Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Tao, C., Jiao, L., Yazyev, O. V., Chen, Y.-C., Feng, J., Zhang, X., Capaz, R. B., Tour, J. M., Zettl, A., Louie, S. G., Dai, H., & Crommie, M. F. (2011). Spatially resolving edge states of chiral graphene nanoribbons. Nature Physics, 7(8), 616–620.

Authors 12
  1. Chenggang Tao (first)
  2. Liying Jiao (additional)
  3. Oleg V. Yazyev (additional)
  4. Yen-Chia Chen (additional)
  5. Juanjuan Feng (additional)
  6. Xiaowei Zhang (additional)
  7. Rodrigo B. Capaz (additional)
  8. James M. Tour (additional)
  9. Alex Zettl (additional)
  10. Steven G. Louie (additional)
  11. Hongjie Dai (additional)
  12. Michael F. Crommie (additional)
References 27 Referenced 616
  1. Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006). (10.1103/PhysRevLett.97.216803) / Phys. Rev. Lett. by YW Son (2006)
  2. Ezawa, M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B 73, 045432 (2006). (10.1103/PhysRevB.73.045432) / Phys. Rev. B by M Ezawa (2006)
  3. Nakada, K., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54, 17954–17961 (1996). (10.1103/PhysRevB.54.17954) / Phys. Rev. B by K Nakada (1996)
  4. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008). (10.1103/PhysRevB.77.085423) / Phys. Rev. B by AR Akhmerov (2008)
  5. Wimmer, M., Akhmerov, A. R. & Guinea, F. Robustness of edge states in graphene quantum dots. Phys. Rev. B 82, 045409 (2010). (10.1103/PhysRevB.82.045409) / Phys. Rev. B by M Wimmer (2010)
  6. Fujita, M., Wakabayashi, K., Nakada, K. & Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn 65, 1920–1923 (1996). (10.1143/JPSJ.65.1920) / J. Phys. Soc. Jpn by M Fujita (1996)
  7. Son, Y. W., Cohen, M. L. & Louie, S. G. Half-metallic graphene nanoribbons. Nature 444, 347–349 (2006). (10.1038/nature05180) / Nature by YW Son (2006)
  8. Chen, Z. H., Lin, Y. M., Rooks, M. J. & Avouris, P. Graphene nano-ribbon electronics. Physica E 40, 228–232 (2007). (10.1016/j.physe.2007.06.020) / Physica E by ZH Chen (2007)
  9. Han, M. Y., Ozyilmaz, B., Zhang, Y. B. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007). (10.1103/PhysRevLett.98.206805) / Phys. Rev. Lett. by MY Han (2007)
  10. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W. & Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008). (10.1126/science.1150878) / Science by XL Li (2008)
  11. Jiao, L. Y., Wang, X. R., Diankov, G., Wang, H. L. & Dai, H. J. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010). (10.1038/nnano.2010.54) / Nature Nanotech. by LY Jiao (2010)
  12. Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–875 (2009). (10.1038/nature07872) / Nature by DV Kosynkin (2009)
  13. Atamny, F., Fassler, T. F., Baiker, A. & Schlogl, R. On the imaging mechanism of monatomic steps in graphite. Appl. Phys. A 71, 441–447 (2000). (10.1007/s003390000570) / Appl. Phys. A by F Atamny (2000)
  14. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002). (10.1126/science.1078727) / Science by SM Bachilo (2002)
  15. Zhang, Y. B. et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nature Phys. 4, 627–630 (2008). (10.1038/nphys1022) / Nature Phys. by YB Zhang (2008)
  16. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 Tesla in graphene nanobubbles. Science 329, 544–547 (2010). (10.1126/science.1191700) / Science by N Levy (2010)
  17. Klusek, Z. et al. Observations of local electron states on the edges of the circular pits on hydrogen-etched graphite surface by scanning tunnelling spectroscopy. Appl. Surf. Sci. 161, 508–514 (2000). (10.1016/S0169-4332(00)00374-3) / Appl. Surf. Sci. by Z Klusek (2000)
  18. Kobayashi, Y., Fukui, K., Enoki, T., Kusakabe, K. & Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunnelling microscopy and spectroscopy. Phys. Rev. B 71, 193406 (2005). (10.1103/PhysRevB.71.193406) / Phys. Rev. B by Y Kobayashi (2005)
  19. Ritter, K. A. & Lyding, J. W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nature Mater. 8, 235–242 (2009). (10.1038/nmat2378) / Nature Mater. by KA Ritter (2009)
  20. Cai, J. M. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010). (10.1038/nature09211) / Nature by JM Cai (2010)
  21. Reich, S., Maultzsch, J., Thomsen, C. & Ordejon, P. Tight-binding description of graphene. Phys. Rev. B 66, 035412 (2002). (10.1103/PhysRevB.66.035412) / Phys. Rev. B by S Reich (2002)
  22. Hod, O., Barone, V., Peralta, J. E. & Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 7, 2295–2299 (2007). (10.1021/nl0708922) / Nano Lett. by O Hod (2007)
  23. Blase, X., Benedict, L. X., Shirley, E. L. & Louie, S. G. Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett. 72, 1878–1881 (1994). (10.1103/PhysRevLett.72.1878) / Phys. Rev. Lett. by X Blase (1994)
  24. Cui, X. D., Freitag, M., Martel, R., Brus, L. & Avouris, P. Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 3, 783–787 (2003). (10.1021/nl034193a) / Nano Lett. by XD Cui (2003)
  25. Brar, V. W. et al. Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. Phys. Rev. Lett. 104, 036805 (2010). (10.1103/PhysRevLett.104.036805) / Phys. Rev. Lett. by VW Brar (2010)
  26. Yazyev, O. V. Magnetism in disordered graphene and irradiated graphite. Phys. Rev. Lett. 101, 037203 (2008). (10.1103/PhysRevLett.101.037203) / Phys. Rev. Lett. by OV Yazyev (2008)
  27. Yazyev, O. V., Capaz, R. B. & Louie, S. G. Theory of magnetic edge states in chiral graphene nanoribbons. Preprint at http://arxiv.org/abs/1102.4886 (2011). (10.1103/PhysRevB.84.115406)
Dates
Type When
Created 14 years, 3 months ago (May 8, 2011, 1:47 p.m.)
Deposited 4 months, 1 week ago (April 11, 2025, 6:20 a.m.)
Indexed 2 weeks, 3 days ago (Aug. 6, 2025, 9:37 a.m.)
Issued 14 years, 3 months ago (May 8, 2011)
Published 14 years, 3 months ago (May 8, 2011)
Published Online 14 years, 3 months ago (May 8, 2011)
Published Print 14 years ago (Aug. 1, 2011)
Funders 0

None

@article{Tao_2011, title={Spatially resolving edge states of chiral graphene nanoribbons}, volume={7}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys1991}, DOI={10.1038/nphys1991}, number={8}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Tao, Chenggang and Jiao, Liying and Yazyev, Oleg V. and Chen, Yen-Chia and Feng, Juanjuan and Zhang, Xiaowei and Capaz, Rodrigo B. and Tour, James M. and Zettl, Alex and Louie, Steven G. and Dai, Hongjie and Crommie, Michael F.}, year={2011}, month=may, pages={616–620} }