Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Xu, X., Yao, W., Xiao, D., & Heinz, T. F. (2014). Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics, 10(5), 343–350.

Authors 4
  1. Xiaodong Xu (first)
  2. Wang Yao (additional)
  3. Di Xiao (additional)
  4. Tony F. Heinz (additional)
References 93 Referenced 2,441
  1. Wolf, S. A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001). (10.1126/science.1065389) / Science by SA Wolf (2001)
  2. J Ohkawa, F. & Uemura, Y. Theory of valley splitting in an N-channel (100) inversion layer of Si III. Enhancement of splittings by many-body effects. J. Phys. Soc. Jpn 43, 925–932 (1977). (10.1143/JPSJ.43.925) / J. Phys. Soc. Jpn by F J Ohkawa (1977)
  3. Sham, L., Allen, S., Kamgar, A. & Tsui, D. Valley–valley splitting in inversion layers on a high-index surface of silicon. Phys. Rev. Lett. 40, 472–475 (1978). (10.1103/PhysRevLett.40.472) / Phys. Rev. Lett. by L Sham (1978)
  4. Bloss, W., Sham, L. & Vinter, V. Interaction-induced transition at low densities in silicon inversion layer. Phys. Rev. Lett. 43, 1529–1532 (1979). (10.1103/PhysRevLett.43.1529) / Phys. Rev. Lett. by W Bloss (1979)
  5. Sham, L. & Nakayama, M. Effective-mass approximation in the presence of an interface. Phys. Rev. B 20, 734–747 (1979). (10.1103/PhysRevB.20.734) / Phys. Rev. B by L Sham (1979)
  6. Gunawan, O., Habib, B., De Poortere, E. & Shayegan, M. Quantized conductance in an AlAs two-dimensional electron system quantum point contact. Phys. Rev. B 74, 155436 (2006). (10.1103/PhysRevB.74.155436) / Phys. Rev. B by O Gunawan (2006)
  7. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007). (10.1038/nphys547) / Nature Phys. by A Rycerz (2007)
  8. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). (10.1103/PhysRevLett.99.236809) / Phys. Rev. Lett. by D Xiao (2007)
  9. Yao, W., Xiao, D. & Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 77, 235406 (2008). (10.1103/PhysRevB.77.235406) / Phys. Rev. B by W Yao (2008)
  10. Bishop, N. et al. Valley polarization and susceptibility of composite fermions around a filling factor ν = 32. Phys. Rev. Lett. 98, 266404 (2007). (10.1103/PhysRevLett.98.266404) / Phys. Rev. Lett. by N Bishop (2007)
  11. Shkolnikov, Y., De Poortere, E., Tutuc, E. & Shayegan, M. Valley splitting of AlAs two-dimensional electrons in a perpendicular magnetic field. Phys. Rev. Lett. 89, 226805 (2002). (10.1103/PhysRevLett.89.226805) / Phys. Rev. Lett. by Y Shkolnikov (2002)
  12. Takashina, K., Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006). (10.1103/PhysRevLett.96.236801) / Phys. Rev. Lett. by K Takashina (2006)
  13. Karch, J. et al. Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors. Phys. Rev. B 83, 121312 (2011). (10.1103/PhysRevB.83.121312) / Phys. Rev. B by J Karch (2011)
  14. Isberg, J. et al. Generation, transport and detection of valley-polarized electrons in diamond. Nature Mater. 12, 760–764 (2013). (10.1038/nmat3694) / Nature Mater. by J Isberg (2013)
  15. Zhu, Z., Collaudin, A., Fauqué, B., Kang, W. & Behnia, K. Field-induced polarization of Dirac valleys in bismuth. Nature Phys. 8, 89–94 (2011). (10.1038/nphys2111) / Nature Phys. by Z Zhu (2011)
  16. Jungwirth, T., Wunderlich, J. & Olejník, K. Spin Hall effect devices. Nature Mater. 11, 382–390 (2012). (10.1038/nmat3279) / Nature Mater. by T Jungwirth (2012)
  17. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  18. Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011). (10.1103/PhysRevLett.106.136806) / Phys. Rev. Lett. by D Gunlycke (2011)
  19. Jiang, Y., Low, T., Chang, K., Katsnelson, M. & Guinea, F. Generation of pure bulk valley current in graphene. Phys. Rev. Lett. 110, 046601 (2013). (10.1103/PhysRevLett.110.046601) / Phys. Rev. Lett. by Y Jiang (2013)
  20. Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). (10.1103/PhysRevLett.108.196802) / Phys. Rev. Lett. by D Xiao (2012)
  21. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotechnol. 7, 494–498 (2012). (10.1038/nnano.2012.96) / Nature Nanotechnol. by KF Mak (2012)
  22. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotechnol. 7, 490–493 (2012). (10.1038/nnano.2012.95) / Nature Nanotechnol. by H Zeng (2012)
  23. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012). (10.1038/ncomms1882) / Nature Commun. by T Cao (2012)
  24. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotechnol. 8, 634–638 (2013). (10.1038/nnano.2013.151) / Nature Nanotechnol. by AM Jones (2013)
  25. Xiao, D., Chang, M-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010). (10.1103/RevModPhys.82.1959) / Rev. Mod. Phys. by D Xiao (2010)
  26. Mattheiss, L. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973). (10.1103/PhysRevB.8.3719) / Phys. Rev. B by L Mattheiss (1973)
  27. Ezawa, M. Spin-valley optical selection rule and strong circular dichroism in silicene. Phys. Rev. B 86, 161407 (2012). (10.1103/PhysRevB.86.161407) / Phys. Rev. B by M Ezawa (2012)
  28. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev. Lett. 106, 156801 (2011). (10.1103/PhysRevLett.106.156801) / Phys. Rev. Lett. by F Zhang (2011)
  29. Jung, J., Zhang, F., Qiao, Z. & MacDonald, A. H. Valley-Hall kink and edge states in multilayer graphene. Phys. Rev. B 84, 075418 (2011). (10.1103/PhysRevB.84.075418) / Phys. Rev. B by J Jung (2011)
  30. Ezawa, M. Topological Kirchhoff law and bulk-edge correspondence for valley Chern and spin-valley Chern numbers. Phys. Rev. B 88, 161406 (2013). (10.1103/PhysRevB.88.161406) / Phys. Rev. B by M Ezawa (2013)
  31. Wu, G. Y., Lue, N-Y. & Chang, L. Graphene quantum dots for valley-based quantum computing: A feasibility study. Phys. Rev. B 84, 195463 (2011). (10.1103/PhysRevB.84.195463) / Phys. Rev. B by GY Wu (2011)
  32. Wu, G. Y. & Lue, N-Y. Graphene-based qubits in quantum communications. Phys. Rev. B 86, 045456 (2012). (10.1103/PhysRevB.86.045456) / Phys. Rev. B by GY Wu (2012)
  33. Lee, M-K., Lue, N-Y., Wen, C-K. & Wu, G. Y. Valley-based field-effect transistors in graphene. Phys. Rev. B 86, 165411 (2012). (10.1103/PhysRevB.86.165411) / Phys. Rev. B by M-K Lee (2012)
  34. Wu, S. et al. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 7, 2768–2772 (2013). (10.1021/nn4002038) / ACS Nano by S Wu (2013)
  35. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  36. Mak, K., Lui, C., Shan, J. & Heinz, T. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009). (10.1103/PhysRevLett.102.256405) / Phys. Rev. Lett. by K Mak (2009)
  37. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007). (10.1021/jp075424v) / J. Phys. Chem. C by T Li (2007)
  38. Lebègue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009). (10.1103/PhysRevB.79.115409) / Phys. Rev. B by S Lebègue (2009)
  39. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011). (10.1103/PhysRevB.84.153402) / Phys. Rev. B by ZY Zhu (2011)
  40. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  41. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  42. Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013). (10.1103/PhysRevLett.111.106801) / Phys. Rev. Lett. by W Jin (2013)
  43. Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2 . Nature Nanotechnol. 9, 111–115 (2014). (10.1038/nnano.2013.277) / Nature Nanotechnol. by Y Zhang (2014)
  44. Peelaers, H. & Van de Walle, C. G. Effects of strain on band structure and effective masses in MoS2 . Phys. Rev. B 86, 241401 (2012). (10.1103/PhysRevB.86.241401) / Phys. Rev. B by H Peelaers (2012)
  45. Kadantsev, E. S. & Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012). (10.1016/j.ssc.2012.02.005) / Solid State Commun. by ES Kadantsev (2012)
  46. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013). (10.1038/ncomms2498) / Nature Commun. by JS Ross (2013)
  47. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013). (10.1038/nmat3505) / Nature Mater. by KF Mak (2013)
  48. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnol. 8, 271–276 (2013). (10.1038/nnano.2013.20) / Nature Nanotechnol. by JA Schuller (2013)
  49. Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013). (10.1021/nl4011172) / Nano Lett. by S Tongay (2013)
  50. Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13, 5944–5948 (2013). (10.1021/nl403036h) / Nano Lett. by S Mouri (2013)
  51. Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2 . Nano Lett. 13, 5361–5366 (2013). (10.1021/nl402875m) / Nano Lett. by A Castellanos-Gomez (2013)
  52. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013). (10.1021/nl4014748) / Nano Lett. by HJ Conley (2013)
  53. Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2 . Phys. Rev. B 88, 121301 (2013). (10.1103/PhysRevB.88.121301) / Phys. Rev. B by CR Zhu (2013)
  54. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 2931–2936 (2013). (10.1021/nl4013166)
  55. Thilagam, A. Two-dimensional charged-exciton complexes. Phys. Rev. B 55, 7804–7808 (1997). (10.1103/PhysRevB.55.7804) / Phys. Rev. B by A Thilagam (1997)
  56. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013). (10.1103/PhysRevLett.111.216805) / Phys. Rev. Lett. by DY Qiu (2013)
  57. Feng, J., Qian, X., Huang, C-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photonics 6, 866–872 (2012). (10.1038/nphoton.2012.285) / Nature Photonics by J Feng (2012)
  58. Shi, H., Pan, H., Zhang, Y-W. & Yakobson, B. I. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2 . Phys. Rev. B 87, 155304 (2013). (10.1103/PhysRevB.87.155304) / Phys. Rev. B by H Shi (2013)
  59. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012). (10.1103/PhysRevB.85.205302) / Phys. Rev. B by T Cheiwchanchamnangij (2012)
  60. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012). (10.1103/PhysRevB.86.115409) / Phys. Rev. B by A Ramasubramaniam (2012)
  61. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011). (10.1063/1.3636402) / Appl. Phys. Lett. by T Korn (2011)
  62. Lagarde, D. et al. Carrier and polarization dynamics in monolayer MoS2 . Phys. Rev. Lett. 112, 047401 (2014). (10.1103/PhysRevLett.112.047401) / Phys. Rev. Lett. by D Lagarde (2014)
  63. Shi, H. et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013). (10.1021/nn303973r) / ACS Nano by H Shi (2013)
  64. Sim, S. et al. Exciton dynamics in atomically thin MoS2: Inter-excitonic interaction and broadening kinetics. Preprint at http://arxiv.org/abs/1308.2023 (2013). (10.1103/PhysRevB.88.075434)
  65. Kumar, N. et al. Exciton-exciton annihilation in MoSe2 monolayers. Preprint at http://arxiv.org/abs/1311.1079 (2013).
  66. Mai, C. et al. Many body effects in valleytronics: Direct measurement of valley lifetimes in single layer MoS2 . Nano Lett. 14, 202–206 (2013). (10.1021/nl403742j) / Nano Lett. by C Mai (2013)
  67. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012). (10.1103/PhysRevB.86.081301) / Phys. Rev. B by G Sallen (2012)
  68. Wu, S. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 . Nature Phys. 9, 149–153 (2013). (10.1038/nphys2524) / Nature Phys. by S Wu (2013)
  69. Coehoorn, R., Haas, C. & de Groot, R. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. B 35, 6203–6206 (1987). (10.1103/PhysRevB.35.6203) / Phys. Rev. B by R Coehoorn (1987)
  70. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2 . ACS Nano 7, 791–797 (2013). (10.1021/nn305275h) / ACS Nano by W Zhao (2013)
  71. Zeng, H. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013). (10.1038/srep01608) / Sci. Rep. by H Zeng (2013)
  72. Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2-WS2 heterojunction. Phys. Rev. B 87, 075451 (2013). (10.1103/PhysRevB.87.075451) / Phys. Rev. B by K Kośmider (2013)
  73. Song, Y. & Dery, H. Transport Theory of Monolayer Transition-Metal Dichalcogenides through symmetry. Phys. Rev. Lett. 111, 026601 (2013). (10.1103/PhysRevLett.111.026601) / Phys. Rev. Lett. by Y Song (2013)
  74. Kormányos, A. et al. Phys. Rev. B 88, 045416 (2013). (10.1103/PhysRevB.88.045416) / Phys. Rev. B by A Kormányos (2013)
  75. Feng, W. et al. Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: A first-principles study. Phys. Rev. B 86, 165108 (2012). (10.1103/PhysRevB.86.165108) / Phys. Rev. B by W Feng (2012)
  76. Liu, G-B., Shan, W-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). (10.1103/PhysRevB.88.085433) / Phys. Rev. B by G-B Liu (2013)
  77. Lu, H-Z., Yao, W., Xiao, D. & Shen, S-Q. Intervalley scattering and localization behaviors of spin–valley coupled Dirac fermions. Phys. Rev. Lett. 110, 016806 (2013). (10.1103/PhysRevLett.110.016806) / Phys. Rev. Lett. by H-Z Lu (2013)
  78. Gong, Z. et al. Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. Nature Commun. 4, 15 (2013). (10.1038/ncomms3053) / Nature Commun. by Z Gong (2013)
  79. Jones, A. M. et al. Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nature Phys. 10, 130–134 (2014). (10.1038/nphys2848) / Nature Phys. by AM Jones (2014)
  80. Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nature Phys. 9, 563–569 (2013). (10.1038/nphys2691) / Nature Phys. by H Yuan (2013)
  81. Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2 . Nano Lett. 13, 5627–5634 (2013). (10.1021/nl403270k) / Nano Lett. by W Zhao (2013)
  82. Van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013). (10.1038/nmat3633) / Nature Mater. by AM Van der Zande (2013)
  83. Kikkawa, J. M. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997). (10.1126/science.277.5330.1284) / Science by JM Kikkawa (1997)
  84. Gupta, J. A., Knobel, R., Samarth, N. & Awschalom, D. D. Ultrafast manipulation of electron spin coherence. Science 292, 2458–2461 (2001). (10.1126/science.1061169) / Science by JA Gupta (2001)
  85. Mak, Kin, Fai, McGill, K. L., Park, J. & McEuen, P. L. Observation of the valley Hall effect. Preprint at http://arxiv.org/abs/1403.5039 (2014).
  86. Li, X., Zhang, F. & Niu, Q. Unconventional quantum Hall effect and tunable spin Hall effect in Dirac materials: Application to an isolated MoS2 trilayer. Phys. Rev. Lett. 110, 066803 (2013). (10.1103/PhysRevLett.110.066803) / Phys. Rev. Lett. by X Li (2013)
  87. Popov, I., Seifert, G. & Tománek, D. Designing electrical contacts to MoS2 monolayers: A computational Study. Phys. Rev. Lett. 108, 156802 (2012). (10.1103/PhysRevLett.108.156802) / Phys. Rev. Lett. by I Popov (2012)
  88. Radisavljevic, B. & Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nature Mater. 12, 815–820 (2013). (10.1038/nmat3687) / Nature Mater. by B Radisavljevic (2013)
  89. Das, S., Chen, H-Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013). (10.1021/nl303583v) / Nano Lett. by S Das (2013)
  90. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012). (10.1021/nl301702r) / Nano Lett. by H Fang (2012)
  91. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2 . Nano Lett. 13, 4212–4216 (2013). (10.1021/nl401916s) / Nano Lett. by BWH Baugher (2013)
  92. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). (10.1038/nature12385) / Nature by AK Geim (2013)
  93. Klinovaja, J. & Loss, D. Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 88, 075404 (2013). (10.1103/PhysRevB.88.075404) / Phys. Rev. B by J Klinovaja (2013)
Dates
Type When
Created 11 years, 3 months ago (April 30, 2014, 6:54 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:56 p.m.)
Indexed 42 minutes ago (Aug. 21, 2025, 6:10 a.m.)
Issued 11 years, 3 months ago (April 30, 2014)
Published 11 years, 3 months ago (April 30, 2014)
Published Online 11 years, 3 months ago (April 30, 2014)
Published Print 11 years, 3 months ago (May 1, 2014)
Funders 0

None

@article{Xu_2014, title={Spin and pseudospins in layered transition metal dichalcogenides}, volume={10}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys2942}, DOI={10.1038/nphys2942}, number={5}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Xu, Xiaodong and Yao, Wang and Xiao, Di and Heinz, Tony F.}, year={2014}, month=apr, pages={343–350} }