Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Mak, K. F., & Shan, J. (2016). Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 10(4), 216–226.

Authors 2
  1. Kin Fai Mak (first)
  2. Jie Shan (additional)
References 123 Referenced 3,273
  1. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005). (10.1073/pnas.0502848102) / Proc. Natl Acad. Sci. USA by KS Novoselov (2005)
  2. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012). (10.1038/nnano.2012.193) / Nature Nanotech. by QH Wang (2012)
  3. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by AH Castro Neto (2009)
  4. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009). (10.1126/science.1158877) / Science by AK Geim (2009)
  5. Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). (10.1103/PhysRevLett.108.196802) / Phys. Rev. Lett. by D Xiao (2012)
  6. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Phys. 10, 343–350 (2014). (10.1038/nphys2942) / Nature Phys. by X Xu (2014)
  7. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010). (10.1021/nl903868w) / Nano Lett. by A Splendiani (2010)
  8. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010). (10.1103/PhysRevLett.105.136805) / Phys. Rev. Lett. by KF Mak (2010)
  9. Mak, K. F., Ju, L., Wang, F. & Heinz, T. F. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012). (10.1016/j.ssc.2012.04.064) / Solid State Commun. by KF Mak (2012)
  10. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010). (10.1038/nphoton.2010.186) / Nature Photon. by F Bonaccorso (2010)
  11. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photon. 6, 749–758 (2012). (10.1038/nphoton.2012.262) / Nature Photon. by AN Grigorenko (2012)
  12. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nature Photon. 8, 899–907 (2014). (10.1038/nphoton.2014.271) / Nature Photon. by F Xia (2014)
  13. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). (10.1038/nature12385) / Nature by AK Geim (2013)
  14. Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013). (10.1021/nn400280c) / ACS Nano by SZ Butler (2013)
  15. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010). (10.1103/RevModPhys.82.1959) / Rev. Mod. Phys. by D Xiao (2010)
  16. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780–793 (2014). (10.1038/nnano.2014.215) / Nature Nanotech. by FHL Koppens (2014)
  17. Cudazzo, P., Tokatly, I. V. & Rubio, A. Dielectric screening in two-dimensional insulators: implications for excitonic and impurity states in graphane. Phys. Rev. B 84, 085406 (2011). (10.1103/PhysRevB.84.085406) / Phys. Rev. B by P Cudazzo (2011)
  18. Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012). (10.1103/PhysRevB.86.115409) / Phys. Rev. B by A Ramasubramaniam (2012)
  19. Komsa, H.-P. & Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 86, 241201 (2012). (10.1103/PhysRevB.86.241201) / Phys. Rev. B by H-P Komsa (2012)
  20. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013). (10.1103/PhysRevB.88.045318) / Phys. Rev. B by TC Berkelbach (2013)
  21. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013). (10.1103/PhysRevLett.111.216805) / Phys. Rev. Lett. by DY Qiu (2013)
  22. Mak, K. F. et al. Tightly bound trions in monolayer MoS2 . Nature Mater. 12, 207–211 (2013). (10.1038/nmat3505) / Nature Mater. by KF Mak (2013)
  23. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2 . Phys. Rev. Lett. 113, 076802 (2014). (10.1103/PhysRevLett.113.076802) / Phys. Rev. Lett. by A Chernikov (2014)
  24. He, K. et al. Tightly bound excitons in monolayer WSe2 . Phys. Rev. Lett. 113, 026803 (2014). (10.1103/PhysRevLett.113.026803) / Phys. Rev. Lett. by K He (2014)
  25. Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014). (10.1038/nature13734) / Nature by Z Ye (2014)
  26. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015). (10.1103/PhysRevLett.114.097403) / Phys. Rev. Lett. by G Wang (2015)
  27. Feldmann, J. et al. Linewidth dependence of radiative exciton lifetimes in quantum-wells. Phys. Rev. Lett. 59, 2337–2340 (1987). (10.1103/PhysRevLett.59.2337) / Phys. Rev. Lett. by J Feldmann (1987)
  28. Haug, H. & Banyai, L. (eds) Optical Switching in Low-Dimensional Systems 206 (Plenum, 1989). (10.1007/978-1-4684-7278-3) / Optical Switching in Low-Dimensional Systems by H Haug (1989)
  29. Schmittrink, S., Chemla, D. S. & Miller, D. A. B. Linear and nonlinear optical properties of semiconductor quantum wells. Adv. Phys. 38, 89–188 (1989). (10.1080/00018738900101102) / Adv. Phys. by S Schmittrink (1989)
  30. Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2004). (10.1142/5394) / Quantum Theory of the Optical and Electronic Properties of Semiconductors by H Haug (2004)
  31. Mattheis, L. F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 8, 3719–3740 (1973). (10.1103/PhysRevB.8.3719) / Phys. Rev. B by LF Mattheis (1973)
  32. Li, T. & Galli, G. Electronic properties of MoS2 nanoparticles. J. Phys. Chem. C 111, 16192–16196 (2007). (10.1021/jp075424v) / J. Phys. Chem. C by T Li (2007)
  33. Lebegue, S. & Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 79, 115409 (2009). (10.1103/PhysRevB.79.115409) / Phys. Rev. B by S Lebegue (2009)
  34. Cheiwchanchamnangij, T. & Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 . Phys. Rev. B 85, 205302 (2012). (10.1103/PhysRevB.85.205302) / Phys. Rev. B by T Cheiwchanchamnangij (2012)
  35. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007). (10.1103/PhysRevLett.99.236809) / Phys. Rev. Lett. by D Xiao (2007)
  36. Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013). (10.1103/PhysRevB.88.085433) / Phys. Rev. B by G-B Liu (2013)
  37. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 . Nature Phys. 11, 141–147 (2015). (10.1038/nphys3203) / Nature Phys. by A Srivastava (2015)
  38. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2 . Phys. Rev. Lett. 114, 037401 (2015). (10.1103/PhysRevLett.114.037401) / Phys. Rev. Lett. by D MacNeill (2015)
  39. Li, Y. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 . Phys. Rev. Lett. 113, 266804 (2014). (10.1103/PhysRevLett.113.266804) / Phys. Rev. Lett. by Y Li (2014)
  40. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nature Phys. 11, 148–152 (2015). (10.1038/nphys3201) / Nature Phys. by G Aivazian (2015)
  41. Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012). (10.1038/ncomms1882) / Nature Commun. by T Cao (2012)
  42. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012). (10.1038/nnano.2012.96) / Nature Nanotech. by KF Mak (2012)
  43. Zeng, H., Dai, J., Yao, W., Xiao, D. & Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nature Nanotech. 7, 490–493 (2012). (10.1038/nnano.2012.95) / Nature Nanotech. by H Zeng (2012)
  44. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012). (10.1103/PhysRevB.86.081301) / Phys. Rev. B by G Sallen (2012)
  45. Jones, A. M. et al. Optical generation of excitonic valley coherence in monolayer WSe2 . Nature Nanotech. 8, 634–638 (2013). (10.1038/nnano.2013.151) / Nature Nanotech. by AM Jones (2013)
  46. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014). (10.1126/science.1250140) / Science by KF Mak (2014)
  47. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014). (10.1126/science.1254966) / Science by RV Gorbachev (2014)
  48. Lensky, Y. D., Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological valley currents in gapped Dirac materials. Phys. Rev. Lett. 114, 256601 (2015). (10.1103/PhysRevLett.114.256601) / Phys. Rev. Lett. by YD Lensky (2015)
  49. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Mater. 13, 1091–1095 (2014). (10.1038/nmat4061) / Nature Mater. by MM Ugeda (2014)
  50. Zhang, C., Johnson, A., Hsu, C.-L., Li, L.-J. & Shih, C.-K. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014). (10.1021/nl501133c) / Nano Lett. by C Zhang (2014)
  51. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nature Commun. 4, 1474 (2013). (10.1038/ncomms2498) / Nature Commun. by JS Ross (2013)
  52. Shang, J. et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647–655 (2015). (10.1021/nn5059908) / ACS Nano by J Shang (2015)
  53. You, Y. et al. Observation of biexcitons in monolayer WSe2 . Nature Phys. 11, 477–481 (2015). (10.1038/nphys3324) / Nature Phys. by Y You (2015)
  54. Sanvitto, D. et al. Observation of charge transport by negatively charged excitons. Science 294, 837–839 (2001). (10.1126/science.1064847) / Science by D Sanvitto (2001)
  55. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nature Commun. 5, 4555 (2014). (10.1038/ncomms5555) / Nature Commun. by MM Fogler (2014)
  56. Withers, F. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nature Mater. 14, 301–306 (2015). (10.1038/nmat4205) / Nature Mater. by F Withers (2015)
  57. Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014). (10.1038/nnano.2014.26) / Nature Nanotech. by JS Ross (2014)
  58. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). (10.1103/RevModPhys.76.323) / Rev. Mod. Phys. by I Zutic (2004)
  59. Lee, H. S. et al. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012). (10.1021/nl301485q) / Nano Lett. by HS Lee (2012)
  60. Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 1311–1314 (2013). (10.1126/science.1235547) / Science by L Britnell (2013)
  61. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A. Ultrasensitive photodetectors based on monolayer MoS2 . Nature Nanotech. 8, 497–501 (2013). (10.1038/nnano.2013.100) / Nature Nanotech. by O Lopez-Sanchez (2013)
  62. Tsai, D.-S. et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7, 3905–3911 (2013). (10.1021/nn305301b) / ACS Nano by D-S Tsai (2013)
  63. Fontana, M. et al. Electron–hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 3, 1634 (2013). (10.1038/srep01634) / Sci. Rep. by M Fontana (2013)
  64. Sundaram, R. S. et al. Electroluminescence in single layer MoS2 . Nano Lett. 13, 1416–1421 (2013). (10.1021/nl400516a) / Nano Lett. by RS Sundaram (2013)
  65. Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 14, 5590–5597 (2014). (10.1021/nl502075n) / Nano Lett. by R Cheng (2014)
  66. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotech. 9, 676–681 (2014). (10.1038/nnano.2014.150) / Nature Nanotech. by C-H Lee (2014)
  67. Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014). (10.1038/nnano.2014.25) / Nature Nanotech. by BWH Baugher (2014)
  68. Duan, X. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nature Nanotech. 9, 1024–1030 (2014). (10.1038/nnano.2014.222) / Nature Nanotech. by X Duan (2014)
  69. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257–261 (2014). (10.1038/nnano.2014.14) / Nature Nanotech. by A Pospischil (2014)
  70. Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures. Nature Nanotech. 11, 42–46 (2016). (10.1038/nnano.2015.227) / Nature Nanotech. by M Massicotte (2016)
  71. Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nature Nanotech. 8, 952–958 (2013). (10.1038/nnano.2013.219) / Nature Nanotech. by WJ Yu (2013)
  72. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014). (10.1021/nl501962c) / Nano Lett. by MM Furchi (2014)
  73. Xia, F., Mueller, T., Lin, Y.-m., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009). (10.1038/nnano.2009.292) / Nature Nanotech. by F Xia (2009)
  74. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010). (10.1021/nl903451y) / Nano Lett. by X Xu (2010)
  75. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). (10.1126/science.1211384) / Science by NM Gabor (2011)
  76. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012). (10.1038/nnano.2012.88) / Nature Nanotech. by J Yan (2012)
  77. Freitag, M., Low, T., Xia, F. & Avouris, P. Photoconductivity of biased graphene. Nature Photon. 7, 53–59 (2013). (10.1038/nphoton.2012.314) / Nature Photon. by M Freitag (2013)
  78. Gan, X. et al. Chip-integrated ultrafast graphene photodetector with high responsivity. Nature Photon. 7, 883–887 (2013). (10.1038/nphoton.2013.253) / Nature Photon. by X Gan (2013)
  79. Pospischil, A. et al. CMOS-compatible graphene photodetector covering all optical communication bands. Nature Photon. 7, 892–896 (2013). (10.1038/nphoton.2013.240) / Nature Photon. by A Pospischil (2013)
  80. Wang, X., Cheng, Z., Xu, K., Tsang, H. K. & Xu, J.-B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photon. 7, 888–891 (2013). (10.1038/nphoton.2013.241) / Nature Photon. by X Wang (2013)
  81. Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011). (10.1063/1.3636402) / Appl. Phys. Lett. by T Korn (2011)
  82. Wang, R. et al. Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86, 045406 (2012). (10.1103/PhysRevB.86.045406) / Phys. Rev. B by R Wang (2012)
  83. Sze, S. M. Semiconductor Devices: Physics and Technology (Wiley, 2002). / Semiconductor Devices: Physics and Technology by SM Sze (2002)
  84. Katz, O., Garber, V., Meyler, B., Bahir, G. & Salzman, J. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett. 79, 1417–1419 (2001). (10.1063/1.1394717) / Appl. Phys. Lett. by O Katz (2001)
  85. Furchi, M. M., Polyushkin, D. K., Pospischil, A. & Mueller, T. Mechanisms of photoconductivity in atomically thin MoS2 . Nano Lett. 14, 6165–6170 (2014). (10.1021/nl502339q) / Nano Lett. by MM Furchi (2014)
  86. Kim, Y. D. et al. Bright visible light emission from graphene. Nature Nanotech. 10, 676–681 (2015). (10.1038/nnano.2015.118) / Nature Nanotech. by YD Kim (2015)
  87. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014). (10.1126/science.1251329) / Science by YJ Zhang (2014)
  88. Yuan, H. et al. Generation and electric control of spin–valley-coupled circular photogalvanic current in WSe2 . Nature Nanotech. 9, 851–857 (2014). (10.1038/nnano.2014.183) / Nature Nanotech. by H Yuan (2014)
  89. Gan, X. et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013). (10.1063/1.4826679) / Appl. Phys. Lett. by X Gan (2013)
  90. Wu, S. et al. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater. 1, 011001 (2014). (10.1088/2053-1583/1/1/011001) / 2D Mater. by S Wu (2014)
  91. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015). (10.1038/nature14290) / Nature by S Wu (2015)
  92. Ye, Y. et al. Monolayer excitonic laser. Nature Photon. 9, 733–737 (2015). (10.1038/nphoton.2015.197) / Nature Photon. by Y Ye (2015)
  93. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015). (10.1038/nphoton.2014.304) / Nature Photon. by X Liu (2015)
  94. Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Commun. 6, 8579 (2015). (10.1038/ncomms9579) / Nature Commun. by S Dufferwiel (2015)
  95. Fujita, M., Takahashi, S., Tanaka, Y., Asano, T. & Noda, S. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science 308, 1296–1298 (2005). (10.1126/science.1110417) / Science by M Fujita (2005)
  96. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). (10.1103/PhysRev.69.37) / Phys. Rev. by EM Purcell (1946)
  97. Englund, D. et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005). (10.1103/PhysRevLett.95.013904) / Phys. Rev. Lett. by D Englund (2005)
  98. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992). (10.1103/PhysRevLett.69.3314) / Phys. Rev. Lett. by C Weisbuch (1992)
  99. Andreani, L. C., Panzarini, G. & Gerard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999). (10.1103/PhysRevB.60.13276) / Phys. Rev. B by LC Andreani (1999)
  100. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004). (10.1038/nature02969) / Nature by JP Reithmaier (2004)
  101. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004). (10.1038/nature03119) / Nature by T Yoshie (2004)
  102. Yokoyama, H. Physics and device applications of optical microcavities. Science 256, 66–70 (1992). (10.1126/science.256.5053.66) / Science by H Yokoyama (1992)
  103. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012). (10.1038/nature10840) / Nature by M Khajavikhan (2012)
  104. Yokoyama, H. & Brorson, S. D. Rate-equation analysis of microcavity lasers. J. Appl. Phys. 66, 4801–4805 (1989). (10.1063/1.343793) / J. Appl. Phys. by H Yokoyama (1989)
  105. Salehzadeh, O., Djavid, M., Tran, N. H., Shih, I. & Mi, Z. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett. 15, 5302–5306 (2015). (10.1021/acs.nanolett.5b01665) / Nano Lett. by O Salehzadeh (2015)
  106. Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nature Photon. 9, 466–470 (2015). (10.1038/nphoton.2015.104) / Nature Photon. by A Chernikov (2015)
  107. Hanson, R. & Awschalom, D. D. Coherent manipulation of single spins in semiconductors. Nature 453, 1043–1049 (2008). (10.1038/nature07129) / Nature by R Hanson (2008)
  108. O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009). (10.1038/nphoton.2009.229) / Nature Photon. by JL O'Brien (2009)
  109. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nature Nanotech. 10, 507–511 (2015). (10.1038/nnano.2015.79) / Nature Nanotech. by C Chakraborty (2015)
  110. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nature Nanotech. 10, 497–502 (2015). (10.1038/nnano.2015.75) / Nature Nanotech. by Y-M He (2015)
  111. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nature Nanotech. 10, 503–506 (2015). (10.1038/nnano.2015.67) / Nature Nanotech. by M Koperski (2015)
  112. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2 . Nature Nanotech. 10, 491–496 (2015). (10.1038/nnano.2015.60) / Nature Nanotech. by A Srivastava (2015)
  113. Aharonovich, I., Greentree, A. D. & Prawer, S. Diamond photonics. Nature Photon. 5, 397–405 (2011). (10.1038/nphoton.2011.54) / Nature Photon. by I Aharonovich (2011)
  114. Deng, H., Haug, H. & Yamamoto, Y. Exciton–polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010). (10.1103/RevModPhys.82.1489) / Rev. Mod. Phys. by H Deng (2010)
  115. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nature Nanotech. 10, 534–540 (2015). (10.1038/nnano.2015.70) / Nature Nanotech. by X Cui (2015)
  116. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014). (10.1038/nnano.2014.35) / Nature Nanotech. by L Li (2014)
  117. Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nature Nanotech. 10, 517–521 (2015). (10.1038/nnano.2015.71) / Nature Nanotech. by X Wang (2015)
  118. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotech. 9, 682–686 (2014). (10.1038/nnano.2014.167) / Nature Nanotech. by X Hong (2014)
  119. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Commun. 6, 6242 (2015). (10.1038/ncomms7242) / Nature Commun. by P Rivera (2015)
  120. Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401 (2013). (10.1103/PhysRevB.87.201401) / Phys. Rev. B by LM Malard (2013)
  121. Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nature Nanotech. 10, 407–411 (2015). (10.1038/nnano.2015.73) / Nature Nanotech. by KL Seyler (2015)
  122. Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013). (10.1021/nl401561r) / Nano Lett. by Y Li (2013)
  123. Kumar, N. et al. Second harmonic microscopy of monolayer MoS2 . Phys. Rev. B 87, 161403 (2013). (10.1103/PhysRevB.87.161403) / Phys. Rev. B by N Kumar (2013)
Dates
Type When
Created 9 years, 4 months ago (March 31, 2016, 1:28 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:16 p.m.)
Indexed 16 minutes ago (Aug. 21, 2025, 7:50 a.m.)
Issued 9 years, 4 months ago (March 31, 2016)
Published 9 years, 4 months ago (March 31, 2016)
Published Online 9 years, 4 months ago (March 31, 2016)
Published Print 9 years, 4 months ago (April 1, 2016)
Funders 0

None

@article{Mak_2016, title={Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides}, volume={10}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2015.282}, DOI={10.1038/nphoton.2015.282}, number={4}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Mak, Kin Fai and Shan, Jie}, year={2016}, month=mar, pages={216–226} }