Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Wang, H., He, Y., Li, Y.-H., Su, Z.-E., Li, B., Huang, H.-L., Ding, X., Chen, M.-C., Liu, C., Qin, J., Li, J.-P., He, Y.-M., Schneider, C., Kamp, M., Peng, C.-Z., Höfling, S., Lu, C.-Y., & Pan, J.-W. (2017). High-efficiency multiphoton boson sampling. Nature Photonics, 11(6), 361–365.

Authors 18
  1. Hui Wang (first)
  2. Yu He (additional)
  3. Yu-Huai Li (additional)
  4. Zu-En Su (additional)
  5. Bo Li (additional)
  6. He-Liang Huang (additional)
  7. Xing Ding (additional)
  8. Ming-Cheng Chen (additional)
  9. Chang Liu (additional)
  10. Jian Qin (additional)
  11. Jin-Peng Li (additional)
  12. Yu-Ming He (additional)
  13. Christian Schneider (additional)
  14. Martin Kamp (additional)
  15. Cheng-Zhi Peng (additional)
  16. Sven Höfling (additional)
  17. Chao-Yang Lu (additional)
  18. Jian-Wei Pan (additional)
References 40 Referenced 367
  1. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010). (10.1038/nature08812) / Nature by TD Ladd (2010)
  2. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012). (10.1103/RevModPhys.84.777) / Rev. Mod. Phys. by J-W Pan (2012)
  3. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014). (10.1038/nature13171) / Nature by R Barends (2014)
  4. Monz, T. et al. Realization of a scalable Shor algorithm. Science 351, 1068–1070 (2016). (10.1126/science.aad9480) / Science by T Monz (2016)
  5. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annual ACM Symp. Theory of Computing 333–342 (ACM, 2011). / Proc. 43rd Annual ACM Symp. Theory of Computing by S Aaronson (2011)
  6. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007). (10.1103/RevModPhys.79.135) / Rev. Mod. Phys. by P Kok (2007)
  7. Rohde, P. R. & Ralph, T. C. Error tolerance of boson-sampling model for linear optical quantum computing. Phys. Rev. A 85, 022332 (2012). (10.1103/PhysRevA.85.022332) / Phys. Rev. A by PR Rohde (2012)
  8. Wu, J.-J. et al. Computing permanents for boson sampling on Tianhe-2 supercomputer. Preprint at https://arxiv.org/abs/1606.05836 (2016).
  9. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013). (10.1126/science.1231440) / Science by MA Broome (2013)
  10. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013). (10.1126/science.1231692) / Science by JB Spring (2013)
  11. Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540–544 (2013). (10.1038/nphoton.2013.102) / Nat. Photon. by M Tillmann (2013)
  12. Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7, 545–549 (2013). (10.1038/nphoton.2013.112) / Nat. Photon. by A Crespi (2013)
  13. Carolan, J . et al. Universal linear optics. Science 349, 711–716 (2015). (10.1126/science.aab3642) / Science by J Carolan (2015)
  14. Bentivegna, M . et al. Experimental scattershot boson sampling. Sci. Adv. 1, e1400255 (2015). (10.1126/sciadv.1400255) / Sci. Adv. by M Bentivegna (2015)
  15. Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014). (10.1038/nphoton.2014.152) / Nat. Photon. by J Carolan (2014)
  16. Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014). (10.1038/nphoton.2014.135) / Nat. Photon. by N Spagnolo (2014)
  17. Loredo, J. C. et al. Boson sampling with single photon Fock states from a bright solid-state source. Preprint at https://arxiv.org/abs/1603.00054 (2016).
  18. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995). (10.1103/PhysRevLett.75.4337) / Phys. Rev. Lett. by PG Kwiat (1995)
  19. Pittman, T., Jacobs, B. & Franson, J. Single photons on pseudodemand from stored parametric down-conversion. Phys. Rev. A 66, 042303 (2002). (10.1103/PhysRevA.66.042303) / Phys. Rev. A by T Pittman (2002)
  20. Kaneda, F. et al. Time-multiplexed heralded single-photon source. Optica 2, 1010–1013 (2015). (10.1364/OPTICA.2.001010) / Optica by F Kaneda (2015)
  21. Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014). (10.1103/PhysRevLett.113.100502) / Phys. Rev. Lett. by AP Lund (2014)
  22. Lounis, B. & Orrit, M. Single photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005). (10.1088/0034-4885/68/5/R04) / Rep. Prog. Phys. by B Lounis (2005)
  23. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000). (10.1126/science.290.5500.2282) / Science by P Michler (2000)
  24. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single photon device. Nature 419, 594–597 (2002). (10.1038/nature01086) / Nature by C Santori (2002)
  25. Tillmann, M. et al. Generalized multiphoton quantum interference. Phys. Rev. X 5, 041015 (2015). / Phys. Rev. X by M Tillmann (2015)
  26. Shchesnovich, V. S. Partial indistinguishability theory of multiphoton experiments in multiport devices. Phys. Rev. A 91, 013844 (2015). (10.1103/PhysRevA.91.013844) / Phys. Rev. A by VS Shchesnovich (2015)
  27. Tichy, M. C. Sampling of partially distinguishable bosons and the relation to multidimensional permanent. Phys. Rev. A 91, 022316 (2015). (10.1103/PhysRevA.91.022316) / Phys. Rev. A by MC Tichy (2015)
  28. He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotech. 8, 213–217 (2013). (10.1038/nnano.2012.262) / Nat. Nanotech. by Y-M He (2013)
  29. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016). (10.1103/PhysRevLett.116.020401) / Phys. Rev. Lett. by X Ding (2016)
  30. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016). (10.1038/nphoton.2016.23) / Nat. Photon. by N Somaschi (2016)
  31. Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016). (10.1103/PhysRevLett.116.213601) / Phys. Rev. Lett. by H Wang (2016)
  32. Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010). (10.1038/nphoton.2010.161) / Nat. Photon. by RB Patel (2010)
  33. Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal quantum multiport interferometers. Preprint at https://arxiv.org/abs/1603.08788 (2016). (10.1364/OPTICA.3.001460)
  34. Aaronson, S. & Arkhipov, A. Boson sampling is far from uniform. Quant. Inf. Comp. 14, 1383–1432 (2014). / Quant. Inf. Comp. by S Aaronson (2014)
  35. Bentivegna, M. et al. Bayesian approach to boson sampling validation. Int. J. Quant. Inf. 12, 1560028 (2014). (10.1142/S021974991560028X) / Int. J. Quant. Inf. by M Bentivegna (2014)
  36. Cover, T. M. & Thomas, J. A. Elements of Information Theory (John Wiley & Sons, 2006). / Elements of Information Theory by TM Cover (2006)
  37. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008). (10.1364/OE.16.003032) / Opt. Express by AE Lita (2008)
  38. Zadeh, I. E. et al. Single-photon detectors combining near unity efficiency, ultra-high detection-rates, and ultra-high time resolution. Preprint at https://arxiv.org/abs/1611.02726 (2016).
  39. Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt. Express 24, 8539–8546 (2016). (10.1364/OE.24.008539) / Opt. Express by S Unsleber (2016)
  40. Muller, A. et al. Resonant fluorescence from a coherent driven semiconductor quantum dot in a cavity. Phys. Rev. Lett. 99, 187402 (2007). (10.1103/PhysRevLett.99.187402) / Phys. Rev. Lett. by A Muller (2007)
Dates
Type When
Created 8 years, 3 months ago (May 1, 2017, 11:04 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:21 p.m.)
Indexed 2 days, 1 hour ago (Aug. 20, 2025, 9:11 a.m.)
Issued 8 years, 3 months ago (May 1, 2017)
Published 8 years, 3 months ago (May 1, 2017)
Published Online 8 years, 3 months ago (May 1, 2017)
Published Print 8 years, 2 months ago (June 1, 2017)
Funders 0

None

@article{Wang_2017, title={High-efficiency multiphoton boson sampling}, volume={11}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2017.63}, DOI={10.1038/nphoton.2017.63}, number={6}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Wang, Hui and He, Yu and Li, Yu-Huai and Su, Zu-En and Li, Bo and Huang, He-Liang and Ding, Xing and Chen, Ming-Cheng and Liu, Chang and Qin, Jian and Li, Jin-Peng and He, Yu-Ming and Schneider, Christian and Kamp, Martin and Peng, Cheng-Zhi and Höfling, Sven and Lu, Chao-Yang and Pan, Jian-Wei}, year={2017}, month=may, pages={361–365} }