Abstract
AbstractFerroelectric tunnel junctions combine the phenomena of quantum-mechanical tunnelling and switchable spontaneous polarisation of a nanometre-thick ferroelectric film into novel device functionality. Switching the ferroelectric barrier polarisation direction produces a sizable change in resistance of the junction—a phenomenon known as the tunnelling electroresistance effect. From a fundamental perspective, ferroelectric tunnel junctions and their version with ferromagnetic electrodes, i.e., multiferroic tunnel junctions, are testbeds for studying the underlying mechanisms of tunnelling electroresistance as well as the interplay between electric and magnetic degrees of freedom and their effect on transport. From a practical perspective, ferroelectric tunnel junctions hold promise for disruptive device applications. In a very short time, they have traversed the path from basic model predictions to prototypes for novel non-volatile ferroelectric random access memories with non-destructive readout. This remarkable progress is to a large extent driven by a productive cycle of predictive modelling and innovative experimental effort. In this review article, we outline the development of the ferroelectric tunnel junction concept and the role of theoretical modelling in guiding experimental work. We discuss a wide range of physical phenomena that control the functional properties of ferroelectric tunnel junctions and summarise the state-of-the-art achievements in the field.
References
101
Referenced
106
-
Frenkel, J. On the electrical resistance of contacts between solid conductors. Phys. Rev. 36, 1604–1618 (1930).
(
10.1103/PhysRev.36.1604
) / Phys. Rev. by J Frenkel (1930) -
Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).
(
10.1038/nmat2024
) / Nat. Mater. by C Chappert (2007) -
Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).
(
10.1016/0375-9601(75)90174-7
) / Phys. Lett. A by M Jullière (1975) -
Tsymbal, E. Y., Mryasov, O. N. & LeClair, P. R. Spin-dependent tunnelling in magnetic tunnel junctions. J. Phys. Condens. Matter 15, R109–R142 (2003).
(
10.1088/0953-8984/15/4/201
) / J. Phys. Condens. Matter by EY Tsymbal (2003) -
Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J.-M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011).
(
10.1146/annurev-conmatphys-062910-140445
) / Annu. Rev. Condens. Matter Phys. by P Zubko (2011) -
Bibes, M., Villegas, J. E. & Barthélémy, A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5 (2011).
(
10.1080/00018732.2010.534865
) / Adv. Phys. by M Bibes (2011) -
Tsymbal, E. Y. & Kohlstedt, H. Tunneling across a ferroelectric. Science 313, 181–183 (2006).
(
10.1126/science.1126230
) / Science by EY Tsymbal (2006) -
Velev, J. P., Jaswal, S. S. & Tsymbal, E. Y. Multiferroic and magnetoelectric materials and interfaces. Phil. Trans. R. Soc. A 369, 3069–3097 (2011).
(
10.1098/rsta.2010.0344
) / Phil. Trans. R. Soc. A by JP Velev (2011) - Rabe, K. M., Dawber, M., Lichtensteiger, C., Ahn, C. H., Triscone, J.-M. in Topics in Applied Physics 105, 1–30 (eds Rabe K., Ahn C. H. & Triscone J.-M. ) (Springer-Verlag, Berlin, Heidelberg, Germany, 2007). / Topics in Applied Physics by KM Rabe (2007)
-
Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008).
(
10.1038/nmat2137
) / Nat. Mater. by S Horiuchi (2008) - Esaki, L., Laibowitz, R. B. & Stiles, P. J. Polar switch. IBM Tech. Discl. Bull. 13, 2161–2162 (1971). / IBM Tech. Discl. Bull. by L Esaki (1971)
-
Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).
(
10.1126/science.1092508
) / Science by CH Ahn (2004) -
Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
(
10.1103/RevModPhys.77.1083
) / Rev. Mod. Phys. by M Dawber (2005) -
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
(
10.1038/nature01501
) / Nature by J Junquera (2003) -
Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).
(
10.1126/science.1098252
) / Science by DD Fong (2004) -
Lichtensteiger, C., Triscone, J.-M., Junquera, J. & Ghosez, P. Ferroelectricity and tetragonality in ultrathin PbTiO3 films. Phys. Rev. Lett. 94, 047603 (2005).
(
10.1103/PhysRevLett.94.047603
) / Phys. Rev. Lett. by C Lichtensteiger (2005) -
Tenne, D. A. et al. Probing nanoscale ferroelectricity by ultraviolet raman spectroscopy. Science 313, 1614 (2006).
(
10.1126/science.1130306
) / Science by DA Tenne (2006) -
Zhuravlev, M. Y., Sabirianov, R. F., Jaswal, S. S. & Tsymbal, E. Y. Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).
(
10.1103/PhysRevLett.94.246802
) / Phys. Rev. Lett. by MY Zhuravlev (2005) -
Kohlstedt, H., Pertsev, N. A., Rodríguez Contreras, J. & Waser, R. Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B 72, 125341 (2005).
(
10.1103/PhysRevB.72.125341
) / Phys. Rev. B by H Kohlstedt (2005) -
Velev, J. P., Duan, C.-G., Belashchenko, K. D., Jaswal, S. S. & Tsymbal, E. Y. Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. Phys. Rev. Lett. 98, 137201 (2007).
(
10.1103/PhysRevLett.98.137201
) / Phys. Rev. Lett. by JP Velev (2007) -
Tsymbal, E. Y. & Gruverman, A. Ferroelectric tunnel junctions: Beyond the barrier. Nat. Mater. 12, 602–604 (2013).
(
10.1038/nmat3669
) / Nat. Mater. by EY Tsymbal (2013) -
Zhuravlev, M. Y., Jaswal, S. S., Tsymbal, E. Y. & Sabirianov, R. F. Ferroelectric switch for spin injection. Appl. Phys. Lett. 87, 222114 (2005).
(
10.1063/1.2138365
) / Appl. Phys. Lett. by MY Zhuravlev (2005) -
Velev, J. P. et al. Magnetic tunnel junctions with ferroelectric barriers: Prediction of four resistance states from first principles. Nano Lett. 9, 427–432 (2009).
(
10.1021/nl803318d
) / Nano Lett. by JP Velev (2009) -
Zhuravlev, M. Y., Maekawa, S. & Tsymbal, E. Y. Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions. Phys. Rev. B 81, 104419 (2010).
(
10.1103/PhysRevB.81.104419
) / Phys. Rev. B by MY Zhuravlev (2010) -
Tsymbal, E. Y., Gruverman, A., Garcia, V., Bibes, M. & Barthélémy, A. Ferroelectric and multiferroic tunnel junctions. MRS Bull. 37, 138–143 (2012).
(
10.1557/mrs.2011.358
) / MRS Bull. by EY Tsymbal (2012) -
Garcia, V. & Bibes, M. Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5, 4289 (2014).
(
10.1038/ncomms5289
) / Nat. Commun. by V Garcia (2014) -
Mehta, R. R., Silverman, B. D. & Jacobs, J. T. Depolarization fields in thin ferroelectric films. J. Appl. Phys. 44, 3379–3385 (1973).
(
10.1063/1.1662770
) / J. Appl. Phys. by RR Mehta (1973) -
Kim, D. J. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).
(
10.1103/PhysRevLett.95.237602
) / Phys. Rev. Lett. by DJ Kim (2005) -
Simmons, J. G. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 1793–1803 (1963).
(
10.1063/1.1702682
) / J. Appl. Phys. by JG Simmons (1963) -
Brinkman, W. F., Dynes, R. C. & Rowell, J. M. Tunneling conductance of asymmetric barriers. J. Appl. Phys. 41, 1915–1921 (1970).
(
10.1063/1.1659141
) / J. Appl. Phys. by WF Brinkman (1970) -
Gruverman, A. et al. Tunneling electroresistance effect in ferroelectric tunnel junctions at nanoscale. Nano Lett. 9, 3539–3543 (2009).
(
10.1021/nl901754t
) / Nano Lett. by A Gruverman (2009) -
Sokolov, A., Bak, O., Lu, H., Tsymbal, E. Y. & Gruverman, A. Effect of epitaxial strain on tunneling electroresistance in ferroelectric tunnel junctions. Nanotechnology 25, 305202 (2015).
(
10.1088/0957-4484/26/30/305202
) / Nanotechnology by A Sokolov (2015) -
Garcia, V. et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009).
(
10.1038/nature08128
) / Nature by V Garcia (2009) -
Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A. P. & Kalinin, S. V. Polarization control of electron tunneling into ferroelectric surfaces. Science 324, 1421–1425 (2009).
(
10.1126/science.1171200
) / Science by P Maksymovych (2009) -
Li, Z. et al. An epitaxial ferroelectric tunnel junction on silicon. Adv. Mater. 26, 7185–7189 (2014).
(
10.1002/adma.201402527
) / Adv. Mater. by Z Li (2014) -
Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Room-temperature ferroelectric resistive switching in ultrathin Pb(Zr0.2Ti0.8)O3 films. ACS Nano 5, 6032–6038 (2011).
(
10.1021/nn2018528
) / ACS Nano by D Pantel (2011) -
Chanthbouala, A. et al. Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2012).
(
10.1038/nnano.2011.213
) / Nat. Nanotechnol. by A Chanthbouala (2012) -
Zenkevich, A. et al. Electronic band alignment and electron transport in Cr/BaTiO3/Pt ferroelectric tunnel junctions. Appl. Phys. Lett. 102, 062907 (2013).
(
10.1063/1.4792525
) / Appl. Phys. Lett. by A Zenkevich (2013) -
Boyn, S. et al. Engineering ferroelectric tunnel junctions through potential. APL Mater. 3, 061101 (2015).
(
10.1063/1.4922769
) / APL Mater. by S Boyn (2015) -
Soni, R. et al. Giant electrode effect on tunneling electroresistance in ferroelectric tunnel junctions. Nat. Commun. 5, 5414 (2014).
(
10.1038/ncomms6414
) / Nat. Commun. by R Soni (2014) -
Liu, X., Wang, Y., Burton, J. D. & Tsymbal, E. Y. Polarization-controlled Ohmic to Schottky transition at a metal/ferroelectric interface. Phys. Rev. B 88, 165139 (2013).
(
10.1103/PhysRevB.88.165139
) / Phys. Rev. B by X Liu (2013) -
Liu, X., Burton, J. D., Zhuravlev, M. Y. & Tsymbal, E. Y. Electric control of spin injection into a ferroelectric semiconductor. Phys. Rev. Lett. 114, 046601 (2015).
(
10.1103/PhysRevLett.114.046601
) / Phys. Rev. Lett. by X Liu (2015) -
Liu, X., Burton, J. D. & Tsymbal, E. Y. Enhanced tunneling electroresistance in ferroelectric tunnel junctions due to the reversible metallization of the barrier. Phys Rev. Lett. 116, 197602 (2016).
(
10.1103/PhysRevLett.116.197602
) -
Wen, Z., Li, C., Wu, D., Li, A. & Ming, N. Ferroelectric-field-effect-enhanced electroresistance in metal/ferroelectric/semiconductor tunnel junction. Nat. Mater. 12, 617–621 (2013).
(
10.1038/nmat3649
) / Nat. Mater. by Z Wen (2013) -
Li, C. et al. Ultrathin BaTiO3‑based ferroelectric tunnel junctions through interface engineering. Nano Lett. 15, 2568–2573 (2015).
(
10.1021/acs.nanolett.5b00138
) / Nano Lett by C Li (2015) -
Radaelli, G. et al. Large room-temperature electroresistance in dual-modulated ferroelectric tunnel barriers. Adv. Mater. 27, 2602–2607 (2015).
(
10.1002/adma.201405117
) / Adv. Mater. by G Radaelli (2015) -
Quindeau, A. et al. Origin of tunnel electroresistance effect in PbTiO3-based multiferroic tunnel junctions. Phys. Rev. B 92, 035130 (2015).
(
10.1103/PhysRevB.92.035130
) / Phys. Rev. B by A Quindeau (2015) - Martin, R. M. Electronic Structure: Basic Theory and Practical Methods. (Cambridge University Press, Cambridge, UK, 2008). / Electronic Structure: Basic Theory and Practical Methods by RM Martin (2008)
-
Singh-Miller, N. E. & Marzari, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B 80, 235407 (2009).
(
10.1103/PhysRevB.80.235407
) / Phys. Rev. B by NE Singh-Miller (2009) -
Gerra, G., Tagantsev, A. K., Setter, N. & Parlinski, K. Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3 . Phys. Rev. Lett. 96, 107603 (2006).
(
10.1103/PhysRevLett.96.107603
) / Phys. Rev. Lett. by G Gerra (2006) -
Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal-oxide interfaces. Nat. Mater. 8, 392–397 (2009).
(
10.1038/nmat2429
) / Nat. Mater. by M Stengel (2009) -
Shen, L. et al. Systematic study of ferroelectric, interfacial, oxidative, and doping effects on conductance of Pt/BaTiO3/Pt ferroelectic tunnel junctions. Phys. Rev. B 85, 064105 (2012).
(
10.1103/PhysRevB.85.064105
) / Phys. Rev. B by L Shen (2012) -
Velev, J. P., Lopez-Encarnacion, J. M., Burton, J. D. & Tsymbal, E. Y. Multiferroic tunnel junctions with poly(vinylidene fluoride). Phys. Rev. B 85, 125103 (2012).
(
10.1103/PhysRevB.85.125103
) / Phys. Rev. B by JP Velev (2012) -
Velev, J. P. et al. Negative spin polarization and large tunneling magnetoresistance in epitaxial Co/SrTiO3/Co magnetic tunnel junctions. Phys. Rev. Lett. 95, 216601 (2005).
(
10.1103/PhysRevLett.95.216601
) / Phys. Rev. Lett. by JP Velev (2005) -
Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev 115, 809 (1959).
(
10.1103/PhysRev.115.809
) / Phys. Rev by W Kohn (1959) -
Heine, V. On the general theory of surface states and scattering of electrons in solids. Proc. Phys. Soc. 81, 300 (1963).
(
10.1088/0370-1328/81/2/311
) / Proc. Phys. Soc. by V Heine (1963) -
Mavropoulos, P., Papanikolaou, N. & Dederichs, P. Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions. Phys. Rev. Lett. 85, 1088 (2000).
(
10.1103/PhysRevLett.85.1088
) / Phys. Rev. Lett. by P Mavropoulos (2000) -
Butler, W. H., Zhang, X.-G., Schulthess, T. C. & MacLaren, J. M. Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).
(
10.1103/PhysRevB.63.054416
) / Phys. Rev. B by WH Butler (2001) -
Caffrey, N. M., Archer, T., Rungger, I. & Sanvito, S. Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. Phys. Rev. B 83, 125409 (2011).
(
10.1103/PhysRevB.83.125409
) / Phys. Rev. B by NM Caffrey (2011) -
Hinsche, N. F. et al. Strong influence of complex band structure on tunneling electroresistance: A combined model and ab initio study. Phys. Rev. B 82, 214110 (2010).
(
10.1103/PhysRevB.82.214110
) / Phys. Rev. B by NF Hinsche (2010) -
Wortmann, D. & Blügel, S. Influence of the electronic structure on tunneling through ferroelectric insulators: Application to BaTiO3 and PbTiO3 . Phys. Rev. B 83, 155114 (2011).
(
10.1103/PhysRevB.83.155114
) / Phys. Rev. B by D Wortmann (2011) -
Aguado-Puente, P. & Junquera, J. First-principles study of metal-induced gap states in metal/oxide interfaces and their relation with the complex band structure. MRS Commun. 3, 191–197 (2013).
(
10.1557/mrc.2013.43
) / MRS Commun. by P Aguado-Puente (2013) -
Dai, J.-Q., Zhang, H. & Song, Y.-M. Magnetoelectric coupling and spin-dependent tunneling in Fe/PbTiO3/Fe multiferroic heterostructure with a Ni monolayer inserted at one interface. J. Appl. Phys. 118, 054104 (2015).
(
10.1063/1.4927736
) / J. Appl. Phys. by J-Q Dai (2015) -
Landauer, R. Electrical resistance of disordered one-dimensional lattices. Philos. Mag. 21, 863–867 (1970).
(
10.1080/14786437008238472
) / Philos. Mag. by R Landauer (1970) -
Brandbyge, M., Mozos, J.-L., Ordejon, P., Taylor, J. & Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002).
(
10.1103/PhysRevB.65.165401
) / Phys. Rev. B by M Brandbyge (2002) -
Choi, H. J. & Ihm, J. Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267–2275 (1999).
(
10.1103/PhysRevB.59.2267
) / Phys. Rev. B by HJ Choi (1999) -
Smogunov, A., Dal Corso, A. & Tosatti, E. Ballistic conductance of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).
(
10.1103/PhysRevB.70.045417
) / Phys. Rev. B by A Smogunov (2004) -
Caroli, C., Combescot, R., Nozieres, P. & Saint-James, D. Direct calculation of the tunneling current. J. Phys. C 4, 916 (1971).
(
10.1088/0022-3719/4/8/018
) / J. Phys. C by C Caroli (1971) -
Velev, J. & Butler, W. On the equivalence of different techniques for evaluating the Green function for a semi-infinite system using a localized basis. J. Phys. Cond. Mater. 16, R637 (2004).
(
10.1088/0953-8984/16/21/R01
) / J. Phys. Cond. Mater. by J Velev (2004) -
López-Encarnación, J. M., Burton, J. D., Tsymbal, E. Y. & Velev, J. P. Organic multiferroic tunnel junctions with ferroelectric poly(vinylidene fluoride) barriers. Nano Lett. 11, 599–603 (2011).
(
10.1021/nl103650b
) / Nano Lett. by JM López-Encarnación (2011) -
Gerra, G., Tagantsev, A. K. & Setter, N. Ferroelectricity in asymmetric metal-ferroelectric-metal heterostructures: a combined first-principles-phenomenological approach. Phys. Rev. Lett. 98, 207601 (2007).
(
10.1103/PhysRevLett.98.207601
) / Phys. Rev. Lett. by G Gerra (2007) -
Liu, X., Wang, Y., Lukashev, P. V., Burton, J. D. & Tsymbal, E. Y. Interface dipole effect on thin film ferroelectric stability: First-principles and phenomenological modeling. Phys. Rev. B 85, 125407 (2012).
(
10.1103/PhysRevB.85.125407
) / Phys. Rev. B by X Liu (2012) -
Lu, H. et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv. Mater. 24, 1209–1216 (2012).
(
10.1002/adma.201104398
) / Adv. Mater. by H Lu (2012) -
Yamada, H. et al. Strong surface-termination effect on electroresistance in ferroelectric tunnel junctions. Adv. Funct. Mater. 25, 2708–2714 (2015).
(
10.1002/adfm.201500371
) / Adv. Funct. Mater. by H Yamada (2015) -
Zhuravlev, M. Y., Wang, Y., Maekawa, S. & Tsymbal, E. Y. Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier. Appl. Phys. Lett. 95, 052902 (2009).
(
10.1063/1.3195075
) / Appl. Phys. Lett. by MY Zhuravlev (2009) -
Caffrey, N. M., Archer, T., Rungger, I. & Sanvito, S. Coexistance of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction. Phys. Rev. Lett. 109, 226803 (2012).
(
10.1103/PhysRevLett.109.226803
) / Phys. Rev. Lett. by NM Caffrey (2012) -
Chen, Y. & McIntyre, P. C. Effects of chemical stability of platinum/lead zirconate titanate and iridium oxide/lead zirconate titanate interfaces on ferroelectric thin film switching reliability. Appl. Phys. Lett. 91, 232906 (2007).
(
10.1063/1.2822419
) / Appl. Phys. Lett. by Y Chen (2007) -
Wang, R. V. et al. Reversible chemical switching of a ferroelectric film Phys. Rev. Lett. 102, 047601 (2009).
(
10.1103/PhysRevLett.102.047601
) / Phys. Rev. Lett. by RV Wang (2009) -
Lu, H. et al. Ferroelectric tunnel junctions with graphene electrodes. Nat. Commun. 5, 5518 (2014).
(
10.1038/ncomms6518
) / Nat. Commun. by H Lu (2014) -
Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001).
(
10.1016/S0370-1573(00)00121-6
) / Phys. Rep. by E Dagotto (2001) -
Burton, J. D. & Tsymbal, E. Y. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80, 174406 (2009).
(
10.1103/PhysRevB.80.174406
) / Phys. Rev. B by JD Burton (2009) -
Burton, J. D. & Tsymbal, E. Y. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface. Phys. Rev. Lett. 106, 157203 (2011).
(
10.1103/PhysRevLett.106.157203
) / Phys. Rev. Lett. by JD Burton (2011) -
Molegraaf, H. J. A. et al. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21, 3470–3474 (2009).
(
10.1002/adma.200900278
) / Adv. Mater. by HJA Molegraaf (2009) -
Park, J. H. et al. Direct evidence for a half-metallic ferromagnet. Nature 392, 794–796 (1998).
(
10.1038/33883
) / Nature by JH Park (1998) -
Vaz, C. A. F. et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010).
(
10.1103/PhysRevLett.104.127202
) / Phys. Rev. Lett. by CAF Vaz (2010) -
Yin, Y. W. et al. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat. Mater. 12, 397 (2013).
(
10.1038/nmat3564
) / Nat. Mater. by YW Yin (2013) -
Jiang, L. et al. Tunneling electroresistance induced by interfacial phase transitions in ultrathin oxide heterostructures. Nano Lett. 13, 5837–5843 (2013).
(
10.1021/nl4025598
) / Nano Lett. by L Jiang (2013) -
Pantel, D. & Alexe, M. Electroresistance effects in ferroelectric tunnel barriers. Phys. Rev. B 82, 134105 (2010).
(
10.1103/PhysRevB.82.134105
) / Phys. Rev. B by D Pantel (2010) -
Useinov, A., Kalitsov, A., Velev, J. & Kioussis, N. Bias-dependence of the tunneling electroresistance and magnetoresistance in multiferroic tunnel junctions. Appl. Phys. Lett. 105, 102403 (2014).
(
10.1063/1.4895537
) / Appl. Phys. Lett. by A Useinov (2014) -
Bilc, D. I., Novaes, F. D., Íñiguez, J., Ordejón, P. & Ghosez, P. Electroresistance effect in ferroelectric tunnel junctions with symmetric electrodes. ACS Nano 6, 1473–1478 (2012).
(
10.1021/nn2043324
) / ACS Nano by DI Bilc (2012) -
Borisov, V. S., Ostanin, S., Achilles, S., Henk, J. & Mertig, I. Spin-dependent transport in a multiferroic tunnel junction: Theory for Co/PbTiO3/Co. Phys. Rev. B 92, 075137 (2015).
(
10.1103/PhysRevB.92.075137
) / Phys. Rev. B by VS Borisov (2015) -
Burton, J. D. & Tsymbal, E. Y. Magnetoelectric interfaces and spin transport. Philos. Trans. A Math. Phys. Eng. Sci. 370, 4840–4855 (2012).
(
10.1098/rsta.2012.0205
) / Philos. Trans. A Math. Phys. Eng. Sci. by JD Burton (2012) -
Duan, C. G., Jaswal, S. S. & Tsymbal, E. Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97, 047201 (2006).
(
10.1103/PhysRevLett.97.047201
) / Phys. Rev. Lett. by CG Duan (2006) -
Yamauchi, K., Sanyal, B. & Picozzi, S. Interface effects at a half-metal/ferroelectric junction. Appl. Phys. Lett. 91, 062506 (2007).
(
10.1063/1.2767776
) / Appl. Phys. Lett. by K Yamauchi (2007) -
Fechner, M. et al. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys. Rev. B 78, 212406 (2008).
(
10.1103/PhysRevB.78.212406
) / Phys. Rev. B by M Fechner (2008) -
Niranjan, M. K., Burton, J. D., Velev, J. P., Jaswal, S. S. & Tsymbal, E. Y. Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: An ab initio study. Appl. Phys. Lett. 95, 052501 (2009).
(
10.1063/1.3193679
) / Appl. Phys. Lett. by MK Niranjan (2009) -
Belashchenko, K. D. et al. Effect of interface bonding on spin-dependent tunneling from the oxidized Co surface. Phys. Rev. B 69, 174408 (2004).
(
10.1103/PhysRevB.69.174408
) / Phys. Rev. B by KD Belashchenko (2004) -
Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).
(
10.1126/science.1184028
) / Science by V Garcia (2010) -
Hambe, M. et al. Crossing an interface: Ferroelectric control of tunnel currents in magnetic complex oxide heterostructures. Adv. Funct. Mater. 20, 2436–2441 (2010).
(
10.1002/adfm.201000265
) / Adv. Funct. Mater. by M Hambe (2010) -
Valencia, S. et al. Interface-induced room-temperature multiferroicity in BaTiO3 . Nat. Mater. 10, 753 (2011).
(
10.1038/nmat3098
) / Nat. Mater. by S Valencia (2011) -
Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11, 289–293 (2012).
(
10.1038/nmat3254
) / Nat. Mater. by D Pantel (2012)
Dates
Type | When |
---|---|
Created | 9 years, 2 months ago (May 27, 2016, 6:39 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 6:58 a.m.) |
Indexed | 1 week, 1 day ago (Aug. 12, 2025, 5:43 p.m.) |
Issued | 9 years, 2 months ago (May 27, 2016) |
Published | 9 years, 2 months ago (May 27, 2016) |
Published Online | 9 years, 2 months ago (May 27, 2016) |
@article{Velev_2016, title={Predictive modelling of ferroelectric tunnel junctions}, volume={2}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/npjcompumats.2016.9}, DOI={10.1038/npjcompumats.2016.9}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Velev, Julian P and Burton, John D and Zhuravlev, Mikhail Ye and Tsymbal, Evgeny Y}, year={2016}, month=may }