Abstract
AbstractOver the last two decades, computational methods have made tremendous advances, and today many key properties of lithium-ion batteries can be accurately predicted by first principles calculations. For this reason, computations have become a cornerstone of battery-related research by providing insight into fundamental processes that are not otherwise accessible, such as ionic diffusion mechanisms and electronic structure effects, as well as a quantitative comparison with experimental results. The aim of this review is to provide an overview of state-of-the-art ab initio approaches for the modelling of battery materials. We consider techniques for the computation of equilibrium cell voltages, 0-Kelvin and finite-temperature voltage profiles, ionic mobility and thermal and electrolyte stability. The strengths and weaknesses of different electronic structure methods, such as DFT+U and hybrid functionals, are discussed in the context of voltage and phase diagram predictions, and we review the merits of lattice models for the evaluation of finite-temperature thermodynamics and kinetics. With such a complete set of methods at hand, first principles calculations of ordered, crystalline solids, i.e., of most electrode materials and solid electrolytes, have become reliable and quantitative. However, the description of molecular materials and disordered or amorphous phases remains an important challenge. We highlight recent exciting progress in this area, especially regarding the modelling of organic electrolytes and solid–electrolyte interfaces.
Authors
3
- Alexander Urban (first)
- Dong-Hwa Seo (additional)
- Gerbrand Ceder (additional)
References
141
Referenced
495
-
Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).
(
10.1126/science.192.4244.1126
) / Science by MS Whittingham (1976) -
Bruce, P. G. Energy storage beyond the horizon: Rechargeable lithium batteries. Solid State Ionics 179, 752–760 (2008).
(
10.1016/j.ssi.2008.01.095
) / Solid State Ionics by PG Bruce (2008) -
Goodenough, J. B. & Park, K.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
(
10.1021/ja3091438
) / J. Am. Chem. Soc. by JB Goodenough (2013) -
Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854 (2012).
(
10.1039/c2ee21892e
) / Energy Environ. Sci. by MM Thackeray (2012) -
Whittingham, M. S. Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2008).
(
10.1557/mrs2008.82
) / MRS Bull. by MS Whittingham (2008) -
Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
(
10.1126/science.1212741
) / Science by B Dunn (2011) -
Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).
(
10.1021/cm901452z
) / Chem. Mater. by JB Goodenough (2010) -
Zhu, G.-N., Wang, Y.-G. & Xia, Y.-Y. Ti-based compounds as anode materials for Li-ion batteries. Energy Environ. Sci. 5, 6652 (2012).
(
10.1039/c2ee03410g
) / Energy Environ. Sci. by G-N Zhu (2012) -
McDowell, M. T., Lee, S. W., Nix, W. D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013).
(
10.1002/adma.201301795
) / Adv. Mater. by MT McDowell (2013) -
Oh, M. H. et al. Galvanic replacement reactions in metal oxide nanocrystals. Science 340, 964–968 (2013).
(
10.1126/science.1234751
) / Science by MH Oh (2013) -
Xu, K. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chem. Rev. 114, 11503–11618 (2014).
(
10.1021/cr500003w
) / Chem. Rev. by K Xu (2014) -
Mo, Y., Ong, S. P. & Ceder, G. First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chem. Mater. 24, 15–17 (2012).
(
10.1021/cm203303y
) / Chem. Mater. by Y Mo (2012) -
Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).
(
10.1038/nmat4369
) / Nat. Mater. by Y Wang (2015) -
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).
(
10.1103/PhysRev.136.B864
) / Phys. Rev. by P Hohenberg (1964) -
Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140, A1133–A1138 (1965).
(
10.1103/PhysRev.140.A1133
) / Phys. Rev. by W Kohn (1965) -
Koch, W. & Holthausen, M. C. A Chemist’s Guide to Density Functional Theory (Wiley-VCH Verlag GmbH, 2001).
(
10.1002/3527600043
) / A Chemist’s Guide to Density Functional Theory by W Koch (2001) -
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
(
10.1038/nmat3568
) / Nat. Mater. by S Curtarolo (2013) -
Meng, Y. S. & Arroyo-de Dompablo, M. E. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc. Chem. Res. 46, 1171–1180 (2013).
(
10.1021/ar2002396
) / Acc. Chem. Res. by YS Meng (2013) -
Islam, M. S. & Fisher, C. A. J. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 43, 185–204 (2014).
(
10.1039/C3CS60199D
) / Chem. Soc. Rev. by MS Islam (2014) -
Chevrier, V. L. & Dahn, J. R. First principles studies of disordered lithiated silicon. J. Electrochem. Soc. 157, A392–A398 (2010).
(
10.1149/1.3294772
) / J. Electrochem. Soc. by VL Chevrier (2010) -
Persson, K. et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 1, 1176–1180 (2010).
(
10.1021/jz100188d
) / J. Phys. Chem. Lett. by K Persson (2010) -
Chan, M. K. Y., Wolverton, C. & Greeley, J. P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon. J. Am. Chem. Soc. 134, 14362–14374 (2012).
(
10.1021/ja301766z
) / J. Am. Chem. Soc. by MKY Chan (2012) -
Kirklin, S., Meredig, B. & Wolverton, C. High-throughput computational screening of new Li-ion battery anode materials. Adv. Energy Mater. 3, 252–262 (2013).
(
10.1002/aenm.201200593
) / Adv. Energy Mater. by S Kirklin (2013) -
Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2015).
(
10.1021/acs.chemmater.5b04082
) / Chem. Mater. by WD Richards (2015) -
Aykol, M., Kirklin, S. & Wolverton, C. Thermodynamic aspects of cathode coatings for lithium-ion batteries. Adv. Energy Mater. 4, 1400690 (2014).
(
10.1002/aenm.201400690
) / Adv. Energy Mater. by M Aykol (2014) -
McKinnon, W. Insertion electrodes I: Atomic and electronic structure of the hosts and their insertion compounds. in Solid State Electrochemistry 163–198 (ed. Bruce, P. G.) (Cambridge University Press, Cambridge, UK, 1994).
(
10.1017/CBO9780511524790.008
) -
Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. & Joannopoulos, J. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56, 1354–1365 (1997).
(
10.1103/PhysRevB.56.1354
) / Phys. Rev. B by MK Aydinol (1997) -
Langreth, D. C. & Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B 28, 1809–1834 (1983).
(
10.1103/PhysRevB.28.1809
) / Phys. Rev. B by DC Langreth (1983) -
Aydinol, M. K., Kohan, A. F. & Ceder, G. Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries. J. Power Sources 68, 664–668 (1997).
(
10.1016/S0378-7753(96)02638-9
) / J. Power Sources by MK Aydinol (1997) -
Aydinol, M. K. & Ceder, G. First-principles prediction of insertion potentials in Li-Mn oxides for secondary Li batteries. J. Electrochem. Soc. 144, 3832 (1997).
(
10.1149/1.1838099
) / J. Electrochem. Soc. by MK Aydinol (1997) -
Deiss, E., Wokaun, A., Barras, J. L., Daul, C. & Dufek, P. Average voltage, energy density, and specific energy of lithium-ion batteries. J. Electrochem. Soc. 144, 3877 (1997).
(
10.1149/1.1838105
) / J. Electrochem. Soc. by E Deiss (1997) -
Benco, L., Barras, J.-L., Atanasov, M., Daul, C. A. & Deiss, E. First-principles prediction of voltages of lithiated oxides for lithium-ion batteries. Solid State Ionics 112, 255–259 (1998).
(
10.1016/S0167-2738(98)00232-X
) / Solid State Ionics by L Benco (1998) -
Arroyo-de Dompablo, M. E., Armand, M., Tarascon, J. M. & Amador, U. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni). Electrochem. Commun. 8, 1292–1298 (2006).
(
10.1016/j.elecom.2006.06.003
) / Electrochem. Commun. by ME Arroyo-de Dompablo (2006) -
Arroyo-de Dompablo, M. E., Rozier, P., Morcrette, M. & Tarascon, J.-M. Electrochemical Data Transferability within LiyVOXO4 (X=Si, Ge0.5Si0.5, Ge, Si0.5As0.5, Si0.5P0.5, As, P) Polyoxyanionic Compounds. Chem. Mater. 19, 2411–2422 (2007).
(
10.1021/cm0612696
) / Chem. Mater. by ME Arroyo-de Dompablo (2007) -
Ceder, G. Predicting properties from scratch. Science 280, 1099 (1998).
(
10.1126/science.280.5366.1099
) / Science by G Ceder (1998) -
Cococcioni, M. de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).
(
10.1103/PhysRevB.71.035105
) / Phys. Rev. B by M Cococcioni (2005) -
Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).
(
10.1103/PhysRevB.44.943
) / Phys. Rev. B by VI Anisimov (1991) -
Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767 (1997).
(
10.1088/0953-8984/9/4/002
) / J. Phys. Condens. Matter by VI Anisimov (1997) -
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
(
10.1103/PhysRevB.57.1505
) / Phys. Rev. B by SL Dudarev (1998) -
Kulik, H. J., Cococcioni, M., Scherlis, D. A. & Marzari, N. Density functional theory in transition-metal chemistry: a self-consistent hubbard U approach. Phys. Rev. Lett. 97, 103001 (2006).
(
10.1103/PhysRevLett.97.103001
) / Phys. Rev. Lett. by HJ Kulik (2006) -
Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 70, 235121 (2004).
(
10.1103/PhysRevB.70.235121
) / Phys. Rev. B by F Zhou (2004) -
Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).
(
10.1103/PhysRevB.73.195107
) / Phys. Rev. B by L Wang (2006) -
Zhou, F., Kang, K., Maxisch, T., Ceder, G. & Morgan, D. The electronic structure and band gap of LiFePO4 and LiMnPO4 . Solid State Commun. 132, 181–186 (2004).
(
10.1016/j.ssc.2004.07.055
) / Solid State Commun. by F Zhou (2004) -
Ben Yahia, M. et al. Origin of the 3.6 V to 3.9 V voltage increase in the LiFeSO4F cathodes for Li-ion batteries. Energy Environ. Sci. 5, 9584–9594 (2012).
(
10.1039/c2ee22699e
) / Energy Environ. Sci. by M Ben Yahia (2012) -
Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98, 1372 (1993).
(
10.1063/1.464304
) / J. Chem. Phys. by AD Becke (1993) -
Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).
(
10.1063/1.464913
) / J. Chem. Phys. by AD Becke (1993) -
Seo, D.-H., Urban, A. & Ceder, G. Calibrating transition metal energy levels and oxygen bands in first principles calculations: accurate prediction of redox potentials and charge transfer in lithium transition metal oxides. Phys. Rev. B 92, 115118 (2015).
(
10.1103/PhysRevB.92.115118
) / Phys. Rev. B by D-H Seo (2015) -
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).
(
10.1063/1.1564060
) / J. Chem. Phys. by J Heyd (2003) -
Heyd, J., Scuseria, G. E. & Ernzerhof, M. Erratum: ‘Hybrid functionals based on a screened Coulomb potential’ [J. Chem. Phys.118, 8207 (2003)]. J. Chem. Phys. 124, 219906 (2006).
(
10.1063/1.2204597
) / J. Chem. Phys. by J Heyd (2006) -
Chevrier, V. L., Ong, S. P., Armiento, R., Chan, M. K. Y. & Ceder, G. Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys. Rev. B 82, 075122 (2010).
(
10.1103/PhysRevB.82.075122
) / Phys. Rev. B by VL Chevrier (2010) -
Delmas, C. et al. Lithium batteries: a new tool in solid state chemistry. Int. J. Inorg. Mater. 1, 11–19 (1999).
(
10.1016/S1463-0176(99)00003-4
) / Int. J. Inorg. Mater. by C Delmas (1999) -
Marianetti, C. A., Kotliar, G. & Ceder, G. A first-order Mott transition in LixCoO2 . Nat. Mater. 3, 627–631 (2004).
(
10.1038/nmat1178
) / Nat. Mater. by CA Marianetti (2004) -
Courtney, I. A., Tse, J. S., Mao, O., Hafner, J. & Dahn, J. R. Ab initio calculation of the lithium-tin voltage profile. Phys. Rev. B 58, 15583–15588 (1998).
(
10.1103/PhysRevB.58.15583
) / Phys. Rev. B by IA Courtney (1998) -
Ceder, G. & Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim. Acta 45, 131–150 (1999).
(
10.1016/S0013-4686(99)00199-1
) / Electrochim. Acta by G Ceder (1999) -
Van der Ven, A., Aydinol, M. K., Ceder, G., Kresse, G. & Hafner, J. First-principles investigation of phase stability in LixCoO2 . Phys. Rev. B 58, 2975–2987 (1998).
(
10.1103/PhysRevB.58.2975
) / Phys. Rev. B by A Van der Ven (1998) -
Van der Ven, A., Bhattacharya, J. & Belak, A. A. Understanding Li diffusion in Li-intercalation compounds. Acc. Chem. Res. 46, 1216–1225 (2013).
(
10.1021/ar200329r
) / Acc. Chem. Res. by A Van der Ven (2013) -
Kim, H. et al. Ab Initio Study of the sodium intercalation and intermediate phases in Na0.44MnO2 for sodium-ion battery. Chem. Mater. 24, 1205–1211 (2012).
(
10.1021/cm300065y
) / Chem. Mater. by H Kim (2012) -
Boyanov, S. et al. FeP: another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem. Mater. 18, 3531–3538 (2006).
(
10.1021/cm060433m
) / Chem. Mater. by S Boyanov (2006) -
Van der Ven, A., Aydinol, M. K. & Ceder, G. First-principles evidence for stage ordering in LixCoO2 . J. Electrochem. Soc. 145, 2149–2155 (1998).
(
10.1149/1.1838610
) / J. Electrochem. Soc. by A Van der Ven (1998) -
Arroyo-de Dompablo, M. E., Van der Ven, A. & Ceder, G. First-principles calculations of lithium ordering and phase stability on LixNiO2 . Phys. Rev. B 66, 064112 (2002).
(
10.1103/PhysRevB.66.064112
) / Phys. Rev. B by ME Arroyo-de Dompablo (2002) -
Hart, G. L. W. & Forcade, R. W. Algorithm for generating derivative structures. Phys. Rev. B 77, 224115 (2008).
(
10.1103/PhysRevB.77.224115
) / Phys. Rev. B by GLW Hart (2008) -
Hart, G. L. W. & Forcade, R. W. Generating derivative structures from multilattices: Algorithm and application to hcp alloys. Phys. Rev. B 80, 014120 (2009).
(
10.1103/PhysRevB.80.014120
) / Phys. Rev. B by GLW Hart (2009) -
Hart, G. L. W., Nelson, L. J. & Forcade, R. W. Generating derivative structures at a fixed concentration. Comput. Mater. Sci. 59, 101–107 (2012).
(
10.1016/j.commatsci.2012.02.015
) / Comput. Mater. Sci. by GLW Hart (2012) -
Hautier, G., Fischer, C. C., Jain, A., Mueller, T. & Ceder, G. Finding nature’s missing ternary oxide compounds using machine learning and Density functional theory. Chem. Mater. 22, 3762–3767 (2010).
(
10.1021/cm100795d
) / Chem. Mater. by G Hautier (2010) -
Kim, J. C., Seo, D.-H. & Ceder, G. Theoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder. Energy Environ. Sci. 8, 1790–1798 (2015).
(
10.1039/C5EE00930H
) / Energy Environ. Sci. by JC Kim (2015) -
Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
(
10.1016/j.commatsci.2012.10.028
) / Comput. Mater. Sci. by SP Ong (2013) -
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).
(
10.1063/1.1699114
) / J. Chem. Phys. by N Metropolis (1953) -
Binder, K. & Heermann, D. W. Monte Carlo Simulation in Statistical Physics Vol. 0 (Springer, 2010).
(
10.1007/978-3-642-03163-2
) / Monte Carlo Simulation in Statistical Physics by K Binder (2010) -
Sanchez, J. M., Ducastelle, F. & Gratias, D. Generalized cluster description of multicomponent systems. Phys A 128, 334–350 (1984).
(
10.1016/0378-4371(84)90096-7
) / Phys A by JM Sanchez (1984) -
Fontaine, D. D. Cluster approach to order-disorder transformations in alloys. Solid State Phys. 47, 33–176 (1994).
(
10.1016/S0081-1947(08)60639-6
) / Solid State Phys. by DD Fontaine (1994) -
Li, W., Reimers, J. N. & Dahn, J. R. Lattice-gas-model approach to understanding the structures of lithium transition-metal oxides LiMO2 . Phys. Rev. B 49, 826–831 (1994).
(
10.1103/PhysRevB.49.826
) / Phys. Rev. B by W Li (1994) -
van de Walle, A. & Ceder, G. The effect of lattice vibrations on substitutional alloy thermodynamics. Rev. Mod. Phys. 74, 11–45 (2002).
(
10.1103/RevModPhys.74.11
) / Rev. Mod. Phys. by A van de Walle (2002) -
Zhou, F., Maxisch, T. & Ceder, G. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4 . Phys. Rev. Lett. 97, 155704 (2006).
(
10.1103/PhysRevLett.97.155704
) / Phys. Rev. Lett. by F Zhou (2006) -
Schleger, P., Hardy, W. N. & Casalta, H. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x: Inclusion of electron spin and charge degrees of freedom. Phys. Rev. B 49, 514–523 (1994).
(
10.1103/PhysRevB.49.514
) / Phys. Rev. B by P Schleger (1994) -
van de Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).
(
10.1016/S0364-5916(02)80006-2
) / Calphad by A van de Walle (2002) -
Lerch, D., Wieckhorst, O., Hart, G. L. W., Forcade, R. W. & Müller, S. UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model. Simul. Mater. Sci. Eng. 17, 055003 (2009).
(
10.1088/0965-0393/17/5/055003
) / Model. Simul. Mater. Sci. Eng. by D Lerch (2009) -
Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for building physics models. Phys. Rev. B 87, 035125 (2013).
(
10.1103/PhysRevB.87.035125
) / Phys. Rev. B by LJ Nelson (2013) -
Reimers, J. N. & Dahn, J. R. Application of ab initio methods for calculations of voltage as a function of composition in electrochemical cells. Phys. Rev. B 47, 2995–3000 (1993).
(
10.1103/PhysRevB.47.2995
) / Phys. Rev. B by JN Reimers (1993) -
Wolverton, C. & Zunger, A. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2 . Phys. Rev. Lett. 81, 606–609 (1998).
(
10.1103/PhysRevLett.81.606
) / Phys. Rev. Lett. by C Wolverton (1998) -
Wolverton, C. & Zunger, A. Cation and vacancy ordering in LixCoO2 . Phys. Rev. B 57, 2242–2252 (1998).
(
10.1103/PhysRevB.57.2242
) / Phys. Rev. B by C Wolverton (1998) -
Van der Ven, A. & Ceder, G. Ordering in Lix(Ni0.5Mn0.5)O2 and its relation to charge capacity and electrochemical behavior in rechargeable lithium batteries. Electrochem. Commun. 6, 1045–1050 (2004).
(
10.1016/j.elecom.2004.07.018
) / Electrochem. Commun. by A Van der Ven (2004) -
Lee, E. & Persson, K. A. Revealing the coupled cation interactions behind the electrochemical profile of LixNi0.5Mn1.5O4 . Energy Environ. Sci. 5, 6047 (2012).
(
10.1039/c2ee03068c
) / Energy Environ. Sci. by E Lee (2012) -
Yu, H.-C. et al. Designing the next generation high capacity battery electrodes. Energy Environ. Sci. 7, 1760 (2014).
(
10.1039/c3ee43154a
) / Energy Environ. Sci. by H-C Yu (2014) -
Heitjans, P. & Kärger, J. (eds). Diffusion in Condensed Matter: Methods, Materials, Models (Springer: Berlin, Germany, 2005).
(
10.1007/3-540-30970-5
) / Diffusion in Condensed Matter: Methods, Materials, Models by P Heitjans (2005) -
Van der Ven, A., Ceder, G., Asta, M. & Tepesch, P. D. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001).
(
10.1103/PhysRevB.64.184307
) / Phys. Rev. B by A Van der Ven (2001) - Frenkel, D. & Smit, B. Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 2002). / Understanding Molecular Simulation: From Algorithms to Applications by D Frenkel (2002)
-
Marx, D. & Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge Univ. Press, 2009).
(
10.1017/CBO9780511609633
) / Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods by D Marx (2009) -
Alder, B. J., Gass, D. M. & Wainwright, T. E. Studies in molecular dynamics. VIII. the transport coefficients for a hard-sphere fluid. J. Chem. Phys. 53, 3813 (1970).
(
10.1063/1.1673845
) / J. Chem. Phys. by BJ Alder (1970) -
Van der Ven, A., Yu, H.-C., Ceder, G. & Thornton, K. Vacancy mediated substitutional diffusion in binary crystalline solids. Prog. Mater. Sci. 55, 61–105 (2010).
(
10.1016/j.pmatsci.2009.08.001
) / Prog. Mater. Sci. by A Van der Ven (2010) -
Van der Ven, A. & Ceder, G. Lithium diffusion mechanisms in layered intercalation compounds. J. Power Sources 97, 529–531 (2001).
(
10.1016/S0378-7753(01)00638-3
) / J. Power Sources by A Van der Ven (2001) -
Yang, J. & Tse, J. S. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. J. Phys. Chem. A 115, 13045–13049 (2011).
(
10.1021/jp205057d
) / J. Phys. Chem. A by J Yang (2011) -
Mo, Y., Ong, S. P. & Ceder, G. Insights into diffusion mechanisms in P2 layered oxide materials by first-principles calculations. Chem. Mater. 26, 5208–5214 (2014).
(
10.1021/cm501563f
) / Chem. Mater. by Y Mo (2014) -
Hao, S. & Wolverton, C. Lithium transport in amorphous Al2O3 and AlF3 for discovery of battery coatings. J. Phys. Chem. C 117, 8009–8013 (2013).
(
10.1021/jp311982d
) / J. Phys. Chem. C by S Hao (2013) -
Xiao, R., Li, H. & Chen, L. Density Functional Investigation on Li2MnO3 . Chem. Mater. 24, 4242–4251 (2012).
(
10.1021/cm3027219
) / Chem. Mater. by R Xiao (2012) -
Marcelin, R. Contribution a l'etude de la cinetique physico-chimique. Ann. Phys. 3, 120–231 (1915).
(
10.1051/anphys/191509030120
) / Ann. Phys. by R Marcelin (1915) -
Vineyard, G. H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121–127 (1957).
(
10.1016/0022-3697(57)90059-8
) / J. Phys. Chem. Solids by GH Vineyard (1957) -
Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30 (2004).
(
10.1149/1.1633511
) / Electrochem. Solid State Lett. by D Morgan (2004) -
Van der Ven, A., Thomas, J. C., Xu, Q., Swoboda, B. & Morgan, D. Nondilute diffusion from first principles: Li diffusion in LixTiS2 . Phys. Rev. B 78, 104306 (2008).
(
10.1103/PhysRevB.78.104306
) / Phys. Rev. B by A Van der Ven (2008) -
Kutner, R. Chemical diffusion in the lattice gas of non-interacting particles. Phys. Lett. A 81, 239–240 (1981).
(
10.1016/0375-9601(81)90251-6
) / Phys. Lett. A by R Kutner (1981) -
Bulnes, F. M., Pereyra, V. D. & Riccardo, J. L. Collective surface diffusion: n-fold way kinetic Monte Carlo simulation. Phys. Rev. E 58, 86–92 (1998).
(
10.1103/PhysRevE.58.86
) / Phys. Rev. E by FM Bulnes (1998) - Voter, A. F. Introduction to the Kinetic Monte Carlo Method, in Radiation Effects in Solids (Springer, NATO Publishing Unit, 2005). / Introduction to the Kinetic Monte Carlo Method, in Radiation Effects in Solids by AF Voter (2005)
-
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
(
10.1063/1.1329672
) / J. Chem. Phys. by G Henkelman (2000) - Jónsson, H., Mills, G., Jacobsen, K. W. (eds Ciccotti G., Berne B. J. & Coker D. F. ) Ch. Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions 385–404 (World Scientific, 1998). / Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions by H Jónsson (1998)
-
Asari, Y., Suwa, Y. & Hamada, T. Formation and diffusion of vacancy-polaron complex in olivine-type LiMnPO4 and LiFePO4 . Phys. Rev. B 84, 134113 (2011).
(
10.1103/PhysRevB.84.134113
) / Phys. Rev. B by Y Asari (2011) -
Ong, S. P. et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ. Sci. 4, 3680–3688 (2011).
(
10.1039/c1ee01782a
) / Energy Environ. Sci. by SP Ong (2011) -
Van der Ven, A. & Ceder, G. Lithium diffusion in layered LixCoO2 . Electrochem. Solid State Lett. 3, 301–304 (2000).
(
10.1149/1.1391130
) / Electrochem. Solid State Lett. by A Van der Ven (2000) -
Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).
(
10.1021/nl1023595
) / Nano Lett. by R Malik (2010) -
Kang, B. & Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009).
(
10.1038/nature07853
) / Nature by B Kang (2009) -
Kang, J., Chung, H., Doh, C., Kang, B. & Han, B. Integrated study of first principles calculations and experimental measurements for Li-ionic conductivity in Al-doped solid-state LiGe2(PO4)3 electrolyte. J. Power Sources 293, 11–16 (2015).
(
10.1016/j.jpowsour.2015.05.060
) / J. Power Sources by J Kang (2015) -
Du, F., Ren, X., Yang, J., Liu, J. & Zhang, W. Structures, thermodynamics, and Li+ mobility of Li10GeP2S12: a first-principles analysis. J. Phys. Chem. C 118, 10590–10595 (2014).
(
10.1021/jp5000039
) / J. Phys. Chem. C by F Du (2014) -
Kang, K. & Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 74, 094105 (2006).
(
10.1103/PhysRevB.74.094105
) / Phys. Rev. B by K Kang (2006) -
Kang, K., Meng, Y. S., Bréger, J., Grey, C. P. & Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977–980 (2006).
(
10.1126/science.1122152
) / Science by K Kang (2006) -
Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).
(
10.1126/science.1246432
) / Science by J Lee (2014) -
Urban, A., Lee, J. & Ceder, G. The configurational Space of rocksalt-type oxides for high-capacity lithium battery electrodes. Adv. Energy Mater. 4, 1400478 (2014).
(
10.1002/aenm.201400478
) / Adv. Energy Mater. by A Urban (2014) -
Zheng, J. et al. Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015).
(
10.1021/cm5045978
) / Chem. Mater. by J Zheng (2015) -
Wang, Y., Nakamura, S., Ue, M. & Balbuena, P. B. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: reduction mechanisms of ethylene carbonate. J. Am. Chem. Soc. 123, 11708–11718 (2001).
(
10.1021/ja0164529
) / J. Am. Chem. Soc. by Y Wang (2001) -
Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li-Fe-P-O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008).
(
10.1021/cm702327g
) / Chem. Mater. by SP Ong (2008) -
Wang, L., Maxisch, T. & Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007).
(
10.1021/cm0620943
) / Chem. Mater. by L Wang (2007) -
Ong, S. P., Jain, A., Hautier, G., Kang, B. & Ceder, G. Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 12, 427–430 (2010).
(
10.1016/j.elecom.2010.01.010
) / Electrochem. Commun. by SP Ong (2010) -
Mo, Y., Ong, S. P. & Ceder, G. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Phys. Rev. B 84, 205446 (2011).
(
10.1103/PhysRevB.84.205446
) / Phys. Rev. B by Y Mo (2011) -
Parker, V. D. Energetics of electrode reactions. II. The relationship between redox potentials, ionization potentials, electron affinities, and solvation energies of aromatic hydrocarbons. J. Am. Chem. Soc. 98, 98–103 (1976).
(
10.1021/ja00417a017
) / J. Am. Chem. Soc. by VD Parker (1976) -
Zhang, X., Pugh, J. K. & Ross, P. N. Computation of thermodynamic oxidation potentials of organic solvents using density functional theory. J. Electrochem. Soc. 148, E183 (2001).
(
10.1149/1.1362546
) / J. Electrochem. Soc. by X Zhang (2001) -
Shao, N., Sun, X.-G., Dai, S. & Jiang, D. Electrochemical windows of sulfone-based electrolytes for high-voltage Li-ion batteries. J. Phys. Chem. B 115, 12120–12125 (2011).
(
10.1021/jp204401t
) / J. Phys. Chem. B by N Shao (2011) -
Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).
(
10.1021/jz502319n
) / J. Phys. Chem. Lett. by L Cheng (2015) -
Borodin, O., Behl, W. & Jow, T. R. Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. J. Phys. Chem. C 117, 8661–8682 (2013).
(
10.1021/jp400527c
) / J. Phys. Chem. C by O Borodin (2013) -
Miertuš, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum. a direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981).
(
10.1016/0301-0104(81)85090-2
) / Chem. Phys. by S Miertuš (1981) -
Ong, S. P., Andreussi, O., Wu, Y., Marzari, N. & Ceder, G. Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem. Mater. 23, 2979–2986 (2011).
(
10.1021/cm200679y
) / Chem. Mater. by SP Ong (2011) -
Wang, R., Buhrmester, C. & Dahn, J. Calculations of oxidation potentials of redox shuttle additives for Li-ion cells. J. Electrochem. Soc. 153, A445–A449 (2006).
(
10.1149/1.2140613
) / J. Electrochem. Soc. by R Wang (2006) -
Rajput, N. N., Qu, X., Sa, N., Burrell, A. K. & Persson, K. A. The Coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics. J. Am. Chem. Soc. 137, 3411–3420 (2015).
(
10.1021/jacs.5b01004
) / J. Am. Chem. Soc. by NN Rajput (2015) -
Leung, K. Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries. J. Phys. Chem. C 117, 1539–1547 (2013).
(
10.1021/jp308929a
) / J. Phys. Chem. C by K Leung (2013) -
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016).
(
10.1016/j.commatsci.2015.09.013
) / Comput. Mater. Sci. by G Pizzi (2016) -
Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
(
10.1016/j.commatsci.2012.02.005
) / Comput. Mater. Sci. by S Curtarolo (2012) -
Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015).
(
10.1038/npjcompumats.2015.10
) / NPJ Comput. Mater. by S Kirklin (2015) -
Saal, J., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: The Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
(
10.1007/s11837-013-0755-4
) / JOM by J Saal (2013) -
Tran, N. et al. Mechanisms associated with the ‘plateau’ observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 System. Chem. Mater. 20, 4815–4825 (2008).
(
10.1021/cm070435m
) / Chem. Mater. by N Tran (2008) -
Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0. 6]O2 . J. Am. Chem. Soc. 128, 8694–8698 (2006).
(
10.1021/ja062027+
) / J. Am. Chem. Soc. by AR Armstrong (2006) -
Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).
(
10.1126/science.1195628
) / Science by JY Huang (2010) -
Seo, D.-H., Kim, H., Park, I., Hong, J. & Kang, K. Polymorphism and phase transformations of Li2-xFeSiO4 (0≤x≤2) from first principles. Phys. Rev. B 84, 220106 (2011).
(
10.1103/PhysRevB.84.220106
) / Phys. Rev. B by D-H Seo (2011) -
Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the lifepo4 olivine-type battery material. Chem. Mater. 17, 5085–5092 (2005).
(
10.1021/cm050999v
) / Chem. Mater. by MS Islam (2005) -
Han, B. C., Van der Ven, A., Morgan, D. & Ceder, G. Electrochemical modeling of intercalation processes with phase field models. Electrochim. Acta 49, 4691–4699 (2004).
(
10.1016/j.electacta.2004.05.024
) / Electrochim. Acta by BC Han (2004) -
Qu, X. et al. The Electrolyte Genome project: A big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).
(
10.1016/j.commatsci.2015.02.050
) / Comput. Mater. Sci. by X Qu (2015)
Dates
Type | When |
---|---|
Created | 9 years, 5 months ago (March 18, 2016, 2:06 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 4, 2023, 7:01 a.m.) |
Indexed | 26 minutes ago (Aug. 26, 2025, 10:58 p.m.) |
Issued | 9 years, 5 months ago (March 18, 2016) |
Published | 9 years, 5 months ago (March 18, 2016) |
Published Online | 9 years, 5 months ago (March 18, 2016) |
@article{Urban_2016, title={Computational understanding of Li-ion batteries}, volume={2}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/npjcompumats.2016.2}, DOI={10.1038/npjcompumats.2016.2}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Urban, Alexander and Seo, Dong-Hwa and Ceder, Gerbrand}, year={2016}, month=mar }