Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Stevenson, J. D., Schmalian, J., & Wolynes, P. G. (2006). The shapes of cooperatively rearranging regions in glass-forming liquids. Nature Physics, 2(4), 268–274.

Authors 3
  1. Jacob D. Stevenson (first)
  2. Jörg Schmalian (additional)
  3. Peter G. Wolynes (additional)
References 50 Referenced 260
  1. Singh, Y., Stoessel, J. P. & Wolynes, P. G. Hard-sphere glass and the density-functional theory of aperiodic crystals. Phys. Rev. Lett. 54, 1059–1062 (1985). (10.1103/PhysRevLett.54.1059) / Phys. Rev. Lett. by Y Singh (1985)
  2. Kirkpatrick, T. R. & Wolynes, P. G. Connections between some kinetic and equilibrium theories of the glass transition. Phys. Rev. A 35, 3072–3080 (1987). (10.1103/PhysRevA.35.3072) / Phys. Rev. A by TR Kirkpatrick (1987)
  3. Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field potts and structural glasses. Phys. Rev. B 36, 8552–8564 (1987). (10.1103/PhysRevB.36.8552) / Phys. Rev. B by TR Kirkpatrick (1987)
  4. Kirkpatrick, T. R. & Thirumalai, D. Dynamics of the structural glass-transition and the p-spin-interaction spin-glass model. Phys. Rev. Lett. 58, 2091–2094 (1987). (10.1103/PhysRevLett.58.2091) / Phys. Rev. Lett. by TR Kirkpatrick (1987)
  5. Mezard, M. & Parisi, G. Thermodynamics of glasses: A first principles computation. Phys. Rev. Lett. 82, 747–750 (1999). (10.1103/PhysRevLett.82.747) / Phys. Rev. Lett. by M Mezard (1999)
  6. Franz, S. & Toninelli, F. L. A field-theoretical approach to the spin glass transition: models with long but finite interaction range. J. Stat. Mech. Theor. Exp. P01008 (2005). (10.1088/1742-5468/2005/01/P01008)
  7. Franz, S. Metastable states, relaxation times and free-energy barriers in finite dimensional glassy systems. Europhys. Lett. 73, 492–498 (2005). (10.1209/epl/i2005-10420-8) / Europhys. Lett. by S Franz (2005)
  8. Bouchaud, J. P. & Biroli, G. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347–7354 (2004). (10.1063/1.1796231) / J. Chem. Phys. by JP Bouchaud (2004)
  9. Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989). (10.1103/PhysRevA.40.1045) / Phys. Rev. A by TR Kirkpatrick (1989)
  10. Xia, X. Y. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. 97, 2990–2994 (2000). (10.1073/pnas.97.7.2990) / Proc. Natl Acad. Sci. by XY Xia (2000)
  11. Xia, X. Y. & Wolynes, P. G. Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids. Phys. Rev. Lett. 86, 5526–5529 (2001). (10.1103/PhysRevLett.86.5526) / Phys. Rev. Lett. by XY Xia (2001)
  12. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Ann. Rev. Phys. Chem. 51, 99–128 (2000). (10.1146/annurev.physchem.51.1.99) / Ann. Rev. Phys. Chem. by MD Ediger (2000)
  13. Russell, E. V. & Israeloff, N. E. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000). (10.1038/35047037) / Nature by EV Russell (2000)
  14. Deschenes, L. A. & Bout, D. A. V. Single-molecule studies of heterogeneous dynamics in polymer melts near the glass transition. Science 292, 255–258 (2001). (10.1126/science.1056430) / Science by LA Deschenes (2001)
  15. Sillescu, H. Heterogeneity at the glass transition: a review. J. Non-Cryst. Solids 243, 81–108 (1999). (10.1016/S0022-3093(98)00831-X) / J. Non-Cryst. Solids by H Sillescu (1999)
  16. Richert, R. Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys. Condens. Matter 24, R703–R738 (2002). (10.1088/0953-8984/14/23/201) / J. Phys. Condens. Matter by R Richert (2002)
  17. Kob, W., Donati, C., Plimpton, S. J., Poole, P. H. & Glotzer, S. C. Dynamical heterogeneities in a supercooled Lennard-Jones liquid. Phys. Rev. Lett. 79, 2827–2830 (1997). (10.1103/PhysRevLett.79.2827) / Phys. Rev. Lett. by W Kob (1997)
  18. Gebremichael, Y., Vogel, M. & Glotzer, S. C. Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid. J. Chem. Phys. 120, 4415–4427 (2004). (10.1063/1.1644539) / J. Chem. Phys. by Y Gebremichael (2004)
  19. Donati, C. et al. Stringlike cooperative motion in a supercooled liquid. Phys. Rev. Lett. 80, 2338–2341 (1998). (10.1103/PhysRevLett.80.2338) / Phys. Rev. Lett. by C Donati (1998)
  20. Donati, C., Glotzer, S. C., Poole, P. H., Kob, W. & Plimpton, S. J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid. Phys. Rev. E 60, 3107–3119 (1999). (10.1103/PhysRevE.60.3107) / Phys. Rev. E by C Donati (1999)
  21. Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2000). (10.1126/science.287.5453.627) / Science by ER Weeks (2000)
  22. Reinsberg, S. A., Heuer, A., Doliwa, B., Zimmermann, H. & Spiess, H. W. Comparative study of the nmr length scale of dynamic heterogeneities of three different glass formers. J. Non-Cryst. Solids 307–310, 208–214 (2002). (10.1016/S0022-3093(02)01460-6) / J. Non-Cryst. Solids by SA Reinsberg (2002)
  23. Biroli, G. & Bouchaud, J. P. Diverging length scale and upper critical dimension in the mode-coupling theory of the glass transition. Europhys. Lett. 67, 21–27 (2004). (10.1209/epl/i2004-10044-6) / Europhys. Lett. by G Biroli (2004)
  24. Unger, C. & Klein, W. Nucleation theory near the classical spinodal. Phys. Rev. B 29, 2698–2708 (1984). (10.1103/PhysRevB.29.2698) / Phys. Rev. B by C Unger (1984)
  25. Johnson, G., Mel’cuk, A. I., Gould, H., Klein, W. & Mountain, R. D. Molecular-dynamics study of long-lived structures in a fragile glass-forming liquid. Phys. Rev. E 57, 5707–5718 (1998). (10.1103/PhysRevE.57.5707) / Phys. Rev. E by G Johnson (1998)
  26. Stoessel, J. P. & Wolynes, P. G. Linear excitations and the stability of the hard-sphere glass. J. Chem. Phys. 80, 4502–4512 (1984). (10.1063/1.447235) / J. Chem. Phys. by JP Stoessel (1984)
  27. Dasgupta, C. & Valls, O. T. Free energy landscape of a dense hard-sphere system. Phys. Rev. E 59, 3123–3134 (1999). (10.1103/PhysRevE.59.3123) / Phys. Rev. E by C Dasgupta (1999)
  28. Fuchizaki, K. & Kawasaki, K. Dynamical density functional theory for glassy behaviour. J. Phys. Condens. Matter 14, 12203–12222 (2002). (10.1088/0953-8984/14/46/322) / J. Phys. Condens. Matter by K Fuchizaki (2002)
  29. Stillinger, F. H. & Weber, T. A. Dynamics of structural transitions in liquids. Phys. Rev. A 28, 2408–2416 (1983). (10.1103/PhysRevA.28.2408) / Phys. Rev. A by FH Stillinger (1983)
  30. Hall, R. W. & Wolynes, P. G. Microscopic theory of network glasses. Phys. Rev. Lett. 90, 085505 (2003). (10.1103/PhysRevLett.90.085505) / Phys. Rev. Lett. by RW Hall (2003)
  31. Villain, J. Equilibrium critical properties of random field systems — new conjectures. J. Physique 46, 1843–1852 (1985). (10.1051/jphys:0198500460110184300) / J. Physique by J Villain (1985)
  32. Dzero, M., Schmalian, J. & Wolynes, P. G. Activated events in glasses: The structure of entropic droplets. Phys. Rev. B 72, 100201 (2005). (10.1103/PhysRevB.72.100201) / Phys. Rev. B by M Dzero (2005)
  33. Stevenson, J. D. & Wolynes, P. G. Thermodynamic-kinetic correlations in supercooled liquids: A critical survey of experimental data and predictions of the random first-order transition theory of glasses. J. Phys. Chem. B 109, 15093–15097 (2005). (10.1021/jp052279h) / J. Phys. Chem. B by JD Stevenson (2005)
  34. Lubchenko, V. & Wolynes, P. G. Barrier softening near the onset of nonactivated transport in supercooled liquids: Implications for establishing detailed connection between thermodynamic and kinetic anomalies in supercooled liquids. J. Chem. Phys. 119, 9088–9105 (2003). (10.1063/1.1614180) / J. Chem. Phys. by V Lubchenko (2003)
  35. Stauffer, D. Monte-carlo study of density profile, radius, and perimeter for percolation clusters and lattice animals. Phys. Rev. Lett. 41, 1333–1336 (1978). (10.1103/PhysRevLett.41.1333) / Phys. Rev. Lett. by D Stauffer (1978)
  36. Leath, P. L. Cluster size and boundary distribution near percolation threshold. Phys. Rev. B 14, 5046–5055 (1976). (10.1103/PhysRevB.14.5046) / Phys. Rev. B by PL Leath (1976)
  37. Yang, C. N. & Lee, T. D. Statistical theory of equations of state and phase transitions. I Theory of condensation. Phys. Rev. 87, 404–409 (1952). (10.1103/PhysRev.87.404) / Phys. Rev. by CN Yang (1952)
  38. Sykes, M. F., Gaunt, D. S. & Glen, M. Percolation processes in three dimensions. J. Phys. A 9, 1705–1712 (1976). (10.1088/0305-4470/9/10/021) / J. Phys. A by MF Sykes (1976)
  39. Cao, Q. Z. & Wong, P. O. External surface of site percolation clusters in three dimensions. J. Phys. A 25, L69–L74 (1992). (10.1088/0305-4470/25/2/007) / J. Phys. A by QZ Cao (1992)
  40. Stickel, F., Fischer, E. W. & Richert, R. Dynamics of glass-forming liquids. 2. detailed comparison of dielectric relaxation, dc-conductivity, and viscosity data. J. Chem. Phys. 104, 2043–2055 (1996). (10.1063/1.470961) / J. Chem. Phys. by F Stickel (1996)
  41. Novikov, V. N. & Sokolov, A. P. Universality of the dynamic crossover in glass-forming liquids: A ‘magic’ relaxation time. Phys. Rev. E 67, 031507 (2003). (10.1103/PhysRevE.67.031507) / Phys. Rev. E by VN Novikov (2003)
  42. Chui, S. T. & Weeks, J. D. Phase-transition in 2-dimensional Coulomb gas, and interfacial roughening transition. Phys. Rev. B 14, 4976–4982 (1976). (10.1103/PhysRevB.14.4978) / Phys. Rev. B by ST Chui (1976)
  43. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, 1953). / Principles of Polymer Chemistry by PJ Flory (1953)
  44. Hinze, G., Brace, D. D., Gottke, S. D. & Fayer, M. D. A detailed test of mode-coupling theory on all time scales: Time domain studies of structural relaxation in a supercooled liquid. J. Chem. Phys. 113, 3723–3733 (2000). (10.1063/1.1287595) / J. Chem. Phys. by G Hinze (2000)
  45. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1943). (10.1063/1.1696442) / J. Chem. Phys. by G Adam (1943)
  46. Berthier, L. et al. Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797–1800 (2005). (10.1126/science.1120714) / Science by L Berthier (2005)
  47. Tracht, U. et al. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2727–2730 (1998). (10.1103/PhysRevLett.81.2727) / Phys. Rev. Lett. by U Tracht (1998)
  48. Böhmer, R. & Angell, C. A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Phys. Rev. B 45, 10091–10094 (1992). (10.1103/PhysRevB.45.10091) / Phys. Rev. B by R Böhmer (1992)
  49. Laughlin, W. T. & Uhlmann, D. R. Viscous flow in simple organic liquids. J. Phys. Chem. 76, 2317–2325 (1972). (10.1021/j100660a023) / J. Phys. Chem. by WT Laughlin (1972)
  50. Cukierman, M., Lane, J. W. & Uhlmann, D. R. High-temperature flow behavior of glass-forming liquids: A free-volume interpretation. J. Chem. Phys. 59, 3639–3644 (1973). (10.1063/1.1680531) / J. Chem. Phys. by M Cukierman (1973)
Dates
Type When
Created 19 years, 4 months ago (March 27, 2006, 10:30 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:53 p.m.)
Indexed 2 weeks, 5 days ago (Aug. 7, 2025, 4:37 p.m.)
Issued 19 years, 5 months ago (March 26, 2006)
Published 19 years, 5 months ago (March 26, 2006)
Published Online 19 years, 5 months ago (March 26, 2006)
Published Print 19 years, 4 months ago (April 1, 2006)
Funders 0

None

@article{Stevenson_2006, title={The shapes of cooperatively rearranging regions in glass-forming liquids}, volume={2}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys261}, DOI={10.1038/nphys261}, number={4}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Stevenson, Jacob D. and Schmalian, Jörg and Wolynes, Peter G.}, year={2006}, month=mar, pages={268–274} }