Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Trepat, X., Wasserman, M. R., Angelini, T. E., Millet, E., Weitz, D. A., Butler, J. P., & Fredberg, J. J. (2009). Physical forces during collective cell migration. Nature Physics, 5(6), 426–430.

Authors 7
  1. Xavier Trepat (first)
  2. Michael R. Wasserman (additional)
  3. Thomas E. Angelini (additional)
  4. Emil Millet (additional)
  5. David A. Weitz (additional)
  6. James P. Butler (additional)
  7. Jeffrey J. Fredberg (additional)
References 39 Referenced 1,070
  1. Lecaudey, V. & Gilmour, D. Organizing moving groups during morphogenesis. Curr. Opin. Cell Biol. 18, 102–107 (2006). (10.1016/j.ceb.2005.12.001) / Curr. Opin. Cell Biol. by V Lecaudey (2006)
  2. Martin, P. & Parkhurst, S. M. Parallels between tissue repair and embryo morphogenesis. Development 131, 3021–3034 (2004). (10.1242/dev.01253) / Development by P Martin (2004)
  3. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: Diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003). (10.1038/nrc1075) / Nature Rev. Cancer by P Friedl (2003)
  4. du Roure, O. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005). (10.1073/pnas.0408482102) / Proc. Natl Acad. Sci. USA by O du Roure (2005)
  5. Vaughan, R. B. & Trinkaus, J. P. Movements of epithelial cell sheets in vitro. J. Cell Sci. 1, 407–413 (1966). (10.1242/jcs.1.4.407) / J. Cell Sci. by RB Vaughan (1966)
  6. Omelchenko, T. et al. Rho-dependent formation of epithelial ‘leader’ cells during wound healing. Proc. Natl Acad. Sci. USA 100, 10788–10793 (2003). (10.1073/pnas.1834401100) / Proc. Natl Acad. Sci. USA by T Omelchenko (2003)
  7. Friedl, P., Hegerfeldt, Y. & Tusch, M. Collective cell migration in morphogenesis and cancer. Int. J. Dev. Biol. 48, 441–449 (2004). (10.1387/ijdb.041821pf) / Int. J. Dev. Biol. by P Friedl (2004)
  8. Gov, N. S. Collective cell migration patterns: Follow the leader. Proc. Natl Acad. Sci. USA 104, 15970–15971 (2007). (10.1073/pnas.0708037104) / Proc. Natl Acad. Sci. USA by NS Gov (2007)
  9. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007). (10.1073/pnas.0705062104) / Proc. Natl Acad. Sci. USA by M Poujade (2007)
  10. Liu, C. H. et al. Force fluctuations in bead packs. Science 269, 513–515 (1995). (10.1126/science.269.5223.513) / Science by CH Liu (1995)
  11. O’Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111–114 (2001). (10.1103/PhysRevLett.86.111) / Phys. Rev. Lett. by CS O’Hern (2001)
  12. Ostojic, S., Somfai, E. & Nienhuis, B. Scale invariance and universality of force networks in static granular matter. Nature 439, 828–830 (2006). (10.1038/nature04549) / Nature by S Ostojic (2006)
  13. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: A physically integrated molecular process. Cell 84, 359–369 (1996). (10.1016/S0092-8674(00)81280-5) / Cell by DA Lauffenburger (1996)
  14. Keren, K. et al. Mechanism of shape determination in motile cells. Nature 453, 475–480 (2008). (10.1038/nature06952) / Nature by K Keren (2008)
  15. Hu, K. et al. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007). (10.1126/science.1135085) / Science by K Hu (2007)
  16. Giannone, G. et al. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561–575 (2007). (10.1016/j.cell.2006.12.039) / Cell by G Giannone (2007)
  17. Beningo, K. A. et al. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153, 881–888 (2001). (10.1083/jcb.153.4.881) / J. Cell Biol. by KA Beningo (2001)
  18. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999). (10.1016/S0006-3495(99)77386-8) / Biophys. J. by M Dembo (1999)
  19. Montell, D. J. Morphogenetic cell movements: Diversity from modular mechanical properties. Science 322, 1502–1505 (2008). (10.1126/science.1164073) / Science by DJ Montell (2008)
  20. Matsubayashi, Y., Ebisuya, M., Honjoh, S. & Nishida, E. ERK activation propagates in epithelial cell sheets and regulates their migration during wound healing. Curr. Biol. 14, 731–735 (2004). (10.1016/j.cub.2004.03.060) / Curr. Biol. by Y Matsubayashi (2004)
  21. Bindschadler, M. & McGrath, J. L. Sheet migration by wounded monolayers as an emergent property of single-cell dynamics. J. Cell Sci. 120, 876–884 (2007). (10.1242/jcs.03395) / J. Cell Sci. by M Bindschadler (2007)
  22. Holmes, S. J. The behaviour of the epidermis of amphibians when cultivated outside the body. J. Exp. Zool. 17, 281–295 (1914). (10.1002/jez.1400170204) / J. Exp. Zool. by SJ Holmes (1914)
  23. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003). (10.1126/science.1079552) / Science by MS Hutson (2003)
  24. Farooqui, R. & Fenteany, G. Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J. Cell Sci. 118, 51–63 (2005). (10.1242/jcs.01577) / J. Cell Sci. by R Farooqui (2005)
  25. Butler, J. P., Tolic-Norrelykke, I. M., Fabry, B. & Fredberg, J. J. Traction fields, moments, and strain energy that cells exert on their surroundings. Am. J. Physiol. Cell Physiol. 282, C595–C605 (2002). (10.1152/ajpcell.00270.2001) / Am. J. Physiol. Cell Physiol. by JP Butler (2002)
  26. Sabass, B., Gardel, M. L., Waterman, C. M. & Schwarz, U. S. High resolution traction force microscopy based on experimental and computational advances. Biophys. J. 94, 207–220 (2008). (10.1529/biophysj.107.113670) / Biophys. J. by B Sabass (2008)
  27. Del Alamo, J. C. et al. Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. Proc. Natl Acad. Sci. USA 104, 13343–13348 (2007). (10.1073/pnas.0705815104) / Proc. Natl Acad. Sci. USA by JC Del Alamo (2007)
  28. Merkel, R., Kirchgessner, N., Cesa, C. M. & Hoffmann, B. Cell force microscopy on elastic layers of finite thickness. Biophys. J. 93, 3314–3323 (2007). (10.1529/biophysj.107.111328) / Biophys. J. by R Merkel (2007)
  29. Fenteany, G., Janmey, P. A. & Stossel, T. P. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr. Biol. 10, 831–838 (2000). (10.1016/S0960-9822(00)00579-0) / Curr. Biol. by G Fenteany (2000)
  30. Goffin, J. M. et al. Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006). (10.1083/jcb.200506179) / J. Cell Biol. by JM Goffin (2006)
  31. Saez, A., Buguin, A., Silberzan, P. & Ladoux, B. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89, L52–L54 (2005). (10.1529/biophysj.105.071217) / Biophys. J. by A Saez (2005)
  32. Gov, N. S. Modeling the size distribution of focal adhesions. Biophys. J. 91, 2844–2847 (2006). (10.1529/biophysj.106.088484) / Biophys. J. by NS Gov (2006)
  33. Zegers, M. M. et al. Pak1 and PIX regulate contact inhibition during epithelial wound healing. EMBO J. 22, 4155–4165 (2003). (10.1093/emboj/cdg398) / EMBO J. by MM Zegers (2003)
  34. Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005). (10.1073/pnas.0404782102) / Proc. Natl Acad. Sci. USA by BI Shraiman (2005)
  35. Van Hecke, M. Granular matter: A tale of tails. Nature 435, 1041–1042 (2005). (10.1038/4351041a) / Nature by M Van Hecke (2005)
  36. Coppersmith, S. N. et al. Model for force fluctuations in bead packs. Phys. Rev. E 53, 4673–4685 (1996). / Phys. Rev. E by SN Coppersmith (1996)
  37. Wang, N. et al. Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002). (10.1152/ajpcell.00269.2001) / Am. J. Physiol. Cell Physiol. by N Wang (2002)
  38. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell. Motil. Cytoskeleton 60, 24–34 (2005). (10.1002/cm.20041) / Cell. Motil. Cytoskeleton by T Yeung (2005)
  39. Gui, L. & Wereley, S. T. A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation. Exp. Fluids 32, 506–517 (2002). (10.1007/s00348-001-0396-1) / Exp. Fluids by L Gui (2002)
Dates
Type When
Created 16 years, 3 months ago (May 3, 2009, 1:27 p.m.)
Deposited 4 months, 1 week ago (April 11, 2025, 7:30 a.m.)
Indexed 3 weeks ago (Aug. 2, 2025, 12:36 a.m.)
Issued 16 years, 3 months ago (May 3, 2009)
Published 16 years, 3 months ago (May 3, 2009)
Published Online 16 years, 3 months ago (May 3, 2009)
Published Print 16 years, 2 months ago (June 1, 2009)
Funders 0

None

@article{Trepat_2009, title={Physical forces during collective cell migration}, volume={5}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys1269}, DOI={10.1038/nphys1269}, number={6}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Trepat, Xavier and Wasserman, Michael R. and Angelini, Thomas E. and Millet, Emil and Weitz, David A. and Butler, James P. and Fredberg, Jeffrey J.}, year={2009}, month=may, pages={426–430} }