Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

van Nieuwenburg, E. P. L., Liu, Y.-H., & Huber, S. D. (2017). Learning phase transitions by confusion. Nature Physics, 13(5), 435–439.

Authors 3
  1. Evert P. L. van Nieuwenburg (first)
  2. Ye-Hua Liu (additional)
  3. Sebastian D. Huber (additional)
References 30 Referenced 584
  1. Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260 (2015). (10.1126/science.aaa8415) / Science by M I Jordan (2015)
  2. Kitaev, A. Y. Unpaired majorana fermions in quantum wires. Phys.-Usp. 44, 131 (2001). (10.1070/1063-7869/44/10S/S29) / Phys.-Usp. by A Y Kitaev (2001)
  3. Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944). (10.1103/PhysRev.65.117) / Phys. Rev. by L Onsager (1944)
  4. Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015). (10.1146/annurev-conmatphys-031214-014726) / Annu. Rev. Condens. Matter Phys. by R Nandkishore (2015)
  5. Wang, L. Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016). (10.1103/PhysRevB.94.195105) / Phys. Rev. B by L Wang (2016)
  6. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. http://dx.doi.org/10.1038/nphys4035 (2017). (10.1038/nphys4035)
  7. Mehta, P. & Schwab, D. J. An exact mapping between the variational renormalization group and deep learning. Preprint at http://arxiv.org/abs/1410.3831 (2014).
  8. Stoudenmire, E. M. & Schwab, D. J. Supervised learning with quantum-inspired tensor networks. Preprint at https://arxiv.org/abs/1605.05775 (2016).
  9. Carleo, G. & Troyer, M. Solving the quantum many-body problem with articial neural networks. Preprint at https://arxiv.org/abs/1606.02318 (2016).
  10. Saitta, L. & Sebag, M. Encyclopedia of Machine Learning 767–773 (Springer, 2010). / Encyclopedia of Machine Learning by L Saitta (2010)
  11. Haykin, S. O. Neural Networks: A Comprehensive Foundation (Prentice Hall, 1998). / Neural Networks: A Comprehensive Foundation by S O Haykin (1998)
  12. Li, H. & Haldane, F. D. M. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008). (10.1103/PhysRevLett.101.010504) / Phys. Rev. Lett. by H Li (2008)
  13. Laflorencie, N. Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1–59 (2016). / Phys. Rep. by N Laflorencie (2016)
  14. Chandran, A., Khemani, V. & Sondhi, S. L. How universal is the entanglement spectrum? Phys. Rev. Lett. 113, 060501 (2014). (10.1103/PhysRevLett.113.060501) / Phys. Rev. Lett. by A Chandran (2014)
  15. Amico, L., Fazio, R., Osterloh, A. & Vedral, V. Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008). (10.1103/RevModPhys.80.517) / Rev. Mod. Phys. by L Amico (2008)
  16. Thomale, R., Sterdyniak, A., Regnault, N. & Bernevig, B. A. Entanglement gap and a new principle of adiabatic continuity. Phys. Rev. Lett. 104, 180502 (2010). (10.1103/PhysRevLett.104.180502) / Phys. Rev. Lett. by R Thomale (2010)
  17. Qi, X. L., Katsura, H. & Ludwig, A. W. W. General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. Phys. Rev. Lett. 108, 1–5 (2012). (10.1103/PhysRevLett.108.196402) / Phys. Rev. Lett. by X L Qi (2012)
  18. Turner, A. M., Pollmann, F. & Berg, E. Topological phases of one-dimensional fermions: an entanglement point of view. Phys. Rev. B 83, 075102 (2011). (10.1103/PhysRevB.83.075102) / Phys. Rev. B by A M Turner (2011)
  19. Cirac, J. I., Poilblanc, D., Schuch, N. & Verstraete, F. Entanglement spectrum and boundary theories with projected entangled-pair states. Phys. Rev. B 83, 245134 (2011). (10.1103/PhysRevB.83.245134) / Phys. Rev. B by J I Cirac (2011)
  20. Schuch, N., Poilblanc, D., Cirac, J. I. & Pérez-García, D. Topological order in the projected entangled-pair states formalism: transfer operator and boundary hamiltonians. Phys. Rev. Lett. 111, 090501 (2013). (10.1103/PhysRevLett.111.090501) / Phys. Rev. Lett. by N Schuch (2013)
  21. Calabrese, P. & Lefevre, A. Entanglement spectrum in one-dimensional systems. Phys. Rev. A 78, 032329 (2008). (10.1103/PhysRevA.78.032329) / Phys. Rev. A by P Calabrese (2008)
  22. Alba, V., Haque, M. & Läuchli, A. M. Boundary-locality and perturbative structure of entanglement spectra in gapped systems. Phys. Rev. Lett. 108, 227201 (2012). (10.1103/PhysRevLett.108.227201) / Phys. Rev. Lett. by V Alba (2012)
  23. Yang, Z.-C., Chamon, C., Hamma, A. & Mucciolo, E. R. Two-component structure in the entanglement spectrum of highly excited states. Phys. Rev. Lett. 115, 267206 (2015). (10.1103/PhysRevLett.115.267206) / Phys. Rev. Lett. by Z-C Yang (2015)
  24. Geraedts, S. D., Nandkishore, R. & Regnault, N. Many-body localization and thermalization: insights from the entanglement spectrum. Phys. Rev. B 93, 174202 (2016). (10.1103/PhysRevB.93.174202) / Phys. Rev. B by S D Geraedts (2016)
  25. Pichler, H., Zhu, G., Seif, A., Zoller, P. & Hafezi, M. Measurement protocol for the entanglement spectrum of cold atoms. Phys. Rev. X 6, 041033 (2016). / Phys. Rev. X by H Pichler (2016)
  26. Hsieh, T. H. & Fu, L. Bulk entanglement spectrum reveals quantum criticality within a topological state. Phys. Rev. Lett. 113, 106801 (2014). (10.1103/PhysRevLett.113.106801) / Phys. Rev. Lett. by T H Hsieh (2014)
  27. Thomale, R., Arovas, D. P. & Bernevig, B. A. Nonlocal order in gapless systems: entanglement spectrum in spin chains. Phys. Rev. Lett. 105, 116805 (2010). (10.1103/PhysRevLett.105.116805) / Phys. Rev. Lett. by R Thomale (2010)
  28. Vijay, S. & Fu, L. Entanglement spectrum of a random partition: connection with the localization transition. Phys. Rev. B 91, 220101 (2015). (10.1103/PhysRevB.91.220101) / Phys. Rev. B by S Vijay (2015)
  29. Pearson, F. K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901). (10.1080/14786440109462720) / Philos. Mag. by F K Pearson (1901)
  30. Nielsen, M. Neural Networks and Deep Learning (Determination Press, 2015). / Neural Networks and Deep Learning by M Nielsen (2015)
Dates
Type When
Created 8 years, 6 months ago (Feb. 13, 2017, 3:15 p.m.)
Deposited 4 months, 2 weeks ago (April 10, 2025, 9:11 a.m.)
Indexed 1 hour, 31 minutes ago (Aug. 26, 2025, 2:48 a.m.)
Issued 8 years, 6 months ago (Feb. 13, 2017)
Published 8 years, 6 months ago (Feb. 13, 2017)
Published Online 8 years, 6 months ago (Feb. 13, 2017)
Published Print 8 years, 3 months ago (May 1, 2017)
Funders 0

None

@article{van_Nieuwenburg_2017, title={Learning phase transitions by confusion}, volume={13}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys4037}, DOI={10.1038/nphys4037}, number={5}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={van Nieuwenburg, Evert P. L. and Liu, Ye-Hua and Huber, Sebastian D.}, year={2017}, month=feb, pages={435–439} }