Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Taychatanapat, T., Watanabe, K., Taniguchi, T., & Jarillo-Herrero, P. (2013). Electrically tunable transverse magnetic focusing in graphene. Nature Physics, 9(4), 225–229.

Authors 4
  1. Thiti Taychatanapat (first)
  2. Kenji Watanabe (additional)
  3. Takashi Taniguchi (additional)
  4. Pablo Jarillo-Herrero (additional)
References 31 Referenced 164
  1. Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929). (10.1007/BF01339455) / Z. Phys. by F Bloch (1929)
  2. Tsoi, V. S. Focusing of electrons in a metal by a transverse magnetic field. JETP Lett. 19, 70–71 (1974). / JETP Lett. by VS Tsoi (1974)
  3. Tsoi, V. S., Bass, J. & Wyder, P. Studying conduction-electron/interface interactions using transverse electron focusing. Rev. Mod. Phys. 71, 1641–1693 (1999). (10.1103/RevModPhys.71.1641) / Rev. Mod. Phys. by VS Tsoi (1999)
  4. Van Houten, H. et al. Coherent electron focusing with quantum point contacts in a two-dimensional electron gas. Phys. Rev. B 39, 8556–8575 (1989). (10.1103/PhysRevB.39.8556) / Phys. Rev. B by H Van Houten (1989)
  5. Rokhinson, L. P., Larkina, V., Lyanda-Geller, Y. B., Pfeiffer, L. N. & West, K. W. Spin separation in cyclotron motion. Phys. Rev. Lett. 93, 146601 (2004). (10.1103/PhysRevLett.93.146601) / Phys. Rev. Lett. by LP Rokhinson (2004)
  6. Goldman, V. J., Su, B. & Jain, J. K. Detection of composite fermions by magnetic focusing. Phys. Rev. Lett. 72, 2065–2068 (1994). (10.1103/PhysRevLett.72.2065) / Phys. Rev. Lett. by VJ Goldman (1994)
  7. Smet, J. H. et al. Magnetic focusing of composite fermions through arrays of cavities. Phys. Rev. Lett. 77, 2272–2275 (1996). (10.1103/PhysRevLett.77.2272) / Phys. Rev. Lett. by JH Smet (1996)
  8. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nature Nanotech. by CR Dean (2010)
  9. Taychatanapat, T., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene. Nature Phys. 7, 621–625 (2011). (10.1038/nphys2008) / Nature Phys. by T Taychatanapat (2011)
  10. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011). (10.1021/nl200758b) / Nano Lett. by AS Mayorov (2011)
  11. Beenakker, C. W. J., van Houten, H. & van Wees, B. J. Mode interference effect in coherent electron focusing. Europhys. Lett. 4, 359–364 (1988). (10.1209/0295-5075/7/4/013) / Europhys. Lett. by CWJ Beenakker (1988)
  12. Aidala, K. E. et al. Imaging magnetic focusing of coherent electron waves. Nature Phys. 3, 464–468 (2007). (10.1038/nphys628) / Nature Phys. by KE Aidala (2007)
  13. Rakyta, P., Kormányos, A., Cserti, J. & Koskinen, P. Exploring the graphene edges with coherent electron focusing. Phys. Rev. B 81, 115411 (2010). (10.1103/PhysRevB.81.115411) / Phys. Rev. B by P Rakyta (2010)
  14. Silvestrov, P. G. & Efetov, K. B. Charge accumulation at the boundaries of a graphene strip induced by a gate voltage: Electrostatic approach. Phys. Rev. B 77, 155436 (2008). (10.1103/PhysRevB.77.155436) / Phys. Rev. B by PG Silvestrov (2008)
  15. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006). (10.1103/PhysRevLett.96.086805) / Phys. Rev. Lett. by E McCann (2006)
  16. Lu, C. L., Chang, C. P., Huang, Y. C., Chen, R. B. & Lin, M. L. Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys. Rev. B 73, 144427 (2006). (10.1103/PhysRevB.73.144427) / Phys. Rev. B by CL Lu (2006)
  17. Guinea, F., Neto, A. H. C. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006). (10.1103/PhysRevB.73.245426) / Phys. Rev. B by F Guinea (2006)
  18. Latil, S. & Henrard, L. Charge carriers in few-layer graphene films. Phys. Rev. Lett. 97, 036803 (2006). (10.1103/PhysRevLett.97.036803) / Phys. Rev. Lett. by S Latil (2006)
  19. Partoens, B. & Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006). (10.1103/PhysRevB.74.075404) / Phys. Rev. B by B Partoens (2006)
  20. Koshino, M. & McCann, E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene. Phys. Rev. B 79, 125443 (2009). (10.1103/PhysRevB.79.125443) / Phys. Rev. B by M Koshino (2009)
  21. Cheianov, V. V., Falk´o, V. & Altshuler, B. L. The focusing of electron flow and a veselago lens in graphene p–n junctions. Science 315, 1252–1255 (2007). (10.1126/science.1138020) / Science by VV Cheianov (2007)
  22. Hwang, E. H. & Das Sarma, S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77, 115449 (2008). (10.1103/PhysRevB.77.115449) / Phys. Rev. B by EH Hwang (2008)
  23. Heremans, J., Fuller, B. K., Thrush, C. M. & Partin, D. L. Temperature dependence of electron focusing in In1−xGax As/InP heterojunctions. Phys. Rev. B 52, 5767–5772 (1995). (10.1103/PhysRevB.52.5767) / Phys. Rev. B by J Heremans (1995)
  24. Schiefele, J., Sols, F. & Guinea, F. Temperature dependence of the conductivity of graphene on boron nitride. Phys. Rev. B 85, 195420 (2012). (10.1103/PhysRevB.85.195420) / Phys. Rev. B by J Schiefele (2012)
  25. Liu, Z. et al. Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032–2037 (2011). (10.1021/nl200464j) / Nano Lett. by Z Liu (2011)
  26. Mayorov, A. S. et al. Interaction-drive spectrum reconstruction in bilayer graphene. Science 333, 860–863 (2011). (10.1126/science.1208683) / Science by AS Mayorov (2011)
  27. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010). (10.1126/science.1194988) / Science by RT Weitz (2010)
  28. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron–electron interactions in graphene: Current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012). (10.1103/RevModPhys.84.1067) / Rev. Mod. Phys. by VN Kotov (2012)
  29. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010). (10.1038/nphys1420) / Nature Phys. by F Guinea (2010)
  30. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010). (10.1126/science.1191700) / Science by N Levy (2010)
  31. Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306–310 (2012). (10.1038/nature10941) / Nature by KK Gomes (2012)
Dates
Type When
Created 12 years, 6 months ago (Feb. 18, 2013, 9:30 a.m.)
Deposited 4 months, 2 weeks ago (April 11, 2025, 6:18 a.m.)
Indexed 5 days, 3 hours ago (Aug. 26, 2025, 2:57 a.m.)
Issued 12 years, 6 months ago (Feb. 17, 2013)
Published 12 years, 6 months ago (Feb. 17, 2013)
Published Online 12 years, 6 months ago (Feb. 17, 2013)
Published Print 12 years, 4 months ago (April 1, 2013)
Funders 0

None

@article{Taychatanapat_2013, title={Electrically tunable transverse magnetic focusing in graphene}, volume={9}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys2549}, DOI={10.1038/nphys2549}, number={4}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Taychatanapat, Thiti and Watanabe, Kenji and Taniguchi, Takashi and Jarillo-Herrero, Pablo}, year={2013}, month=feb, pages={225–229} }