Crossref journal-article
Springer Science and Business Media LLC
Nature Physics (297)
Bibliography

Csányi, G., Littlewood, P. B., Nevidomskyy, A. H., Pickard, C. J., & Simons, B. D. (2005). The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds. Nature Physics, 1(1), 42–45.

Authors 5
  1. Gábor Csányi (first)
  2. P. B. Littlewood (additional)
  3. Andriy H. Nevidomskyy (additional)
  4. Chris J. Pickard (additional)
  5. B. D. Simons (additional)
References 29 Referenced 266
  1. Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 51, 1–186 (2002). (10.1080/00018730110113644) / Adv. Phys. by MS Dresselhaus (2002)
  2. Koike, Y., Suemetsu, H., Higuchi, K. & Tanuma, S. Superconductivity in graphite–alkali metal intercalation compounds. PhysicaB+C 99, 503–508 (1980). / PhysicaB+C by Y Koike (1980)
  3. Hannay, N. B. et al. Superconductivity in graphite compounds. Phys. Rev. Lett. 14, 225–226 (1965). (10.1103/PhysRevLett.14.225) / Phys. Rev. Lett. by NB Hannay (1965)
  4. Belash, I. T., Bronnikov, A. D., Zharikov, O. V. & Palnichenko, A. V. On the superconductivity of graphite intercalation compounds with sodium. Solid State Commun. 64, 1445–1447 (1987). (10.1016/0038-1098(87)90355-3) / Solid State Commun. by IT Belash (1987)
  5. Weller, T., Ellerby, M., Saxena, S. S., Smith, R. & Skipper, N. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca . Nature Phys. 1, 39–41 (2005). (10.1038/nphys0010) / Nature Phys. by T Weller (2005)
  6. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992). (10.1103/RevModPhys.64.1045) / Rev. Mod. Phys. by MC Payne (1992)
  7. Perdew, J. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981). (10.1103/PhysRevB.23.5048) / Phys. Rev. B by J Perdew (1981)
  8. Calandra, M. & Mauri, F. Superconducitivity in C6Ca. Preprint at http://arxiv.org/abs/cond-mat/0506082 (2005).
  9. Koma, A., Miki, K., Suematsu, H., Ohno, T. & Kamimura, H. Density-of-states investigation of C8K and occurrence of the interlayer band. Phys. Rev. B 34, 2434–2438 (1986). (10.1103/PhysRevB.34.2434) / Phys. Rev. B by A Koma (1986)
  10. Belash, I. T., Bronnikov, A. D., Zharikov, O. V. & Pal’nichenko, A. V. Superconductivity of graphite intercalation compound with lithium C2Li . Solid State Commun. 69, 921–923 (1989). (10.1016/0038-1098(89)90933-2) / Solid State Commun. by IT Belash (1989)
  11. Posternak, M., Baldereschi, A., Freeman, A. J., Wimmer, E. & Weinert, M. Prediction of electronic interlayer states in graphite and reinterpretation of alkali bands in graphite intercalation compounds. Phys. Rev. Lett. 50, 761–764 (1983). (10.1103/PhysRevLett.50.761) / Phys. Rev. Lett. by M Posternak (1983)
  12. Holzwarth, N. A. W., Louie, S. G. & Rabii, S. Interlayer states in graphite and in alkali-metal-graphite intercalation compounds. Phys. Rev. B 30, 2219–2222 (1984). (10.1103/PhysRevB.30.2219) / Phys. Rev. B by NAW Holzwarth (1984)
  13. Reihl, B., Gimzewski, J. K., Nicholls, J. M. & Tosatti, E. Unoccupied electronic states of graphite as probed by inverse-photoemission and tunneling spectroscopy. Phys. Rev. B 33, 5770–5773 (1986). (10.1103/PhysRevB.33.5770) / Phys. Rev. B by B Reihl (1986)
  14. Fauster, Th., Himpsel, F. J., Fischer, J. E. & Plummer, E. W. Three-dimensional energy band in graphite and lithium-intercalated graphite. Phys. Rev. Lett. 51, 430–433 (1983). (10.1103/PhysRevLett.51.430) / Phys. Rev. Lett. by Th Fauster (1983)
  15. Molodtsov, S. L., Laubschat, C., Richter, M., Gantz, Th. & Shikin, A. M. Electronic structure of Eu and Yb graphite intercalation compounds. Phys. Rev. B 53, 16621–16630 (1996). (10.1103/PhysRevB.53.16621) / Phys. Rev. B by SL Molodtsov (1996)
  16. Al Jishi, R. Model for superconductivity in graphite intercalation compounds. Phys. Rev. B 28, 112–116 (1983). (10.1103/PhysRevB.28.112) / Phys. Rev. B by R Al Jishi (1983)
  17. Jishi, R. A. & Dresselhaus, M. S. Superconductivity in graphite intercalation compounds. Phys. Rev. B 45, 12465–12469 (1992). (10.1103/PhysRevB.45.12465) / Phys. Rev. B by RA Jishi (1992)
  18. Iye, Y. & Tanuma, S. Superconductivity of graphite intercalation compounds with alkali-metal amalgams. Phys. Rev. B 25, 4583–4592 (1982). (10.1103/PhysRevB.25.4583) / Phys. Rev. B by Y Iye (1982)
  19. Allender, D., Bray, J. & Bardeen, J. Model for an exciton mechanism of superconductivity. Phys. Rev. B 7, 1020–1029 (1973). (10.1103/PhysRevB.7.1020) / Phys. Rev. B by D Allender (1973)
  20. Takada, Y. Plasmon mechanism of superconductivity in two- and three-dimensional electron systems. J. Phys. Soc. Jpn 45, 786–794 (1978). (10.1143/JPSJ.45.786) / J. Phys. Soc. Jpn by Y Takada (1978)
  21. Bill, A., Morawitz, H. & Kresin, V. Z. Electronic collective modes and superconductivity in layered conductors. Phys. Rev. B 68, 144519 (2003). (10.1103/PhysRevB.68.144519) / Phys. Rev. B by A Bill (2003)
  22. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001). (10.1038/35065039) / Nature by J Nagamatsu (2001)
  23. Miyamoto, Y., Rubio, A., Blase, X., Cohen, M. L. & Louie, S. G. Ionic cohesion and electron doping of thin carbon tubules with alkali atoms. Phys. Rev. Lett. 74, 2993–2996 (1995). (10.1103/PhysRevLett.74.2993) / Phys. Rev. Lett. by Y Miyamoto (1995)
  24. Shimoda, H. et al. Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 88, 015502 (2002). (10.1103/PhysRevLett.88.015502) / Phys. Rev. Lett. by H Shimoda (2002)
  25. Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. C. 14, 2717–2744 (2002). / J. Phys. C. by MD Segall (2002)
  26. Pickard, C. J. et al. Structural properties of lanthanide and actinide compounds within the plane wave pseudopotential approach. Phys. Rev. Lett. 85, 5122–5125 (2000). (10.1103/PhysRevLett.85.5122) / Phys. Rev. Lett. by CJ Pickard (2000)
  27. Baroni, S., Dal Corso, A., de Gironcoli, S. & Giannozzi, P. http://www.pwscf.org.
  28. Hérold, A. in Intercalated Layered Materials Vol. 6 (ed. Lévy, F.) 323–421 (Reidel, Dordrecht, 1979). (10.1007/978-94-009-9415-7_7) / Intercalated Layered Materials by A Hérold (1979)
  29. Guérard, D. & Hérold, A. Synthèse directe de composés d’insertion du baryum dans le graphite. C.R. Acad. Sci. Paris, Ser. C 279, 455–456 (1974). / C.R. Acad. Sci. Paris, Ser. C by D Guérard (1974)
Dates
Type When
Created 19 years, 10 months ago (Sept. 29, 2005, 2:13 p.m.)
Deposited 4 months, 2 weeks ago (April 11, 2025, 6:17 a.m.)
Indexed 3 weeks, 6 days ago (Aug. 2, 2025, 12:28 a.m.)
Issued 19 years, 11 months ago (Sept. 29, 2005)
Published 19 years, 11 months ago (Sept. 29, 2005)
Published Online 19 years, 11 months ago (Sept. 29, 2005)
Published Print 19 years, 10 months ago (Oct. 1, 2005)
Funders 0

None

@article{Cs_nyi_2005, title={The role of the interlayer state in the electronic structure of superconducting graphite intercalated compounds}, volume={1}, ISSN={1745-2481}, url={http://dx.doi.org/10.1038/nphys119}, DOI={10.1038/nphys119}, number={1}, journal={Nature Physics}, publisher={Springer Science and Business Media LLC}, author={Csányi, Gábor and Littlewood, P. B. and Nevidomskyy, Andriy H. and Pickard, Chris J. and Simons, B. D.}, year={2005}, month=sep, pages={42–45} }