Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Kinouchi, O., & Copelli, M. (2006). Optimal dynamical range of excitable networks at criticality. Nature Physics, 2(5), 348–351.

Authors 2
  1. Osame Kinouchi (first)
  2. Mauro Copelli (additional)
References 31 Referenced 664
  1. Stevens, S. S. Psychophysics: Introduction to its Perceptual, Neural and Social Prospects (Wiley, New York, 1975). / Psychophysics: Introduction to its Perceptual, Neural and Social Prospects by SS Stevens (1975)
  2. Wachowiak, M. & Cohen, L. B. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32, 723–735 (2001). (10.1016/S0896-6273(01)00506-2) / Neuron by M Wachowiak (2001)
  3. Angioy, A. M., Desogus, A., Barbarossa, I. T., Anderson, P. & Hansson, B. S. Extreme sensitivity in an olfactory system. Chem. Senses 28, 279–284 (2003). (10.1093/chemse/28.4.279) / Chem. Senses by AM Angioy (2003)
  4. Fried, H. U., Fuss, S. H. & Korsching, S. I. Selective imaging of presynaptic activity in the mouse olfactory bulb shows concentration and structure dependence of odor responses in identified glomeruli. Proc. Natl Acad. Sci. USA 99, 3222–3227 (2002). (10.1073/pnas.052658399) / Proc. Natl Acad. Sci. USA by HU Fried (2002)
  5. Cleland, T. A. & Linster, C. Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Comput. 11, 1673–1690 (1999). (10.1162/089976699300016188) / Neural Comput. by TA Cleland (1999)
  6. Copelli, M., Roque, A. C., Oliveira, R. F. & Kinouchi, O. Physics of psychophysics: Stevens and Weber-Fechner laws are transfer functions of excitable media. Phys. Rev. E 65, 060901 (2002). (10.1103/PhysRevE.65.060901) / Phys. Rev. E by M Copelli (2002)
  7. Copelli, M. & Kinouchi, O. Intensity coding in two-dimensional excitable neural networks. Physica A 349, 431–442 (2005). (10.1016/j.physa.2004.10.043) / Physica A by M Copelli (2005)
  8. Copelli, M., Oliveira, R. F., Roque, A. C. & Kinouchi, O. Signal compression in the sensory periphery. Neurocomputing 65–66, 691–696 (2005). (10.1016/j.neucom.2004.10.099) / Neurocomputing by M Copelli (2005)
  9. Reiser, J. & Matthews, H. Response properties of isolated mouse olfactory receptor cells. J. Physiol. 530, 113–122 (2001). (10.1111/j.1469-7793.2001.0113m.x) / J. Physiol. by J Reiser (2001)
  10. Tomaru, A. & Kurahashi, T. Mechanisms determining the dynamic range of the bullfrog olfactory receptor cell. J. Neurophysiol. 93, 1880–1888 (2005). (10.1152/jn.00303.2004) / J. Neurophysiol. by A Tomaru (2005)
  11. Chater, N. & Brown, G. D. Scale-invariance as a unifying psychological principle. Cognition 69, B17–B24 (1999). (10.1016/S0010-0277(98)00066-3) / Cognition by N Chater (1999)
  12. Furtado, L. S. & Copelli, M. Response of electrically coupled spiking neurons: a cellular automaton approach. Phys. Rev. E 73, 011907 (2006). (10.1103/PhysRevE.73.011907) / Phys. Rev. E by LS Furtado (2006)
  13. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003). (10.1523/JNEUROSCI.23-35-11167.2003) / J. Neurosci. by JM Beggs (2003)
  14. Haldeman, C. & Beggs, J. M. Critical branching captures activity in living neural networks and maximizes the number of metastable states. Phys. Rev. Lett. 94, 058101 (2005). (10.1103/PhysRevLett.94.058101) / Phys. Rev. Lett. by C Haldeman (2005)
  15. Langton, C. G. Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42, 12–37 (1990). (10.1016/0167-2789(90)90064-V) / Physica D by CG Langton (1990)
  16. Bak, P. How Nature Works: The Science of Self-Organized Criticality (Oxford Univ. Press, New York, 1997). / How Nature Works: The Science of Self-Organized Criticality by P Bak (1997)
  17. Chialvo, D. R. Critical brain networks. Physica A 340, 756–765 (2004). (10.1016/j.physa.2004.05.064) / Physica A by DR Chialvo (2004)
  18. Kosaka, T., Deans, M. R., Paul, D. L. & Kosaka, K. Neuronal gap junctions in the mouse main olfactory bulb: morphological analyses on transgenic mice. Neuroscience 134, 757–769 (2005). (10.1016/j.neuroscience.2005.04.057) / Neuroscience by T Kosaka (2005)
  19. Migliore, M., Hines, M. L. & Shepherd, G. M. The role of distal dendritic gap junctions in synchronization of mitral cell axonal output. J. Comput. Neurosci. 18, 151–161 (2005). (10.1007/s10827-005-6556-1) / J. Comput. Neurosci. by M Migliore (2005)
  20. Christie, J. M. et al. Connexin36 mediates spike synchrony in olfactory bulb glomeruli. Neuron 46, 761–772 (2005). (10.1016/j.neuron.2005.04.030) / Neuron by JM Christie (2005)
  21. Marro, J. & Dickman, R. Nonequilibrium Phase Transitions in Lattice Models (Cambridge Univ. Press, Cambridge, 1999). (10.1017/CBO9780511524288) / Nonequilibrium Phase Transitions in Lattice Models by J Marro (1999)
  22. Laurent, G. Olfactory network dynamics and the coding of multidimensional signals. Nature Rev. Neurosci. 3, 884–895 (2002). (10.1038/nrn964) / Nature Rev. Neurosci. by G Laurent (2002)
  23. Lewis, T. J. & Rinzel, J. Topological target patterns and population oscillations in a network with random gap junctional coupling. Neurocomputing 38–40, 763–768 (2001). (10.1016/S0925-2312(01)00438-6) / Neurocomputing by TJ Lewis (2001)
  24. Lewis, T. J. & Rinzel, J. Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions. Network Comput. Neural Syst. 11, 299–320 (2000). (10.1088/0954-898X_11_4_304) / Network Comput. Neural Syst. by TJ Lewis (2000)
  25. Schubert, T. et al. Connexin36 mediates gap junctional coupling of alpha-ganglion cells in mouse retina. J. Comp. Neurol. 485, 191–201 (2005). (10.1002/cne.20510) / J. Comp. Neurol. by T Schubert (2005)
  26. Hidaka, S., Akahori, Y. & Kurosawa, Y. Cellular/molecular dendrodendritic electrical synapses between mammalian retinal ganglion cells. J. Neurosci. 24, 10553–10567 (2005). (10.1523/JNEUROSCI.3319-04.2004) / J. Neurosci. by S Hidaka (2005)
  27. Vogt, A., Hormuzdi, S. G. & Monyer, H. Pannexin1 and Pannexin2 expression in the developing and mature rat brain. Brain Res. Mol. Brain Res. 141, 113–120 (2005). (10.1016/j.molbrainres.2005.08.002) / Brain Res. Mol. Brain Res. by A Vogt (2005)
  28. Deans, M. R., Volgyi, B., Goodenough, D. A., Bloomfield, S. A. & Paul, D. L. Connexin36 is essential for transmission of rod-mediated visual signals in the mammalian retina. Neuron 36, 703–712 (2002). (10.1016/S0896-6273(02)01046-2) / Neuron by MR Deans (2002)
  29. Zhang, C. & Restrepo, D. Expression of connexin 45 in the olfactory system. Brain Res. 929, 37–47 (2002). (10.1016/S0006-8993(01)03372-8) / Brain Res. by C Zhang (2002)
  30. Camalet, S., Duke, T., Jülicher, F. & Prost, J. Auditory sensitivity provided by self-tuned critical oscillations of hair cells. Proc. Natl Acad. Sci. USA 97, 3183–3188 (2000). (10.1073/pnas.97.7.3183) / Proc. Natl Acad. Sci. USA by S Camalet (2000)
  31. Sohl, G., Maxeiner, S. & Willecke, K. Expression and functions of neuronal gap junctions. Nature Rev. Neurosci. 6, 191–200 (2005). (10.1038/nrn1627) / Nature Rev. Neurosci. by G Sohl (2005)
Dates
Type When
Created 19 years, 3 months ago (April 23, 2006, 1:31 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:55 p.m.)
Indexed 9 hours, 27 minutes ago (Aug. 23, 2025, 1:02 a.m.)
Issued 19 years, 4 months ago (April 23, 2006)
Published 19 years, 4 months ago (April 23, 2006)
Published Online 19 years, 4 months ago (April 23, 2006)
Published Print 19 years, 3 months ago (May 1, 2006)
Funders 0

None

@article{Kinouchi_2006, title={Optimal dynamical range of excitable networks at criticality}, volume={2}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys289}, DOI={10.1038/nphys289}, number={5}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Kinouchi, Osame and Copelli, Mauro}, year={2006}, month=apr, pages={348–351} }