Abstract
AbstractThe Open Quantum Materials Database (OQMD) is a high-throughput database currently consisting of nearly 300,000 density functional theory (DFT) total energy calculations of compounds from the Inorganic Crystal Structure Database (ICSD) and decorations of commonly occurring crystal structures. To maximise the impact of these data, the entire database is being made available, without restrictions, at www.oqmd.org/download. In this paper, we outline the structure and contents of the database, and then use it to evaluate the accuracy of the calculations therein by comparing DFT predictions with experimental measurements for the stability of all elemental ground-state structures and 1,670 experimental formation energies of compounds. This represents the largest comparison between DFT and experimental formation energies to date. The apparent mean absolute error between experimental measurements and our calculations is 0.096 eV/atom. In order to estimate how much error to attribute to the DFT calculations, we also examine deviation between different experimental measurements themselves where multiple sources are available, and find a surprisingly large mean absolute error of 0.082 eV/atom. Hence, we suggest that a significant fraction of the error between DFT and experimental formation energies may be attributed to experimental uncertainties. Finally, we evaluate the stability of compounds in the OQMD (including compounds obtained from the ICSD as well as hypothetical structures), which allows us to predict the existence of ~3,200 new compounds that have not been experimentally characterised and uncover trends in material discovery, based on historical data available within the ICSD.
Authors
8
- Scott Kirklin (first)
- James E Saal (additional)
- Bryce Meredig (additional)
- Alex Thompson (additional)
- Jeff W Doak (additional)
- Muratahan Aykol (additional)
- Stephan Rühl (additional)
- Chris Wolverton (additional)
References
79
Referenced
1,762
- National Science and Technology Council. Materials Genome Initiative for Global Competitiveness Tech. Rep. http://www.whitehouse.gov/blog/2011/06/24/materials-genome-initiative-renaissance-american-manufacturing (2011).
-
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, 864–871 (1964).
(
10.1103/PhysRev.136.B864
) / Phys. Rev. by P Hohenberg (1964) -
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965).
(
10.1103/PhysRev.140.A1133
) / Phys. Rev. by W Kohn (1965) -
Perdew, J. P. & Zunger, A. Self-Interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).
(
10.1103/PhysRevB.23.5048
) / Phys. Rev. B by JP Perdew (1981) -
Ihm, J., Zunger, A. & Cohen, M. L. Momentum-space formalism for the total energy of solids. J. Phys. C Solid State Phys. 12, 4409–4422 (1979).
(
10.1088/0022-3719/12/21/009
) / J. Phys. C Solid State Phys. by J Ihm (1979) -
Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).
(
10.1103/PhysRevLett.45.566
) / Phys. Rev. Lett. by DM Ceperley (1980) -
Ihm, J., Yin, M. T. & Cohen, M. L. Quantum mechanical force calculations in solids: the phonon spectrum of Si. Solid State Commun. 37, 491–494 (1981).
(
10.1016/0038-1098(81)90485-3
) / Solid State Commun. by J Ihm (1981) -
Levy, O., Hart, G. L. W. & Curtarolo, S. Uncovering compounds by synergy of cluster expansion and high-throughput methods. J. Am. Chem. Soc. 132, 4830–4833 (2010).
(
10.1021/ja9105623
) / J. Am. Chem. Soc. by O Levy (2010) -
Curtarolo, S. et al. The high-throughput highway to computational materials design. Nat. Mater. 12, 191–201 (2013).
(
10.1038/nmat3568
) / Nat. Mater. by S Curtarolo (2013) -
Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2010).
(
10.1021/ic102031h
) / Inorg. Chem. by G Hautier (2010) -
Jain, A. et al. A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50, 2295–2310 (2011).
(
10.1016/j.commatsci.2011.02.023
) / Comput. Mater. Sci. by A Jain (2011) -
Armiento, R., Kozinsky, B., Fornari, M. & Ceder, G. Screening for high-performance piezoelectrics using high-throughput density functional theory. Phys. Rev. B 84, 014103 (2011).
(
10.1103/PhysRevB.84.014103
) / Phys. Rev. B by R Armiento (2011) -
Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382–390 (2011).
(
10.1021/co200012w
) / ACS Comb. Sci. by W Setyawan (2011) -
Saal, J., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
(
10.1007/s11837-013-0755-4
) / JOM by J Saal (2013) -
Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
(
10.1016/j.commatsci.2012.02.005
) / Comput. Mater. Sci. by S Curtarolo (2012) -
Landis, D. D. et al. The computational materials repository. Comput. Sci. Eng. 14, 51–57 (2012).
(
10.1109/MCSE.2012.16
) / Comput. Sci. Eng. by DD Landis (2012) - Bergerhoff, G. & Brown, I. D. Crystallographic Databases. chap. Inorganic 147–156 (International Union of Crystallography: Chester, 1987). / Crystallographic Databases. chap. Inorganic by G Bergerhoff (1987)
-
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B 58, 364–369 (2002).
(
10.1107/S0108768102006948
) / Acta Crystallogr. B by A Belsky (2002) -
Saal, J. E. & Wolverton, C. Thermodynamic stability of Mg-Y-Zn long-period stacking ordered structures. Scr. Mater. 67, 798–801 (2012).
(
10.1016/j.scriptamat.2012.07.013
) / Scr. Mater. by JE Saal (2012) -
Kirklin, S., Meredig, B. & Wolverton, C. High-throughput computational screening of new Li-ion battery anode materials. Adv. Energy Mater. 3, 252–262 (2013).
(
10.1002/aenm.201200593
) / Adv. Energy Mater. by S Kirklin (2013) -
Meredig, B. et al. Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B 89, 094104 (2014).
(
10.1103/PhysRevB.89.094104
) / Phys. Rev. B by B Meredig (2014) -
Aykol, M., Kirklin, S. & Wolverton, C. Thermodynamic aspects of cathode coatings for lithium-ion batteries. Adv. Energy Mater. 4, 1400690 (2014).
(
10.1002/aenm.201400690
) / Adv. Energy Mater. by M Aykol (2014) -
Kirklin, S., Chan, M., Trahey, L., Thackeray, M. M. & Wolverton, C. M. High-throughput screening of high-capacity electrodes for hybrid Li-ion/Li-O 2 cells. Phys. Chem. Chem. Phys. 16, 22073–22082 (2014).
(
10.1039/C4CP03597F
) / Phys. Chem. Chem. Phys. by S Kirklin (2014) -
Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
(
10.1063/1.4812323
) / APL Mater. by A Jain (2013) -
Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).
(
10.1016/j.commatsci.2012.02.002
) / Comput. Mater. Sci. by S Curtarolo (2012) -
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
(
10.1016/j.commatsci.2012.10.028
) / Comput. Mater. Sci. by SP Ong (2013) -
Bahn, S. R. & Jacobsen, K. W. An object-oriented scripting interface to a legacy electronic structure code. Comput. Sci. Eng. 4, 56–66 (2002).
(
10.1109/5992.998641
) / Comput. Sci. Eng. by SR Bahn (2002) -
Meredig, B. & Wolverton, C. A hybrid computational-experimental approach for automated crystal structure solution. Nat. Mater. 12, 123–127 (2013).
(
10.1038/nmat3490
) / Nat. Mater. by B Meredig (2013) -
Young, D. A. Phase Diagrams of the Elements (University of California Press: Berkeley and Los Angeles, 1991).
(
10.1525/9780520911482
) / Phase Diagrams of the Elements by DA Young (1991) - King, H. W. in CRC Handbook of Chemistry and Physics 95th edn (ed. Haynes W. M.) Ch. 12, 15–18 (CRC Press, Taylor & Francis, 2012). / CRC Handbook of Chemistry and Physics by HW King (2012)
-
Wang, Y. et al. Ab initio lattice stability in comparison with CALPHAD lattice stability. Calphad 28, 79–90 (2004).
(
10.1016/j.calphad.2004.05.002
) / Calphad by Y Wang (2004) -
Klimeš, J. & Michaelides, A. Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 137, 120901 (2012).
(
10.1063/1.4754130
) / J. Chem. Phys. by J Klimeš (2012) -
Tao, X. et al. Phase stability of magnesium-rare earth binary systems from first-principles calculations. J. Alloys Compd. 509, 6899–6907 (2011).
(
10.1016/j.jallcom.2011.03.177
) / J. Alloys Compd. by X Tao (2011) -
Gao, M. C., Rollett, A. D. & Widom, M. First-principles calculation of lattice stability of C15M2R and their hypothetical C15 variants (M=Al, Co, Ni; R=Ca, Ce, Nd, Y). Calphad 30, 341–348 (2006).
(
10.1016/j.calphad.2005.12.005
) / Calphad by MC Gao (2006) -
Mao, Z., Seidman, D. N. & Wolverton, C. First-principles phase stability, magnetic properties and solubility in aluminumare-earth (AlRE) alloys and compounds. Acta Mater. 59, 3659–3666 (2011).
(
10.1016/j.actamat.2011.02.040
) / Acta Mater. by Z Mao (2011) - Temmerman, W. et al. Handbook on the Physics and Chemistry of Rare Earths vol. 39 (Elsevier, 2009); http://www.sciencedirect.com/science/article/pii/S0168127308000019. / Handbook on the Physics and Chemistry of Rare Earths by W Temmerman (2009)
-
Zhou, F. & Ozoliņš, V. Obtaining correct orbital ground states in f-electron systems using a nonspherical self-interaction-corrected LDA+U method. Phys. Rev. B 80, 125127 (2009).
(
10.1103/PhysRevB.80.125127
) / Phys. Rev. B by F Zhou (2009) -
Duthie, J. C. & Pettifor, D. G. Correlation between d-band occupancy and crystal structure in the rare earths. Phys. Rev. Lett. 38, 564–567 (1977).
(
10.1103/PhysRevLett.38.564
) / Phys. Rev. Lett. by JC Duthie (1977) -
Biering, S. & Schwerdtfeger, P. High-pressure transitions in bulk mercury: a density functional study. Theor. Chem. Acc. 130, 455–462 (2011).
(
10.1007/s00214-011-1023-8
) / Theor. Chem. Acc. by S Biering (2011) -
Mishra, V., Gyanchandani, J., Chaturvedi, S. & Sikka, S. Effect of spin-orbit coupling on the ground state structure of mercury. Solid State Commun. 186, 38–41 (2014).
(
10.1016/j.ssc.2014.01.025
) / Solid State Commun. by V Mishra (2014) -
Wolverton, C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys. Acta Mater. 49, 3129–3142 (2001).
(
10.1016/S1359-6454(01)00229-4
) / Acta Mater. by C Wolverton (2001) -
Wolverton, C., Ozoliņš, V. & Asta, M. Hydrogen in aluminum: First-principles calculations of structure and thermodynamics. Phys. Rev. B 69, 144109 (2004).
(
10.1103/PhysRevB.69.144109
) / Phys. Rev. B by C Wolverton (2004) -
Lany, S. Semiconductor thermochemistry in density functional calculations. Phys. Rev. B 78, 245207 (2008).
(
10.1103/PhysRevB.78.245207
) / Phys. Rev. B by S Lany (2008) -
Hautier, G., Ong, S. P., Jain, A., Moore, C. J. & Ceder, G. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability. Phys. Rev. B 85, 155208 (2012).
(
10.1103/PhysRevB.85.155208
) / Phys. Rev. B by G Hautier (2012) -
Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012).
(
10.1103/PhysRevB.85.115104
) / Phys. Rev. B by V Stevanović (2012) - SGTE. Thermodynamic Properties of Inorganic Materials Vol. 19. (Springer-Verlag: Berlin, Heidelberg, 1999).
- Nash, P. Thermodynamic database https://tptc.iit.edu/index.php/thermo-database (2013).
-
Konings, R. J. M., Morss, L. R., Fuger, J. in The Chemistry of the Actinide and Transactinide Elements 3rd edn (eds Morss L. R. et al.) Ch. 19, 2113–2224 (Springer: Dordrecht, 2006); http://www.springerlink.com/index/l17213068108mk22.pdf.
(
10.1007/1-4020-3598-5_19
) / The Chemistry of the Actinide and Transactinide Elements by RJM Konings (2006) -
Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B 73, 195107 (2006).
(
10.1103/PhysRevB.73.195107
) / Phys. Rev. B by L Wang (2006) -
Grindy, S., Meredig, B., Kirklin, S., Saal, J. E. & Wolverton, C. Approaching chemical accuracy with density functional calculations: diatomic energy corrections. Phys. Rev. B 87, 075150 (2013).
(
10.1103/PhysRevB.87.075150
) / Phys. Rev. B by S Grindy (2013) -
Aykol, M. & Wolverton, C. Local environment dependent GGA+U method for accurate thermochemistry of transition metal compounds. Phys. Rev. B 90, 115105 (2014).
(
10.1103/PhysRevB.90.115105
) / Phys. Rev. B by M Aykol (2014) -
Aykol, M., Kim, S. & Wolverton, C. van der waals interactions in layered lithium cobalt oxides. J. Phys. Chem. C 119, 19053–19058 (2015).
(
10.1021/acs.jpcc.5b06240
) / J. Phys. Chem. C by M Aykol (2015) -
Pozdnyakova, I., Navrotsky, A., Shilkina, L. & Reznitchenko, L. Thermodynamic and structural properties of sodium lithium niobate solid solutions. J. Am. Ceram. Soc. 85, 379–384 (2004).
(
10.1111/j.1151-2916.2002.tb00100.x
) / J. Am. Ceram. Soc. by I Pozdnyakova (2004) - CRC. Handbook of Chemistry and Physics, 93rd edn 2012–2013 http://www.hbcpnetbase.com/ (2012).
- Gordienko, S. P. Enthalpies of formation for boron silicides. Powder Metall. Met. Ceram. 34, 660–662 (1995). / Powder Metall. Met. Ceram. by SP Gordienko (1995)
- Kubaschewski, O., Alcock, C. B. & Spencer, P. J. Materials Thermochemistry 6th edn (Pergamon Press, 1993). / Materials Thermochemistry by O Kubaschewski (1993)
- Olin, Å., Noläng, B., Öhman, L.-O., Osadchii, E. & Rosén, E. Chemical Thermodynamics (Elsevier Science, 2005). / Chemical Thermodynamics by Å Olin (2005)
-
Ranade, M. R., Tessier, F., Navrotsky, A. & Marchand, R. Calorimetric determination of the enthalpy of formation of InN and comparison with AlN and GaN. J. Mater. Res. 16, 2824–2831 (2001).
(
10.1557/JMR.2001.0389
) / J. Mater. Res. by MR Ranade (2001) -
van Setten, M. & Fichtner, M. On the enthalpy of formation of aluminum diboride, AlB2. J. Alloys Compd. 477, L11–L12 (2009).
(
10.1016/j.jallcom.2008.10.025
) / J. Alloys Compd. by M van Setten (2009) -
Sommer, F., Borzone, G., Parodi, N. & Ferro, R. Enthalpy of formation of CaPb and BaPb alloys. Intermetallics 14, 287–296 (2006).
(
10.1016/j.intermet.2005.06.003
) / Intermetallics by F Sommer (2006) - Lemire, R. J. Chemical Thermodynamics of Neptunium and Plutonium Vol. C (Elsevier Science, 2001). / Chemical Thermodynamics of Neptunium and Plutonium by RJ Lemire (2001)
-
Gramsch, S. A. & Morss, L. R. Standard molar enthalpies of formation of PrO2 and SrPrO3: the unusual thermodynamic stability of APrO3 (A=Sr,Ba). J. Chem. Thermodyn. 27, 551–560 (1995).
(
10.1006/jcht.1995.0056
) / J. Chem. Thermodyn. by SA Gramsch (1995) -
Notin, M., Mejbar, J., Bouhajib, A., Charles, J. & Hertz, J. The thermodynamic properties of calcium intermetallic compounds. J. Alloys Compd. 220, 62–75 (1995).
(
10.1016/0925-8388(94)06001-0
) / J. Alloys Compd. by M Notin (1995) -
Huntelaar, M. E., Cordfunke, E. H. P. & Ouweltjes, W. The standard molar enthalpies of formation of BaSiO3 (s) and Ba2SiO4 (s). J. Chem. Thermodyn. 24, 1099–1102 (1992).
(
10.1016/S0021-9614(05)80021-7
) / J. Chem. Thermodyn. by ME Huntelaar (1992) -
Tessier, F. et al. Thermodynamics of formation of binary and ternary nitrides in the system Ce/Mn/N. Z. Anorg. Allg. Chem. 627, 194–200 (2001).
(
10.1002/1521-3749(200102)627:2<194::AID-ZAAC194>3.0.CO;2-0
) / Z. Anorg. Allg. Chem. by F Tessier (2001) - de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R. & Niessen, A. K. Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam 1988).
-
Das, N. et al. Miedema model based methodology to predict amorphous-forming-composition range in binary and ternary systems. J. Alloys Compd. 550, 483–495 (2013).
(
10.1016/j.jallcom.2012.10.124
) / J. Alloys Compd. by N Das (2013) -
Ray, P. K., Akinc, M. & Kramer, M. J. Applications of an extended Miedema’s model for ternary alloys. J. Alloys Compd. 489, 357–361 (2010).
(
10.1016/j.jallcom.2009.07.062
) / J. Alloys Compd. by PK Ray (2010) -
Akbarzadeh, A. R., Ozoliņš, V. & Wolverton, C. First-principles determination of multicomponent hydride phase diagrams: application to the Li-Mg-N-H system. Adv. Mater. 19, 3233–3239 (2007).
(
10.1002/adma.200700843
) / Adv. Mater. by AR Akbarzadeh (2007) -
Barber, C., Dobkin, D. & Huhdanpaa, H. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469–483 (1996).
(
10.1145/235815.235821
) / ACM Trans. Math. Softw. by C Barber (1996) -
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary algorithms: principles and applications. J. Chem. Phys. 124, 244704 (2006).
(
10.1063/1.2210932
) / J. Chem. Phys. by AR Oganov (2006) -
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
(
10.1063/1.3512900
) / J. Chem. Phys. by M Amsler (2010) -
Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
(
10.1016/0927-0256(96)00008-0
) / Comput. Mater. Sci. by G Kresse (1996) -
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
(
10.1103/PhysRevB.54.11169
) / Phys. Rev. B by G Kresse (1996) -
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
(
10.1103/PhysRevLett.77.3865
) / Phys. Rev. Lett. by JP Perdew (1996) -
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
(
10.1103/PhysRevB.50.17953
) / Phys. Rev. B by PE Blöchl (1994) -
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
(
10.1103/PhysRevB.59.1758
) / Phys. Rev. B by G Kresse (1999) -
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide. Phys. Rev. B 57, 1505–1509 (1998).
(
10.1103/PhysRevB.57.1505
) / Phys. Rev. B by SL Dudarev (1998) -
Dorado, B. & Garcia, P. First-principles DFT+U modeling of actinide-based alloys: application to paramagnetic phases of UO2 and (U,Pu) mixed oxides. Phys. Rev. B 87, 195139 (2013).
(
10.1103/PhysRevB.87.195139
) / Phys. Rev. B by B Dorado (2013)
Dates
Type | When |
---|---|
Created | 9 years, 8 months ago (Dec. 9, 2015, 5:56 a.m.) |
Deposited | 2 years, 7 months ago (Jan. 5, 2023, 7:53 a.m.) |
Indexed | 18 minutes ago (Aug. 21, 2025, 7:06 a.m.) |
Issued | 9 years, 8 months ago (Dec. 11, 2015) |
Published | 9 years, 8 months ago (Dec. 11, 2015) |
Published Online | 9 years, 8 months ago (Dec. 11, 2015) |
@article{Kirklin_2015, title={The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies}, volume={1}, ISSN={2057-3960}, url={http://dx.doi.org/10.1038/npjcompumats.2015.10}, DOI={10.1038/npjcompumats.2015.10}, number={1}, journal={npj Computational Materials}, publisher={Springer Science and Business Media LLC}, author={Kirklin, Scott and Saal, James E and Meredig, Bryce and Thompson, Alex and Doak, Jeff W and Aykol, Muratahan and Rühl, Stephan and Wolverton, Chris}, year={2015}, month=dec }