Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Rutter, G. M., Jung, S., Klimov, N. N., Newell, D. B., Zhitenev, N. B., & Stroscio, J. A. (2011). Microscopic polarization in bilayer graphene. Nature Physics, 7(8), 649–655.

Authors 6
  1. Gregory M. Rutter (first)
  2. Suyong Jung (additional)
  3. Nikolai N. Klimov (additional)
  4. David B. Newell (additional)
  5. Nikolai B. Zhitenev (additional)
  6. Joseph A. Stroscio (additional)
References 39 Referenced 121
  1. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nature Mater. by AK Geim (2007)
  2. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006). (10.1103/PhysRevB.74.161403) / Phys. Rev. B by E McCann (2006)
  3. Guinea, F., Castro Neto, A. H. & Peres, N. M. R. Electronic states and Landau levels in graphene stacks. Phys. Rev. B 73, 245426 (2006). (10.1103/PhysRevB.73.245426) / Phys. Rev. B by F Guinea (2006)
  4. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009). (10.1038/nature08105) / Nature by Y Zhang (2009)
  5. Kuzmenko, A. B., Crassee, I., van der Marel, D., Blake, P. & Novoselov, K. S. Determination of the gate-tunable band gap and tight-binding parameters in bilayer graphene using infrared spectroscopy. Phys. Rev. B 80, 165406 (2009). (10.1103/PhysRevB.80.165406) / Phys. Rev. B by AB Kuzmenko (2009)
  6. Mak, K. F., Lui, C. H., Shan, J. & Heinz, T. F. Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405 (2009). (10.1103/PhysRevLett.102.256405) / Phys. Rev. Lett. by KF Mak (2009)
  7. Castro, E. V. et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007). (10.1103/PhysRevLett.99.216802) / Phys. Rev. Lett. by EV Castro (2007)
  8. Xia, F., Farmer, D. B., Lin, Y. & Avouris, P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Lett. 10, 715–718 (2010). (10.1021/nl9039636) / Nano Lett. by F Xia (2010)
  9. Min, H., Sahu, B., Banerjee, S. K. & MacDonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007). (10.1103/PhysRevB.75.155115) / Phys. Rev. B by H Min (2007)
  10. Yan, J. & Fuhrer, M. S. Charge transport in dual gated bilayer graphene with corbino geometry. Nano Lett. 10, 4521–4525 (2010). (10.1021/nl102459t) / Nano Lett. by J Yan (2010)
  11. Shizuya, K. Pseudo-zero-mode Landau levels and collective excitations in bilayer graphene. Phys. Rev. B 79, 165402 (2009). (10.1103/PhysRevB.79.165402) / Phys. Rev. B by K Shizuya (2009)
  12. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006). (10.1103/PhysRevLett.96.086805) / Phys. Rev. Lett. by E McCann (2006)
  13. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states in doubly gated suspended bilayer graphene. Science 330, 812–816 (2010). (10.1126/science.1194988) / Science by RT Weitz (2010)
  14. Feldman, B. E., Martin, J. & Yacoby, A. Broken-symmetry states and divergent resistance in suspended bilayer graphene. Nature Phys. 5, 889–893 (2009). (10.1038/nphys1406) / Nature Phys. by BE Feldman (2009)
  15. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 066801 (2010). (10.1103/PhysRevLett.104.066801) / Phys. Rev. Lett. by Y Zhao (2010)
  16. Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010). (10.1038/nnano.2010.172) / Nature Nanotech. by C Dean (2010)
  17. Barlas, Y., Côté, R., Nomura, K. & MacDonald, A. H. Intra-Landau-level cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 101, 097601 (2008). (10.1103/PhysRevLett.101.097601) / Phys. Rev. Lett. by Y Barlas (2008)
  18. Jung, J., Zhang, F. & MacDonald, A. H. Lattice theory of pseudospin ferromagnetism in bilayer graphene: Competing interaction-induced quantum Hall states. Phys. Rev. B 83, 115408 (2011). (10.1103/PhysRevB.83.115408) / Phys. Rev. B by J Jung (2011)
  19. Nandkishore, R. & Levitov, L. Quantum anomalous Hall state in bilayer graphene. Phys. Rev. B 82, 115124 (2010). (10.1103/PhysRevB.82.115124) / Phys. Rev. B by R Nandkishore (2010)
  20. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). (10.1126/science.1130681) / Science by T Ohta (2006)
  21. Zhang, L. M. et al. Determination of the electronic structure of bilayer graphene from infrared spectroscopy. Phys. Rev. B 78, 235408 (2008). (10.1103/PhysRevB.78.235408) / Phys. Rev. B by LM Zhang (2008)
  22. Oostinga, J. B., Heersche, H. B., Liu, X., Morpurgo, A. F. & Vandersypen, L. M. K. Gate-induced insulating state in bilayer graphene devices. Nature Mater. 7, 151–157 (2008). (10.1038/nmat2082) / Nature Mater. by JB Oostinga (2008)
  23. Zou, K. & Zhu, J. Transport in gapped bilayer graphene: The role of potential fluctuations. Phys. Rev. B 82, 081407 (2010). (10.1103/PhysRevB.82.081407) / Phys. Rev. B by K Zou (2010)
  24. Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010). (10.1103/PhysRevLett.105.166601) / Phys. Rev. Lett. by T Taychatanapat (2010)
  25. Li, J., Martin, I., Buttiker, M. & Morpurgo, A. F. Topological origin of subgap conductance in insulating bilayer graphene. Nature Phys. 7, 38–42 (2011). (10.1038/nphys1822) / Nature Phys. by J Li (2011)
  26. Zhang, Y., Brar, V. W., Girit, C., Zettl, A. & Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nature Phys. 5, 722–726 (2009). (10.1038/nphys1365) / Nature Phys. by Y Zhang (2009)
  27. Deshpande, A., Bao, W., Miao, F., Lau, C. N. & LeRoy, B. J. Spatially resolved spectroscopy of monolayer graphene on SiO2 . Phys. Rev. B 79, 205411 (2009). (10.1103/PhysRevB.79.205411) / Phys. Rev. B by A Deshpande (2009)
  28. Jung, S. et al. Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots. Nature Phys. 7, 245–251 (2011). (10.1038/nphys1866) / Nature Phys. by S Jung (2011)
  29. Efros, A. & Shklovskii, B. Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C 8, L49–L51 (1975). (10.1088/0022-3719/8/4/003) / J. Phys. C by A Efros (1975)
  30. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006). (10.1038/nphys245) / Nature Phys. by KS Novoselov (2006)
  31. Dial, O. E., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. High-resolution spectroscopy of two-dimensional electron systems. Nature 448, 176–179 (2007). (10.1038/nature05982) / Nature by OE Dial (2007)
  32. Hashimoto, K. et al. Quantum hall transition in real space: From localized to extended states. Phys. Rev. Lett. 101, 256802 (2008). (10.1103/PhysRevLett.101.256802) / Phys. Rev. Lett. by K Hashimoto (2008)
  33. Song, Y. J. et al. High-resolution tunnelling spectroscopy of a graphene quartet. Nature 467, 185–189 (2010). (10.1038/nature09330) / Nature by YJ Song (2010)
  34. Nandkishore, R. & Levitov, L. Dynamical screening and excitonic instability in bilayer graphene. Phys. Rev. Lett. 104, 156803 (2010). (10.1103/PhysRevLett.104.156803) / Phys. Rev. Lett. by R Nandkishore (2010)
  35. Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008). (10.1103/PhysRevB.77.041407) / Phys. Rev. B by H Min (2008)
  36. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  37. Miller, D. L. et al. Observing the quantization of zero mass carriers in graphene. Science 324, 924–927 (2009). (10.1126/science.1171810) / Science by DL Miller (2009)
  38. Rutter, G. M. et al. Scattering and interference in epitaxial graphene. Science 317, 219–222 (2007). (10.1126/science.1142882) / Science by GM Rutter (2007)
  39. Partoens, B. & Peeters, F.M. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B 74, 075404 (2006). (10.1103/PhysRevB.74.075404) / Phys. Rev. B by B Partoens (2006)
Dates
Type When
Created 14 years, 4 months ago (April 24, 2011, 2:48 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:46 p.m.)
Indexed 3 months, 2 weeks ago (May 16, 2025, 12:26 p.m.)
Issued 14 years, 4 months ago (April 24, 2011)
Published 14 years, 4 months ago (April 24, 2011)
Published Online 14 years, 4 months ago (April 24, 2011)
Published Print 14 years, 1 month ago (Aug. 1, 2011)
Funders 0

None

@article{Rutter_2011, title={Microscopic polarization in bilayer graphene}, volume={7}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys1988}, DOI={10.1038/nphys1988}, number={8}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Rutter, Gregory M. and Jung, Suyong and Klimov, Nikolai N. and Newell, David B. and Zhitenev, Nikolai B. and Stroscio, Joseph A.}, year={2011}, month=apr, pages={649–655} }