Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Bordács, S., Kézsmárki, I., Szaller, D., Demkó, L., Kida, N., Murakawa, H., Onose, Y., Shimano, R., Rõõm, T., Nagel, U., Miyahara, S., Furukawa, N., & Tokura, Y. (2012). Chirality of matter shows up via spin excitations. Nature Physics, 8(10), 734–738.

Authors 13
  1. S. Bordács (first)
  2. I. Kézsmárki (additional)
  3. D. Szaller (additional)
  4. L. Demkó (additional)
  5. N. Kida (additional)
  6. H. Murakawa (additional)
  7. Y. Onose (additional)
  8. R. Shimano (additional)
  9. T. Rõõm (additional)
  10. U. Nagel (additional)
  11. S. Miyahara (additional)
  12. N. Furukawa (additional)
  13. Y. Tokura (additional)
References 31 Referenced 140
  1. Kelvin, L. Baltimore Lectures on the Molecular Dynamics and the Wave Theory of Light (C.J. Clay & Sons, 1904). / Baltimore Lectures on the Molecular Dynamics and the Wave Theory of Light by L Kelvin (1904)
  2. Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004). (10.1017/CBO9780511535468) / Molecular Light Scattering and Optical Activity by LD Barron (2004)
  3. Berova, N., Nakanishi, K. & Woody, R. W. Circular Dichroism: Principles and Applications 2nd edn (Wiley-VCH, 2000). / Circular Dichroism: Principles and Applications by N Berova (2000)
  4. Micali, N. et al. Selection of supramolecular chirality by application of rotational and magnetic forces. Nature Chem. 4, 201–207 (2012). (10.1038/nchem.1264) / Nature Chem. by N Micali (2012)
  5. Hsu, E. C. & Holzwarth, G. Vibrational circular dichroism observed in crystalline α-NiSO·6HO and α-ZnSeO·6HO between 1900 and 5000 cm−1. J. Chem. Phys. 59, 4678–4685 (1973). (10.1063/1.1680680) / J. Chem. Phys. by EC Hsu (1973)
  6. Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005). (10.1103/PhysRevLett.95.227401) / Phys. Rev. Lett. by M Kuwata-Gonokami (2005)
  7. Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech. 5, 783–787 (2010). (10.1038/nnano.2010.209) / Nature Nanotech. by E Hendry (2010)
  8. Baranova, N. B. & Zeldovich, B. Ya. Theory of a new linear magnetorefractive effect in liquids. Mol. Phys. 38, 1085–1098 (1979). (10.1080/00268977900102261) / Mol. Phys. by NB Baranova (1979)
  9. Barron, L. D. & Vrbancich, J. Magneto-chiral birefringence and dichroism. Mol. Phys. 51, 715–730 (1984). (10.1080/00268978400100481) / Mol. Phys. by LD Barron (1984)
  10. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997). (10.1038/37323) / Nature by GLJA Rikken (1997)
  11. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005). (10.1088/0022-3727/38/8/R01) / J. Phys. D by M Fiebig (2005)
  12. Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005). (10.1126/science.1113357) / Science by NA Spaldin (2005)
  13. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols 1, 2876–2890 (2007). (10.1038/nprot.2006.202) / Nature Protocols by NJ Greenfield (2007)
  14. Stephens, P. J., Devlin, F. J. & Pan, J-J. The determination of the absolute configurations of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20, 643–663 (2008). (10.1002/chir.20477) / Chirality by PJ Stephens (2008)
  15. Alagna, L. et al. X-ray natural circular dichroism. Phys. Rev. Lett. 80, 4799–4802 (1998). (10.1103/PhysRevLett.80.4799) / Phys. Rev. Lett. by L Alagna (1998)
  16. Train, C. et al. Strong magneto-chiral dichroism in enantiopure chiral ferromagnets. Nature Mater. 7, 729–734 (2008). (10.1038/nmat2256) / Nature Mater. by C Train (2008)
  17. Rikken, G. L. J. A. & Raupach, E. Pure and cascaded magnetochiral anisotropy in optical absorption. Phys. Rev. E 58, 5081–5084 (1998). (10.1103/PhysRevE.58.5081) / Phys. Rev. E by GLJA Rikken (1998)
  18. Koerdt, C., Duchs, G. & Rikken, G. L. J. A. Magnetochiral anisotropy in Bragg scattering. Phys. Rev. Lett. 91, 073902 (2003). (10.1103/PhysRevLett.91.073902) / Phys. Rev. Lett. by C Koerdt (2003)
  19. Saito, M., Ishikawa, K., Taniguchi, K. & Arima, T. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4 . Phys. Rev. Lett. 101, 117402 (2008). (10.1103/PhysRevLett.101.117402) / Phys. Rev. Lett. by M Saito (2008)
  20. Van Aken, B. B., Rivera, J-P., Schmid, H. & Fiebig, M. Observation of ferrotoroidic domains. Nature 449, 702–705 (2007). (10.1038/nature06139) / Nature by BB Van Aken (2007)
  21. Pimenov, A. et al. Possible evidence for electromagnons in multiferroic manganites. Nature Phys. 2, 97–100 (2006). (10.1038/nphys212) / Nature Phys. by A Pimenov (2006)
  22. Kida, N. et al. Terahertz time-domain spectroscopy of electromagnons in multiferroic perovskite manganites. J. Opt. Soc. Am. B 26, A35–A51 (2009). (10.1364/JOSAB.26.000A35) / J. Opt. Soc. Am. B by N Kida (2009)
  23. Sushkov, A. B., Aguilar, R. V., Park, S., Cheong, S-W. & Drew, H. D. Electromagnons in multiferroic YMn2O5 and TbMn2O5 . Phys. Rev. Lett. 98, 027202 (2007). (10.1103/PhysRevLett.98.027202) / Phys. Rev. Lett. by AB Sushkov (2007)
  24. Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3 . Nature Mater. 9, 975–979 (2010). (10.1038/nmat2899) / Nature Mater. by P Rovillain (2010)
  25. Kézsmárki, I. et al. Enhanced directional dichroism of terahertz light in resonance with magnetic excitations of the multiferroic Ba2CoGe2O7 oxide compound. Phys. Rev. Lett. 106, 057403 (2011). (10.1103/PhysRevLett.106.057403) / Phys. Rev. Lett. by I Kézsmárki (2011)
  26. Zheludev, A. et al. Spin waves and the origin of commensurate magnetism in Ba2CoGe2O7 . Phys. Rev. B 68, 024428 (2003). (10.1103/PhysRevB.68.024428) / Phys. Rev. B by A Zheludev (2003)
  27. Murakawa, H., Onose, Y., Miyahara, S., Furukawa, N. & Tokura, Y. Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7 . Phys. Rev. Lett. 103, 137202 (2010). (10.1103/PhysRevLett.105.137202) / Phys. Rev. Lett. by H Murakawa (2010)
  28. Perez-Mato, J. M. & Riberio, J. L. On the symmetry and the signature of atomic mechanisms in multiferroics: the example of Ba2CoGe2O7 . Acta Crystallogr. A 67, 264–268 (2011). (10.1107/S0108767311010282) / Acta Crystallogr. A by JM Perez-Mato (2011)
  29. Miyahara, S. & Furukawa, N. Theory of magnetoelectric resonance in two-dimensional S = 3/2 antiferromagnet Ba2CoGe2O7 via spin-dependent metal-ligand hybridization mechanism. J. Phys. Soc. Jpn 80, 073708 (2011). (10.1143/JPSJ.80.073708) / J. Phys. Soc. Jpn by S Miyahara (2011)
  30. Tonouchi, M. Cutting-edge terahertz technology. Nature Photon. 1, 97–105 (2007). (10.1038/nphoton.2007.3) / Nature Photon. by M Tonouchi (2007)
  31. Nuss, M. C. & Orenstein, J. in Millimeter and Submillimeter Wave Spectroscopy of Solids (ed. Grüner, G.) (Springer, 1998). / Millimeter and Submillimeter Wave Spectroscopy of Solids by MC Nuss (1998)
Dates
Type When
Created 13 years ago (Aug. 27, 2012, 5:41 a.m.)
Deposited 4 months, 3 weeks ago (April 11, 2025, 7:20 a.m.)
Indexed 2 days, 17 hours ago (Aug. 30, 2025, 12:56 p.m.)
Issued 13 years ago (Aug. 26, 2012)
Published 13 years ago (Aug. 26, 2012)
Published Online 13 years ago (Aug. 26, 2012)
Published Print 12 years, 11 months ago (Oct. 1, 2012)
Funders 0

None

@article{Bord_cs_2012, title={Chirality of matter shows up via spin excitations}, volume={8}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys2387}, DOI={10.1038/nphys2387}, number={10}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Bordács, S. and Kézsmárki, I. and Szaller, D. and Demkó, L. and Kida, N. and Murakawa, H. and Onose, Y. and Shimano, R. and Rõõm, T. and Nagel, U. and Miyahara, S. and Furukawa, N. and Tokura, Y.}, year={2012}, month=aug, pages={734–738} }