIF1 and glucose metabolism in the solid tumour}, volume={8}, ISSN={1474-1768}, url={http://dx.doi.org/10.1038/nrc2468}, DOI={10.1038/nrc2468}, number={9}, journal={Nature Reviews Cancer}, publisher={Springer Science and Business Media LLC}, author={Denko, Nicholas C.}, year={2008}, month=aug, pages={705–713} }