Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H., & Kanatzidis, M. G. (2014). Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics, 8(6), 489–494.

Authors 5
  1. Feng Hao (first)
  2. Constantinos C. Stoumpos (additional)
  3. Duyen Hanh Cao (additional)
  4. Robert P. H. Chang (additional)
  5. Mercouri G. Kanatzidis (additional)
References 35 Referenced 2,681
  1. Bisquert, J. Photovoltaics: the two sides of solar energy. Nature Photon. 2, 648–649 (2008). (10.1038/nphoton.2008.212) / Nature Photon. by J Bisquert (2008)
  2. Chung, I., Lee, B., He, J., Chang, R. P. H. & Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012). (10.1038/nature11067) / Nature by I Chung (2012)
  3. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). (10.1021/ja809598r) / J. Am. Chem. Soc. by A Kojima (2009)
  4. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012). (10.1021/ja307789s) / J. Am. Chem. Soc. by L Etgar (2012)
  5. Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 10.1038/srep00591(2012). (10.1038/srep00591) / Sci. Rep. by H-S Kim (2012)
  6. Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 487–492 (2013). (10.1038/nphoton.2013.80) / Nature Photon. by JH Heo (2013)
  7. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). (10.1038/nature12509) / Nature by M Liu (2013)
  8. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). (10.1038/nature12340) / Nature by J Burschka (2013)
  9. Kim, H.-S. et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013). (10.1021/nl400286w) / Nano Lett. by H-S Kim (2013)
  10. Abrusci, A. et al. High-performance perovskite–polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett. 13, 3124–3128 (2013). (10.1021/nl401044q) / Nano Lett. by A Abrusci (2013)
  11. Edri, E., Kirmayer, S., Cahen, D. & Hodes, G. High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. J. Phys. Chem. Lett. 4, 897–902 (2013). (10.1021/jz400348q) / J. Phys. Chem. Lett. by E Edri (2013)
  12. Bi, D., Yang, L., Boschloo, G., Hagfeldt, A. & Johansson, E. M. J. Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013). (10.1021/jz400638x) / J. Phys. Chem. Lett. by D Bi (2013)
  13. Ball, J. M., Lee, M. M., Hey, A. & Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6, 1739–1743 (2013). (10.1039/c3ee40810h) / Energy Environ. Sci. by JM Ball (2013)
  14. Laban, W. A. & Etgar, L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ. Sci. 6, 3249–3253 (2013). (10.1039/c3ee42282h) / Energy Environ. Sci. by WA Laban (2013)
  15. Borriello, I., Cantele, G. & Ninno, D. Ab initio investigation of hybrid organic–inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008). (10.1103/PhysRevB.77.235214) / Phys. Rev. B by I Borriello (2008)
  16. Mitzi, D. B. Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Prog. Inorg. Chem. 48, 1–121 10.1002/9780470166499.ch1(1999). (10.1002/9780470166499.ch1) / Prog. Inorg. Chem. by DB Mitzi (1999)
  17. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). (10.1126/science.286.5441.945) / Science by CR Kagan (1999)
  18. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). (10.1126/science.1228604) / Science by MM Lee (2012)
  19. Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013). (10.1021/jz4020162) / J. Phys. Chem. Lett. by HJ Snaith (2013)
  20. Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013). (10.1021/jz400892a) / J. Phys. Chem. Lett. by N-G Park (2013)
  21. Hodes, G. Perovskite-based solar cells. Science 342, 317–318 (2013). (10.1126/science.1245473) / Science by G Hodes (2013)
  22. Bisquert, J. The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013). (10.1021/jz401435d) / J. Phys. Chem. Lett. by J Bisquert (2013)
  23. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). (10.1021/ic401215x) / Inorg. Chem. by CC Stoumpos (2013)
  24. Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3 . Science 342, 344–347 (2013). (10.1126/science.1243167) / Science by G Xing (2013)
  25. Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). (10.1126/science.1243982) / Science by SD Stranks (2013)
  26. Umari, P., Mosconi, E. & de Angelis, F. Relativistic solar cells. Preprint at http://arxiv-web.arxiv.org/abs/1309.4895 (2013).
  27. Gate, L. F. Comparison of the photon diffusion model and Kubelka–Munk equation with the exact solution of the radiative transport equation. Appl. Opt. 13, 236–238 (1974). (10.1364/AO.13.000236) / Appl. Opt. by LF Gate (1974)
  28. Rein, S. Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications (Springer, 2004). / Lifetime Spectroscopy: A Method of Defect Characterization in Silicon for Photovoltaic Applications by S Rein (2004)
  29. Takahashi, Y., Hasegawa, H., Takahashi, Y. & Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013). (10.1016/j.jssc.2013.07.008) / J. Solid State Chem. by Y Takahashi (2013)
  30. Ito, S. et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008). (10.1016/j.tsf.2007.05.090) / Thin Solid Films by S Ito (2008)
  31. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998). (10.1038/26936) / Nature by U Bach (1998)
  32. Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 10.1021/nl3007165(2013). (10.1021/nl3007165) / Nano Lett. by JH Noh (2013)
  33. Kim, H.-S. et al. Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nature Commun. 4, 2242 10.1038/ncomms3242(2013). (10.1038/ncomms3242) / Nature Commun. by H-S Kim (2013)
  34. Docampo, P. & Snaith, H. J. Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells. Nanotechnology 22, 225403 (2011). (10.1088/0957-4484/22/22/225403) / Nanotechnology by P Docampo (2011)
  35. Mitzi, D. B., Dimitrakopoulos, C. D. & Kosbar, L. L. Structurally tailored organic–inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 13, 3728–3740 (2001). (10.1021/cm010105g) / Chem. Mater. by DB Mitzi (2001)
Dates
Type When
Created 11 years, 3 months ago (May 3, 2014, 12:43 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:14 p.m.)
Indexed 2 days, 10 hours ago (Aug. 30, 2025, 12:54 p.m.)
Issued 11 years, 3 months ago (May 4, 2014)
Published 11 years, 3 months ago (May 4, 2014)
Published Online 11 years, 3 months ago (May 4, 2014)
Published Print 11 years, 3 months ago (June 1, 2014)
Funders 0

None

@article{Hao_2014, title={Lead-free solid-state organic–inorganic halide perovskite solar cells}, volume={8}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2014.82}, DOI={10.1038/nphoton.2014.82}, number={6}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Hao, Feng and Stoumpos, Constantinos C. and Cao, Duyen Hanh and Chang, Robert P. H. and Kanatzidis, Mercouri G.}, year={2014}, month=may, pages={489–494} }