Crossref journal-article
Springer Science and Business Media LLC
Nature Protocols (297)
Authors 7
  1. Jürgen J Schmied (first)
  2. Mario Raab (additional)
  3. Carsten Forthmann (additional)
  4. Enrico Pibiri (additional)
  5. Bettina Wünsch (additional)
  6. Thorben Dammeyer (additional)
  7. Philip Tinnefeld (additional)
References 96 Referenced 158
  1. Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006). (10.1038/nature04586) / Nature by PW Rothemund (2006)
  2. Douglas, S.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009). (10.1038/nature08016) / Nature by SM Douglas (2009)
  3. Ke, Y., Ong, L.L., Shih, W.M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012). (10.1126/science.1227268) / Science by Y Ke (2012)
  4. Douglas, S.M., Bachelet, I. & Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012). (10.1126/science.1214081) / Science by SM Douglas (2012)
  5. Chen, Z., Lan, X. & Wang, Q. DNA origami directed large-scale fabrication of nanostructures resembling room temperature single-electron transistors. Small 9, 3567–3571 (2013). (10.1002/smll.201300640) / Small by Z Chen (2013)
  6. Kershner, R.J. et al. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4, 557–561 (2009). (10.1038/nnano.2009.220) / Nat. Nanotechnol. by RJ Kershner (2009)
  7. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012). (10.1126/science.1225624) / Science by M Langecker (2012)
  8. Acuna, G.P. et al. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338, 506–510 (2012). (10.1126/science.1228638) / Science by GP Acuna (2012)
  9. Torring, T., Voigt, N.V., Nangreave, J., Yan, H. & Gothelf, K.V. DNA origami: a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40, 5636–5646 (2011). (10.1039/c1cs15057j) / Chem. Soc. Rev. by T Torring (2011)
  10. Rajendran, A., Endo, M. & Sugiyama, H. Single-molecule analysis using DNA origami. Angew. Chem. Int. Ed. Engl. 51, 874–890 (2012). (10.1002/anie.201102113) / Angew. Chem. Int. Ed. Engl. by A Rajendran (2012)
  11. Pinheiro, A.V., Han, D., Shih, W.M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011). (10.1038/nnano.2011.187) / Nat. Nanotechnol. by AV Pinheiro (2011)
  12. Wang, Z.G., Song, C. & Ding, B. Functional DNA nanostructures for photonic and biomedical applications. Small 9, 2210–2222 (2013). (10.1002/smll.201300141) / Small by ZG Wang (2013)
  13. Bellot, G., McClintock, M.A., Chou, J.J. & Shih, W.M. DNA nanotubes for NMR structure determination of membrane proteins. Nat. Protoc. 8, 755–770 (2013). (10.1038/nprot.2013.037) / Nat. Protoc. by G Bellot (2013)
  14. Kim, D.N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012). (10.1093/nar/gkr1173) / Nucleic Acids Res. by DN Kim (2012)
  15. Castro, C.E. et al. A primer to scaffolded DNA origami. Nat. Methods 8, 221–229 (2011). (10.1038/nmeth.1570) / Nat. Methods by CE Castro (2011)
  16. Steinhauer, C., Jungmann, R., Sobey, T., Simmel, F. & Tinnefeld, P. DNA origami as a nanoscopic ruler for super-resolution microscopy. Angew. Chem. Int. Ed. Engl. 48, 8870–8873 (2009). (10.1002/anie.200903308) / Angew. Chem. Int. Ed. Engl. by C Steinhauer (2009)
  17. Schmied, J.J. et al. DNA origami nanopillars as standards for three-dimensional super-resolution microscopy. Nano Lett. 13, 781–785 (2013). (10.1021/nl304492y) / Nano Lett. by JJ Schmied (2013)
  18. Schmied, J.J. et al. Fluorescence and super-resolution standards based on DNA origami. Nat. Methods 9, 1133–1134 (2012). (10.1038/nmeth.2254) / Nat. Methods by JJ Schmied (2012)
  19. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007). (10.1126/science.1137395) / Science by SW Hell (2007)
  20. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009). (10.1146/annurev.biochem.77.061906.092014) / Annu. Rev. Biochem. by B Huang (2009)
  21. Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006). (10.1038/nmeth929) / Nat. Methods by MJ Rust (2006)
  22. van de Linde, S., Heilemann, M. & Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores. Annu. Rev. Phys. Chem. 63, 519–540 (2012). (10.1146/annurev-physchem-032811-112012) / Annu. Rev. Phys. Chem. by S van de Linde (2012)
  23. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000). (10.1073/pnas.97.15.8206) / Proc. Natl. Acad. Sci. USA by TA Klar (2000)
  24. Willig, K.I., Harke, B., Medda, R. & Hell, S.W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007). (10.1038/nmeth1108) / Nat. Methods by KI Willig (2007)
  25. Vicidomini, G. et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods 8, 571–573 (2011). (10.1038/nmeth.1624) / Nat. Methods by G Vicidomini (2011)
  26. Harke, B., Ullal, C.K., Keller, J. & Hell, S.W. Three-dimensional nanoscopy of colloidal crystals. Nano Lett. 8, 1309–1313 (2008). (10.1021/nl073164n) / Nano Lett. by B Harke (2008)
  27. Gustafsson, M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000). (10.1046/j.1365-2818.2000.00710.x) / J. Microsc. by MG Gustafsson (2000)
  28. Gustafsson, M.G. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005). (10.1073/pnas.0406877102) / Proc. Natl. Acad. Sci. USA by MG Gustafsson (2005)
  29. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006). (10.1126/science.1127344) / Science by E Betzig (2006)
  30. Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high-resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006). (10.1529/biophysj.106.091116) / Biophys. J. by ST Hess (2006)
  31. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008). (10.1002/anie.200802376) / Angew. Chem. Int. Ed. Engl. by M Heilemann (2008)
  32. Folling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008). (10.1038/nmeth.1257) / Nat. Methods by J Folling (2008)
  33. Steinhauer, C., Forthmann, C., Vogelsang, J. & Tinnefeld, P. Superresolution microscopy on the basis of engineered dark states. J. Am. Chem. Soc. 130, 16840–16841 (2008). (10.1021/ja806590m) / J. Am. Chem. Soc. by C Steinhauer (2008)
  34. Thompson, M.A., Casolari, J.M., Badieirostami, M., Brown, P.O. & Moerner, W.E. Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 107, 17864–17871 (2010). (10.1073/pnas.1012868107) / Proc. Natl. Acad. Sci. USA by MA Thompson (2010)
  35. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008). (10.1126/science.1153529) / Science by B Huang (2008)
  36. Juette, M.F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat. Methods 5, 527–529 (2008). (10.1038/nmeth.1211) / Nat. Methods by MF Juette (2008)
  37. Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl. Acad. Sci. USA 106, 22287–22292 (2009). (10.1073/pnas.0907866106) / Proc. Natl. Acad. Sci. USA by T Dertinger (2009)
  38. Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013). (10.1126/science.1232251) / Science by K Xu (2013)
  39. Chojnacki, J. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy. Science 338, 524–528 (2012). (10.1126/science.1226359) / Science by J Chojnacki (2012)
  40. Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013). (10.1126/science.1240672) / Science by A Szymborska (2013)
  41. Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12, 505–514 (2008). (10.1016/j.cbpa.2008.08.008) / Curr. Opin. Chem. Biol. by M Bates (2008)
  42. Ram, S., Ward, E.S. & Ober, R.J. Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. Proc. Natl. Acad. Sci. USA 103, 4457–4462 (2006). (10.1073/pnas.0508047103) / Proc. Natl. Acad. Sci. USA by S Ram (2006)
  43. Hell, S.W. Strategy for far-field optical imaging and writing without diffraction limit. Phys. Lett. A 326, 140–145 (2004). (10.1016/j.physleta.2004.03.082) / Phys. Lett. A by SW Hell (2004)
  44. Fitzgerald, J.E., Lu, J. & Schnitzer, M.J. Estimation theoretic measure of resolution for stochastic localization microscopy. Phys. Rev. Lett. 109, 048102 (2012). (10.1103/PhysRevLett.109.048102) / Phys. Rev. Lett. by JE Fitzgerald (2012)
  45. Nieuwenhuizen, R.P. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013). (10.1038/nmeth.2448) / Nat. Methods by RP Nieuwenhuizen (2013)
  46. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008). (10.1038/nmeth.1202) / Nat. Methods by H Shroff (2008)
  47. Vogelsang, J. et al. Make them blink: probes for super-resolution microscopy. ChemPhysChem 11, 2475–2490 (2010). (10.1002/cphc.201000189) / ChemPhysChem by J Vogelsang (2010)
  48. Bellec, M. et al. 3D patterning at the nanoscale of fluorescent emitters in glass. J. Phys. Chem. C 114, 15584–15588 (2010). (10.1021/jp104049e) / J. Phys. Chem. C by M Bellec (2010)
  49. Cordes, T. et al. Resolving single-molecule assembled patterns with super-resolution blink-microscopy. Nano Lett. 10, 645–651 (2010). (10.1021/nl903730r) / Nano Lett. by T Cordes (2010)
  50. Whitesides, G.M., Mathias, J.P. & Seto, C.T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991). (10.1126/science.1962191) / Science by GM Whitesides (1991)
  51. Seeman, N.C. Nanomaterials based on DNA. Annu. Rev. Biochem. 79, 65–87 (2010). (10.1146/annurev-biochem-060308-102244) / Annu. Rev. Biochem. by NC Seeman (2010)
  52. Loschberger, A. et al. Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J. Cell Sci. 125, 570–575 (2012). (10.1242/jcs.098822) / J. Cell Sci. by A Loschberger (2012)
  53. Gottfert, F. et al. Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys. J. 105, L01–L03 (2013). (10.1016/j.bpj.2013.05.029) / Biophys. J. by F Gottfert (2013)
  54. Jungmann, R., Liedl, T., Sobey, T.L., Shih, W. & Simmel, F.C. Isothermal assembly of DNA origami structures using denaturing agents. J. Am. Chem. Soc. 130, 10062–10063 (2008). (10.1021/ja8030196) / J. Am. Chem. Soc. by R Jungmann (2008)
  55. Kauert, D.J., Kurth, T., Liedl, T. & Seidel, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563 (2011). (10.1021/nl203503s) / Nano Lett. by DJ Kauert (2011)
  56. Stein, I.H., Schuller, V., Bohm, P., Tinnefeld, P. & Liedl, T. Single-molecule FRET ruler based on rigid DNA origami blocks. ChemPhysChem 12, 689–695 (2011). (10.1002/cphc.201000781) / ChemPhysChem by IH Stein (2011)
  57. Lin, C. et al. Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat. Chem. 4, 832–839 (2012). (10.1038/nchem.1451) / Nat. Chem. by C Lin (2012)
  58. Zhuang, X. et al. Fluorescence quenching: A tool for single-molecule protein-folding study. Proc. Natl. Acad. Sci. USA 97, 14241–14244 (2000). (10.1073/pnas.97.26.14241) / Proc. Natl. Acad. Sci. USA by X Zhuang (2000)
  59. Mei, Q. et al. Stability of DNA origami nanoarrays in cell lysate. Nano Lett. 11, 1477–1482 (2011). (10.1021/nl1040836) / Nano Lett. by Q Mei (2011)
  60. Gietl, A., Holzmeister, P., Grohmann, D. & Tinnefeld, P. DNA origami as biocompatible surface to match single-molecule and ensemble experiments. Nucleic Acids Res. 40, e110 (2012). (10.1093/nar/gks326) / Nucleic Acids Res. by A Gietl (2012)
  61. Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Photo-cross-linking-assisted thermal stability of DNA origami structures and its application for higher-temperature self-assembly. J. Am. Chem. Soc. 133, 14488–14491 (2011). (10.1021/ja204546h) / J. Am. Chem. Soc. by A Rajendran (2011)
  62. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011). (10.1038/nprot.2011.336) / Nat. Protoc. by S van de Linde (2011)
  63. Schulz, O. et al. Tip induced fluorescence quenching for nanometer optical and topographical resolution. Opt. Nanosc. 2, 1 (2013). (10.1186/2192-2853-2-1) / Opt. Nanosc. by O Schulz (2013)
  64. Kurz, A. et al. Counting fluorescent dye molecules on DNA origami by means of photon statistics. Small 9, 4061–4068 (2013). (10.1002/smll.201300619) / Small by A Kurz (2013)
  65. Woo, S. & Rothemund, P.W. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011). (10.1038/nchem.1070) / Nat. Chem. by S Woo (2011)
  66. Li, Z., Wang, L., Yan, H. & Liu, Y. Effect of DNA hairpin loops on the twist of planar DNA origami tiles. Langmuir 28, 1959–1965 (2012). (10.1021/la2037873) / Langmuir by Z Li (2012)
  67. Hein, B., Willig, K.I. & Hell, S.W. Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell. Proc. Natl. Acad. Sci. USA 105, 14271–14276 (2008). (10.1073/pnas.0807705105) / Proc. Natl. Acad. Sci. USA by B Hein (2008)
  68. Prabhat, P. et al. Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc. Natl. Acad. Sci. USA 104, 5889–5894 (2007). (10.1073/pnas.0700337104) / Proc. Natl. Acad. Sci. USA by P Prabhat (2007)
  69. Shtengel, G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc. Natl. Acad. Sci. USA 106, 3125–3130 (2009). (10.1073/pnas.0813131106) / Proc. Natl. Acad. Sci. USA by G Shtengel (2009)
  70. Pavani, S.R. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA 106, 2995–2999 (2009). (10.1073/pnas.0900245106) / Proc. Natl. Acad. Sci. USA by SR Pavani (2009)
  71. Baddeley, D., Cannell, M.B. & Soeller, C. Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil. Nano Res. 4, 589–598 (2011). (10.1007/s12274-011-0115-z) / Nano Res. by D Baddeley (2011)
  72. Douglas, S.M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009). (10.1093/nar/gkp436) / Nucleic Acids Res. by SM Douglas (2009)
  73. Schreiber, R. et al. DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 7, 1795–1799 (2011). (10.1002/smll.201100465) / Small by R Schreiber (2011)
  74. Derr, N.D. et al. Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338, 662–665 (2012). (10.1126/science.1226734) / Science by ND Derr (2012)
  75. Sobczak, J.P., Martin, T.G., Gerling, T. & Dietz, H. Rapid folding of DNA into nanoscale shapes at constant temperature. Science 338, 1458–1461 (2012). (10.1126/science.1229919) / Science by JP Sobczak (2012)
  76. Gould, T.J., Verkhusha, V.V. & Hess, S.T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4, 291–308 (2009). (10.1038/nprot.2008.246) / Nat. Protoc. by TJ Gould (2009)
  77. Wolter, S. et al. rapidSTORM: accurate, fast open-source software for localization microscopy. Nat. Methods 9, 1040–1041 (2012). (10.1038/nmeth.2224) / Nat. Methods by S Wolter (2012)
  78. Holden, S.J., Uphoff, S. & Kapanidis, A.N. DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat. Methods 8, 279–280 (2011). (10.1038/nmeth0411-279) / Nat. Methods by SJ Holden (2011)
  79. Henriques, R. et al. QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat. Methods 7, 339–340 (2010). (10.1038/nmeth0510-339) / Nat. Methods by R Henriques (2010)
  80. York, A.G., Ghitani, A., Vaziri, A., Davidson, M.W. & Shroff, H. Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat. Methods 8, 327–333 (2011). (10.1038/nmeth.1571) / Nat. Methods by AG York (2011)
  81. Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013). (10.1038/nmeth.2488) / Nat. Methods by F Huang (2013)
  82. Dickson, R.M., Cubitt, A.B., Tsien, R.Y. & Moerner, W.E. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388, 355–358 (1997). (10.1038/41048) / Nature by RM Dickson (1997)
  83. Shen, W., Zhong, H., Neff, D. & Norton, M.L. NTA directed protein nanopatterning on DNA Origami nanoconstructs. J. Am. Chem. Soc. 131, 6660–6661 (2009). (10.1021/ja901407j) / J. Am. Chem. Soc. by W Shen (2009)
  84. Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011). (10.1021/nl201603a) / Nano Lett. by Z Zhao (2011)
  85. Liu, W., Zhong, H., Wang, R. & Seeman, N.C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. Engl. 50, 264–267 (2011). (10.1002/anie.201005911) / Angew. Chem. Int. Ed. Engl. by W Liu (2011)
  86. Yang, Y., Han, D., Nangreave, J., Liu, Y. & Yan, H. DNA origami with double-stranded DNA as a unified scaffold. ACS Nano 6, 8209–8215 (2012). (10.1021/nn302896c) / ACS Nano by Y Yang (2012)
  87. Zhang, H. et al. Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem. Commun. 48, 6405–6407 (2012). (10.1039/c2cc32204h) / Chem. Commun. by H Zhang (2012)
  88. Smith, C.S., Joseph, N., Rieger, B. & Lidke, K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010). (10.1038/nmeth.1449) / Nat. Methods by CS Smith (2010)
  89. El Beheiry, M. & Dahan, M. ViSP: representing single-particle localizations in three dimensions. Nat. Methods 10, 689–690 (2013). (10.1038/nmeth.2566) / Nat. Methods by M El Beheiry (2013)
  90. Hogberg, B., Liedl, T. & Shih, W.M. Folding DNA origami from a double-stranded source of scaffold. J. Am. Chem. Soc. 131, 9154–9155 (2009). (10.1021/ja902569x) / J. Am. Chem. Soc. by B Hogberg (2009)
  91. Messing, J. New M13 vectors for cloning. Methods Enzymol. 101, 20–78 (1983). (10.1016/0076-6879(83)01005-8) / Methods Enzymol. by J Messing (1983)
  92. Yanisch-Perron, C., Vieira, J. & Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119 (1985). (10.1016/0378-1119(85)90120-9) / Gene by C Yanisch-Perron (1985)
  93. Douglas, S.M., Chou, J.J. & Shih, W.M. DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl. Acad. Sci. USA 104, 6644–6648 (2007). (10.1073/pnas.0700930104) / Proc. Natl. Acad. Sci. USA by SM Douglas (2007)
  94. Zhu, R., Li, X., Zhao, X.S. & Yu, A. Photophysical properties of Atto655 dye in the presence of guanosine and tryptophan in aqueous solution. J. Phys. Chem. B 115, 5001–5007 (2011). (10.1021/jp200876d) / J. Phys. Chem. B by R Zhu (2011)
  95. Doose, S., Neuweiler, H. & Sauer, M. Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. ChemPhysChem 10, 1389–1398 (2009). (10.1002/cphc.200900238) / ChemPhysChem by S Doose (2009)
  96. Bai, X.C., Martin, T.G., Scheres, S.H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl. Acad. Sci. USA 109, 20012–20017 (2012). (10.1073/pnas.1215713109) / Proc. Natl. Acad. Sci. USA by XC Bai (2012)
Dates
Type When
Created 11 years, 3 months ago (May 15, 2014, 11:29 a.m.)
Deposited 3 years, 11 months ago (Sept. 7, 2021, 2:06 a.m.)
Indexed 1 month, 3 weeks ago (July 2, 2025, 1:32 p.m.)
Issued 11 years, 3 months ago (May 15, 2014)
Published 11 years, 3 months ago (May 15, 2014)
Published Online 11 years, 3 months ago (May 15, 2014)
Published Print 11 years, 2 months ago (June 1, 2014)
Funders 0

None

@article{Schmied_2014, title={DNA origami–based standards for quantitative fluorescence microscopy}, volume={9}, ISSN={1750-2799}, url={http://dx.doi.org/10.1038/nprot.2014.079}, DOI={10.1038/nprot.2014.079}, number={6}, journal={Nature Protocols}, publisher={Springer Science and Business Media LLC}, author={Schmied, Jürgen J and Raab, Mario and Forthmann, Carsten and Pibiri, Enrico and Wünsch, Bettina and Dammeyer, Thorben and Tinnefeld, Philip}, year={2014}, month=may, pages={1367–1391} }