Crossref journal-article
Springer Science and Business Media LLC
Nature Protocols (297)
Bibliography

Demmerle, J., Innocent, C., North, A. J., Ball, G., Müller, M., Miron, E., Matsuda, A., Dobbie, I. M., Markaki, Y., & Schermelleh, L. (2017). Strategic and practical guidelines for successful structured illumination microscopy. Nature Protocols, 12(5), 988–1010.

Authors 10
  1. Justin Demmerle (first)
  2. Cassandravictoria Innocent (additional)
  3. Alison J North (additional)
  4. Graeme Ball (additional)
  5. Marcel Müller (additional)
  6. Ezequiel Miron (additional)
  7. Atsushi Matsuda (additional)
  8. Ian M Dobbie (additional)
  9. Yolanda Markaki (additional)
  10. Lothar Schermelleh (additional)
References 47 Referenced 295
  1. Heintzmann, R. & Cremer, C.G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc. SPIE 3568, 185–196 (1999). (10.1117/12.336833) / Proc. SPIE by R Heintzmann (1999)
  2. Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000). (10.1046/j.1365-2818.2000.00710.x) / J. Microsc. by MGL Gustafsson (2000)
  3. Gustafsson, M.G.L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008). (10.1529/biophysj.107.120345) / Biophys. J. by MGL Gustafsson (2008)
  4. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008). (10.1126/science.1156947) / Science by L Schermelleh (2008)
  5. Sahl, S.J. et al. Comment on 'Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics'. Science 352, 527–527 (2016). (10.1126/science.aad7983) / Science by SJ Sahl (2016)
  6. Li, D. & Betzig, E. Response to comment on 'Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics'. Science 352, 527–527 (2016). (10.1126/science.aad8396) / Science by D Li (2016)
  7. Shao, L. & Rego, E.H. in Fluorescence Microscopy 213–225 (Elsevier, 2014). (10.1016/B978-0-12-409513-7.00015-4)
  8. Allen, J.R., Ross, S.T. & Davidson, M.W. Structured illumination microscopy for superresolution. Chem. Phys. Chem. 15, 566–576 (2014). (10.1002/cphc.201301086) / Chem. Phys. Chem. by JR Allen (2014)
  9. Rego, E.H. & Shao, L. Practical structured illumination microscopy. Methods Mol. Biol. 1251, 175–192 (2015). (10.1007/978-1-4939-2080-8_10) / Methods Mol. Biol. by EH Rego (2015)
  10. Fiolka, R. in Quantitative Imaging in Cell Biology 123, 295–313 (Elsevier, 2014). (10.1016/B978-0-12-420138-5.00016-1) / Quantitative Imaging in Cell Biology by R Fiolka (2014)
  11. Komis, G. et al. Superresolution live imaging of plant cells using structured illumination microscopy. Nat. Protoc. 10, 1248–1263 (2015). (10.1038/nprot.2015.083) / Nat. Protoc. by G Komis (2015)
  12. Engel, U. in Quantitative Imaging in Cell Biology 123, 315–333 (Elsevier, 2014). (10.1016/B978-0-12-420138-5.00017-3) / Quantitative Imaging in Cell Biology by U Engel (2014)
  13. Ball, G. et al. SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci. Rep. 5, 15915 (2015). (10.1038/srep15915) / Sci. Rep. by G Ball (2015)
  14. Terui, Y. Image processing for structured illumination microscopy. in 1–3 (IEEE, 2015). (10.1109/WIO.2015.7206919)
  15. Kraus, F. et al. Quantitative 3D structured illumination microscopy of nuclear structures. Nat. Protoc. http://dx.doi.org/10.1038/nprot.2017.20 . (10.1038/nprot.2017.20)
  16. Young, L.J., Ströhl, F. & Kaminski, C.F. A guide to structured illumination TIRF microscopy at high speed with multiple colors. J. Vis. Exp. http://dx.doi.org/10.3791/53988 (2016). (10.3791/53988)
  17. Turnbull, L. et al. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM). J. Vis. Exp. e51469–e51469 (2014). (10.3791/51469)
  18. Křížek, P., Lukeš, T., Ovesný, M., Fliegel, K. & Hagen, G.M. SIMToolbox: a MATLAB toolbox for structured illumination fluorescence microscopy. Bioinformatics 32, 318–320 (2015). (10.1093/bioinformatics/btv576) / Bioinformatics by P Křížek (2015)
  19. Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. & Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 7, 10980 (2016). (10.1038/ncomms10980) / Nat. Commun. by M Müller (2016)
  20. Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005). (10.1073/pnas.0406877102) / Proc. Natl. Acad. Sci. USA by MGL Gustafsson (2005)
  21. Rego, E.H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl. Acad. Sci. USA 109, E135 (2012). (10.1073/pnas.1107547108) / Proc. Natl. Acad. Sci. USA by EH Rego (2012)
  22. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015). (10.1126/science.aab3500) / Science by D Li (2015)
  23. Eggeling, C. & Hell, S.W. in Far-Field Optical Nanoscopy 3–26 (Springer, 2014). (10.1007/4243_2014_75)
  24. Müller, T., Schumann, C. & Kraegeloh, A. STED microscopy and its applications: new insights into cellular processes on the nanoscale. Chem. Phys. Chem. 13, 1986–2000 (2012). (10.1002/cphc.201100986) / Chem. Phys. Chem. by T Müller (2012)
  25. Shao, L., Kner, P., Rego, E.H. & Gustafsson, M.G.L. Super-resolution 3D microscopy of live whole cells using structured illumination. Nat. Methods 8, 1044–1046 (2011). (10.1038/nmeth.1734) / Nat. Methods by L Shao (2011)
  26. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). (10.1126/science.1127344) / Science by E Betzig (2006)
  27. Liu, Z., Lavis, L.D. & Betzig, E. Imaging live-cell dynamics and structure at the single-molecule level. Mol. Cell 58, 644–659 (2015). (10.1016/j.molcel.2015.02.033) / Mol. Cell by Z Liu (2015)
  28. Wegel, E. et al. Imaging cellular structures in super-resolution with SIM, STED and localisation microscopy: a practical comparison. Sci. Rep. 6, 27290 (2016). (10.1038/srep27290) / Sci. Rep. by E Wegel (2016)
  29. Fiolka, R., Shao, L., Rego, H.E., Davidson, M.W. & Gustafsson, M.G.L. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. USA 109, 5311 (2012). (10.1073/pnas.1119262109) / Proc. Natl. Acad. Sci. USA by R Fiolka (2012)
  30. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006). (10.1038/nmeth953) / Nat. Methods by U Rothbauer (2006)
  31. Grimm, J.B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015). (10.1038/nmeth.3256) / Nat. Methods by JB Grimm (2015)
  32. Olivier, N., Keller, D., Rajan, V.S., Gönczy, P. & Manley, S. Simple buffers for 3D STORM microscopy. Biomed. Opt. Express 4, 885–899 (2013). (10.1364/BOE.4.000885) / Biomed. Opt. Express by N Olivier (2013)
  33. MacDonald, L., Baldini, G. & Storrie, B. Does super-resolution fluorescence microscopy obsolete previous microscopic approaches to protein co-localization? Methods Mol. Biol. 1270, 255–275 (2015). (10.1007/978-1-4939-2309-0_19) / Methods Mol. Biol. by L MacDonald (2015)
  34. Cerase, A. et al. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc. Natl. Acad. Sci. USA 111, 2235–2240 (2014). (10.1073/pnas.1312951111) / Proc. Natl. Acad. Sci. USA by A Cerase (2014)
  35. Schmied, J.J. et al. DNA origami-based standards for quantitative fluorescence microscopy. Nat. Protoc. 9, 1367–1391 (2014). (10.1038/nprot.2014.079) / Nat. Protoc. by JJ Schmied (2014)
  36. Marno, K. et al. The evolution of structured illumination microscopy in studies of HIV. Methods 88, 20–27 (2015). (10.1016/j.ymeth.2015.06.007) / Methods by K Marno (2015)
  37. Schaefer, L.H., Schuster, D. & Schaffer, J. Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach. J. Microsc. 216, 165–174 (2004). (10.1111/j.0022-2720.2004.01411.x) / J. Microsc. by LH Schaefer (2004)
  38. Shroff, S., Fienup, J. & Williams, D. OTF compensation in structured illumination superresolution images. Proc. SPIE 7094 http://dx.doi.org/10.1117/12.791052 (2008). (10.1117/12.791052)
  39. Débarre, D., Botcherby, E.J., Booth, M.J. & Wilson, T. Adaptive optics for structured illumination microscopy. Opt. Express 16, 9290–9305 (2008). (10.1364/OE.16.009290) / Opt. Express by D Débarre (2008)
  40. Righolt, C.H. et al. Image filtering in structured illumination microscopy using the Lukosz bound. Opt. Express 21, 24431 (2013). (10.1364/OE.21.024431) / Opt. Express by CH Righolt (2013)
  41. Wicker, K., Mandula, O., Best, G., Fiolka, R. & Heintzmann, R. Phase optimisation for structured illumination microscopy. Opt. Express 21, 2032–2049 (2013). (10.1364/OE.21.002032) / Opt. Express by K Wicker (2013)
  42. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (10.1038/nmeth.2019) / Nat. Methods by J Schindelin (2012)
  43. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (10.1038/nmeth.2089) / Nat. Methods by CA Schneider (2012)
  44. O'Holleran, K. & Shaw, M. Optimized approaches for optical sectioning and resolution enhancement in 2D structured illumination microscopy. Biomed. Optics Exp. 5, 2580–2590 (2014). (10.1364/BOE.5.002580) / Biomed. Optics Exp. by K O'Holleran (2014)
  45. Demmerle, J., Wegel, E., Schermelleh, L. & Dobbie, I.M. Assessing resolution in super-resolution imaging. Methods 88, 3–10 (2015). (10.1016/j.ymeth.2015.07.001) / Methods by J Demmerle (2015)
  46. Allan, C. et al. OMERO: flexible, model-driven data management for experimental biology. Nat. Methods 9, 245–253 (2012). (10.1038/nmeth.1896) / Nat. Methods by C Allan (2012)
  47. Nieuwenhuizen, R.P.J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013). (10.1038/nmeth.2448) / Nat. Methods by RPJ Nieuwenhuizen (2013)
Dates
Type When
Created 8 years, 4 months ago (April 13, 2017, 11:35 a.m.)
Deposited 2 years ago (Aug. 22, 2023, 11:50 p.m.)
Indexed 1 day, 6 hours ago (Aug. 23, 2025, 9:29 p.m.)
Issued 8 years, 4 months ago (April 13, 2017)
Published 8 years, 4 months ago (April 13, 2017)
Published Online 8 years, 4 months ago (April 13, 2017)
Published Print 8 years, 3 months ago (May 1, 2017)
Funders 0

None

@article{Demmerle_2017, title={Strategic and practical guidelines for successful structured illumination microscopy}, volume={12}, ISSN={1750-2799}, url={http://dx.doi.org/10.1038/nprot.2017.019}, DOI={10.1038/nprot.2017.019}, number={5}, journal={Nature Protocols}, publisher={Springer Science and Business Media LLC}, author={Demmerle, Justin and Innocent, Cassandravictoria and North, Alison J and Ball, Graeme and Müller, Marcel and Miron, Ezequiel and Matsuda, Atsushi and Dobbie, Ian M and Markaki, Yolanda and Schermelleh, Lothar}, year={2017}, month=apr, pages={988–1010} }