Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R., & Aspuru-Guzik, A. (2015). Boson sampling for molecular vibronic spectra. Nature Photonics, 9(9), 615–620.

Authors 5
  1. Joonsuk Huh (first)
  2. Gian Giacomo Guerreschi (additional)
  3. Borja Peropadre (additional)
  4. Jarrod R. McClean (additional)
  5. Alán Aspuru-Guzik (additional)
References 49 Referenced 274
  1. Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992). (10.1098/rspa.1992.0167) / Proc. R. Soc. Lond. A by D Deutsch (1992)
  2. Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997). (10.1103/PhysRevLett.79.325) / Phys. Rev. Lett by LK Grover (1997)
  3. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999). (10.1137/S0036144598347011) / SIAM Rev by PW Shor (1999)
  4. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014). (10.1103/RevModPhys.86.153) / Rev. Mod. Phys by IM Georgescu (2014)
  5. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nature Phys. 8, 285–291 (2012). (10.1038/nphys2253) / Nature Phys by A Aspuru-Guzik (2012)
  6. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nature Phys. 8, 267–276 (2012). (10.1038/nphys2259) / Nature Phys by I Bloch (2012)
  7. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nature Phys. 8, 277–284 (2012). (10.1038/nphys2252) / Nature Phys by R Blatt (2012)
  8. Lloyd, S. Universal quantum simulators. Science 273, 1073–1077 (1996). (10.1126/science.273.5278.1073) / Science by S Lloyd (1996)
  9. Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005). (10.1126/science.1113479) / Science by A Aspuru-Guzik (2005)
  10. Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. & Aspuru-Guzik, A. Simulating chemistry using quantum computers. Ann. Rev. Phys. Chem. 62, 185–207 (2011). (10.1146/annurev-physchem-032210-103512) / Ann. Rev. Phys. Chem by I Kassal (2011)
  11. Babbush, R., McClean, J., Wecker, D., Aspuru-Guzik, A. & Wiebe, N. Chemical basis of Trotter–Suzuki errors in quantum chemistry simulation. Phys. Rev. A 91, 022311 (2015). (10.1103/PhysRevA.91.022311) / Phys. Rev. A by R Babbush (2015)
  12. Aaronson, S. & Arkhipov, A. in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (eds Fortnow, L. & Vadhan, S.) 333–342 (ACM, 2011). / Proceedings of the 43rd Annual ACM Symposium on Theory of Computing by S Aaronson (2011)
  13. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013). (10.1126/science.1231692) / Science by JB Spring (2013)
  14. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013). (10.1126/science.1231440) / Science by MA Broome (2013)
  15. Crespi, A. et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photon. 7, 545–549 (2013). (10.1038/nphoton.2013.112) / Nature Photon by A Crespi (2013)
  16. Tillmann, M. et al. Experimental boson sampling. Nature Photon. 7, 540–544 (2013). (10.1038/nphoton.2013.102) / Nature Photon by M Tillmann (2013)
  17. Shchesnovich, V. S. Conditions for an experimental boson-sampling computer to disprove the extended Church–Turing thesis. Preprint at http://arxiv.org/abs/1403.4459v6 (2014).
  18. Rohde, P. P., Motes, K. R., Knott, P. A. & Munro, W. J. Will boson-sampling ever disprove the extended Church–Turing thesis? Preprint at http://arxiv.org/abs/1401.2199v2 (2014).
  19. Sharp, T. E. & Rosenstock, H. M. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964). (10.1063/1.1725748) / J. Chem. Phys by TE Sharp (1964)
  20. Doktorov, E. V., Malkin, I. A. & Man'ko, V. I. Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck–Condon principle. J. Mol. Spectrosc. 64, 302–326 (1977). (10.1016/0022-2852(77)90269-7) / J. Mol. Spectrosc by EV Doktorov (1977)
  21. Malmqvist, P.-Å. & Forsberg, N. Franck–Condon factors for multidimensional harmonic oscillators. Chem. Phys. 228, 227–240 (1998). (10.1016/S0301-0104(97)00347-9) / Chem. Phys by P-Å Malmqvist (1998)
  22. Ruhoff, P. T. & Ratner, M. A. Algorithm for computing Franck–Condon overlap integrals. Int. J. Quantum Chem. 77, 383–392 (2000). (10.1002/(SICI)1097-461X(2000)77:1<383::AID-QUA38>3.0.CO;2-0) / Int. J. Quantum Chem by PT Ruhoff (2000)
  23. Jankowiak, H.-C., Stuber, J. L. & Berger, R. Vibronic transitions in large molecular systems: rigorous prescreening conditions for Franck–Condon factors. J. Chem. Phys. 127, 234101 (2007). (10.1063/1.2805398) / J. Chem. Phys by H-C Jankowiak (2007)
  24. Santoro, F., Lami, A., Improta, R. & Barone, V. Effective method to compute vibrationally resolved optical spectra of large molecules at finite temperature in the gas phase and in solution. J. Chem. Phys. 126, 184102 (2007). (10.1063/1.2721539) / J. Chem. Phys by F Santoro (2007)
  25. Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011). (10.1021/jz200866s) / J. Phys. Chem. Lett by J Hachmann (2011)
  26. Gross, M. et al. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 405, 661–665 (2000). (10.1038/35015037) / Nature by M Gross (2000)
  27. Dierksen, M. & Grimme, S. The vibronic structure of electronic absorption spectra of large molecules: a time-dependent density functional study on the influence of ‘exact’ Hartree–Fock exchange. J. Phys. Chem. A 108, 10225–10237 (2004). (10.1021/jp047289h) / J. Phys. Chem. A by M Dierksen (2004)
  28. Hayes, D., Wen, J., Panitchayangkoon, G., Blankenship, R. E. & Engel, G. S. Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discuss. 150, 459–469 (2011). (10.1039/c0fd00030b) / Faraday Discuss by D Hayes (2011)
  29. Choi, K.-W., Lee, J.-H. & Kim, S. K. Ionization spectroscopy of DNA base: vacuum-ultraviolet mass-analyzed threshold ionization spectroscopy of jet-cooled thymine. J. Am. Chem. Soc. 127, 15674–15675 (2005). (10.1021/ja055018u) / J. Am. Chem. Soc by K-W Choi (2005)
  30. Duschinsky, F. The importance of the electron spectrum in multiatomic molecules. Concerning the Franck–Condon principle. Acta Physicochim. URSS 7, 551–566 (1937). / Acta Physicochim. URSS by F Duschinsky (1937)
  31. Ma, X. & Phodes, W. Multimode squeeze operators and squeezed states. Phys. Rev. A 41, 4625–4631 (1990). (10.1103/PhysRevA.41.4625) / Phys. Rev. A by X Ma (1990)
  32. Scheel, S. Permanents in linear optical networks. Preprint at http://arxiv.org/abs/quant-ph/0406127 (2004).
  33. Huh, J. Unified Description of Vibronic Transitions with Coherent States. PhD thesis, Goethe Univ. Frankfurt (2011).
  34. Lund, A. P. et al. Boson sampling from a Gaussian state. Phys. Rev. Lett. 113, 100502 (2014). (10.1103/PhysRevLett.113.100502) / Phys. Rev. Lett by AP Lund (2014)
  35. Santoro, F., Lami, A., Improta, R., Bloino, J. & Barone, V. Effective method for the computation of optical spectra of large molecules at finite temperature including the Duschinsky and Herzberg–Teller effect: the Q x band of porphyrin as a case study. J. Chem. Phys. 128, 224311 (2008). (10.1063/1.2929846) / J. Chem. Phys by F Santoro (2008)
  36. Rahimi-Keshari, S., Lund, A. P. & Ralph, T. C. What can quantum optics say about complexity theory? Preprint at http://arxiv.org/abs/1408.3712v1 (2014).
  37. Olson, J. P., Seshadreesan, K. P., Motes, K. R., Rohde, P. P. & Dowling, J. P. Sampling arbitrary photon-added or photon-subtracted squeezed states is in the same complexity class as boson sampling. Phys. Rev. A 91, 022317 (2015). (10.1103/PhysRevA.91.022317) / Phys. Rev. A by JP Olson (2015)
  38. Berger, R. & Klessinger, M. Algorithms for exact counting of energy levels of spectroscopic transitions at different temperatures. J. Comput. Chem. 18, 1312–1319 (1997). (10.1002/(SICI)1096-987X(19970730)18:10<1312::AID-JCC5>3.0.CO;2-Q) / J. Comput. Chem by R Berger (1997)
  39. Berger, R., Fischer, C. & Klessinger, M. Calculation of the vibronic fine structure in electronic spectra at higher temperatures. 1. Benzene and pyrazine. J. Phys. Chem. 102, 7157–7176 (1998). (10.1021/jp981597w) / J. Phys. Chem by R Berger (1998)
  40. Leach, S. et al. He I photoelectron spectroscopy of four isotopologues of formic acid: HCOOH, HCOOD, DCOOH and DCOOD. Chem. Phys. 286, 15–43 (2003). (10.1016/S0301-0104(02)00917-5) / Chem. Phys by S Leach (2003)
  41. Carolan, J. et al. On the experimental verification of quantum complexity in linear optics. Nature Photon. 8, 621–626 (2014). (10.1038/nphoton.2014.152) / Nature Photon by J Carolan (2014)
  42. Josse, V., Sabuncu, M., Cerf, N., Leuchs, G. & Andersen, U. Universal optical amplification without nonlinearity. Phys. Rev. Lett. 96, 163602 (2006). (10.1103/PhysRevLett.96.163602) / Phys. Rev. Lett by V Josse (2006)
  43. Yoshikawa, J.-I. et al. Demonstration of deterministic and high fidelity squeezing of quantum information. Phys. Rev. A 76, 060301(R) (2007). (10.1103/PhysRevA.76.060301) / Phys. Rev. A by J-I Yoshikawa (2007)
  44. Miwa, Y. et al. Exploring a new regime for processing optical qubits: squeezing and unsqueezing single photons. Phys. Rev. Lett. 113, 013601 (2014). (10.1103/PhysRevLett.113.013601) / Phys. Rev. Lett by Y Miwa (2014)
  45. Jerrum, M., Sinclair, A. & Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM 51, 671–697 (2004). (10.1145/1008731.1008738) / J. ACM by M Jerrum (2004)
  46. Huh, J., Neff, M., Rauhut, G. & Berger, R. Franck–Condon profiles in photodetachment–photoelectron spectra of HS2− and DS2− based on vibrational configuration interaction wavefunctions. Mol. Phys. 108, 409–423 (2010). (10.1080/00268970903521178) / Mol. Phys by J Huh (2010)
  47. Huh, J. & Berger, R. Application of time-independent cumulant expansion to calculation of Franck–Condon profiles for large molecular systems. Faraday Discuss. 150, 363–373 (2011). (10.1039/c0fd00014k) / Faraday Discuss by J Huh (2011)
  48. Huh, J. & Berger, R. Coherent state-based generating function approach for Franck–Condon transitions and beyond. J. Phys. Conf. Ser. 380, 012019 (2012). (10.1088/1742-6596/380/1/012019) / J. Phys. Conf. Ser by J Huh (2012)
  49. Kan, R. From moments of sum to moments of product. J. Multivariate Anal. 99, 542–554 (2008). (10.1016/j.jmva.2007.01.013) / J. Multivariate Anal by R Kan (2008)
Dates
Type When
Created 10 years ago (Aug. 24, 2015, 12:48 p.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:15 p.m.)
Indexed 1 week, 3 days ago (Aug. 21, 2025, 1:42 p.m.)
Issued 10 years ago (Aug. 24, 2015)
Published 10 years ago (Aug. 24, 2015)
Published Online 10 years ago (Aug. 24, 2015)
Published Print 10 years ago (Sept. 1, 2015)
Funders 0

None

@article{Huh_2015, title={Boson sampling for molecular vibronic spectra}, volume={9}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2015.153}, DOI={10.1038/nphoton.2015.153}, number={9}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Huh, Joonsuk and Guerreschi, Gian Giacomo and Peropadre, Borja and McClean, Jarrod R. and Aspuru-Guzik, Alán}, year={2015}, month=aug, pages={615–620} }