Crossref
journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
References
99
Referenced
6,500
- Turner, G. Global Renewable Energy Market Outlook 2013. Bloomberg New Energy Finance https://www.bnef.com/insightdownload/7526/pdf (11 April 2014). / Bloomberg New Energy Finance by G Turner (2014)
-
Park, N.-G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell. J. Phys. Chem. Lett. 4, 2423–2429 (2013).
(
10.1021/jz400892a
) / J. Phys. Chem. Lett. by N-G Park (2013) -
Snaith, H. J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4, 3623–3630 (2013).
(
10.1021/jz4020162
) / J. Phys. Chem. Lett. by HJ Snaith (2013) -
Kim, H.-S., Im, S. H. & Park, N.-G. Organolead halide perovskite: new horizons in solar cell research. J. Phys. Chem. C 118, 5615–5625 (2014).
(
10.1021/jp409025w
) / J. Phys. Chem. C by H-S Kim (2014) -
Hodes, G. & Cahen, D. Photovoltaics: perovskite cells roll forward. Nature Photon. 8, 87–88 (2014).
(
10.1038/nphoton.2014.5
) / Nature Photon. by G Hodes (2014) -
Service, R. F. Perovskite solar cells keep on surging. Science 344, 458 (2014).
(
10.1126/science.344.6183.458
) / Science by RF Service (2014) -
Li, C. et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 64, 702–707 (2008).
(
10.1107/S0108768108032734
) / Acta Crystallogr. by C Li (2008) -
McKinnon, N. K., Reeves, D. C. & Akabas, M. H. 5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals. J. Gen. Physiol. 138, 453–466 (2011).
(
10.1085/jgp.201110686
) / J. Gen. Physiol. by NK McKinnon (2011) -
Cohen, B. N., Labarca, C., Davidson, N. & Lester, H. A. Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. J. Gen. Physiol. 100, 373–400 (1992).
(
10.1085/jgp.100.3.373
) / J. Gen. Physiol. by BN Cohen (1992) -
Im, J.-H., Chung, J., Kim, S.-J. & Park, N.-G. Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)Pbl3 . Nanoscale Res. Lett. 7, 353 (2012).
(
10.1186/1556-276X-7-353
) / Nanoscale Res. Lett. by J-H Im (2012) -
Koh, T. M. et al. Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C http://dx.doi.org/10.1021/jp411112k (13 December 2013).
(
10.1021/jp411112k
) -
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014).
(
10.1039/c3ee43822h
) / Energy Environ. Sci. by GE Eperon (2014) -
Pang, S. et al. NH2CH=NH2Pbl3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014).
(
10.1021/cm404006p
) / Chem. Mater. by S Pang (2014) -
Umari, P., Mosconi, E. & De Angelis, F. Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014).
(
10.1038/srep04467
) / Sci. Rep. by P Umari (2014) -
Topsöe, H. Krystallographisch-chemische untersuchungen homologer verbindungen. Zeitschrift für Kristallographie 8, 246–296 (1884).
(
10.1524/zkri.1884.8.1.246
) / Zeitschrift für Kristallographie by H Topsöe (1884) -
Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A. & Guloy, A. M. Conducting layered organic–inorganic halides containing <110>-oriented perovskite sheets. Science 267, 1473–1476 (1995).
(
10.1126/science.267.5203.1473
) / Science by DB Mitzi (1995) -
Mitzi, D. B., Chondroudis, K. & Kagan, C. R. Organic-inorganic electronics. IBM J. Res. Dev. 45, 29–45 (2001).
(
10.1147/rd.451.0029
) / IBM J. Res. Dev. by DB Mitzi (2001) - Kojima, A., Teshima, K., Miyasaka, T. & Shirai, Y. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). in Proc. 210th ECS Meeting (ECS, 2006). / Proc. 210th ECS Meeting by A Kojima (2006)
-
Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
(
10.1021/ja809598r
) / J. Am. Chem. Soc. by A Kojima (2009) - Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (11). in Proc. 214th ECS Meeting (ECS, 2014). / Proc. 214th ECS Meeting by A Kojima (2014)
-
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011).
(
10.1039/c1nr10867k
) / Nanoscale by J-H Im (2011) -
Kim, H.-S. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).
(
10.1038/srep00591
) / Sci. Rep. by H-S Kim (2012) -
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).
(
10.1126/science.1228604
) / Science by MM Lee (2012) -
Salbeck, J., Yu, N., Bauer, J., Weissörtel, F. & Bestgen, H. Low molecular organic glasses for blue electroluminescence. Synthetic Metals 91, 209–215 (1997).
(
10.1016/S0379-6779(98)80033-7
) / Synthetic Metals by J Salbeck (1997) -
Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).
(
10.1038/26936
) / Nature by U Bach (1998) -
Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
(
10.1126/science.1243982
) / Science by SD Stranks (2013) -
Heo, J. H. et al. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photon. 7, 486–491 (2013).
(
10.1038/nphoton.2013.80
) / Nature Photon. by JH Heo (2013) -
Noh, J. H, Im, S. H., Heo, J. H., Mandal, T. N. & Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).
(
10.1021/nl400349b
) / Nano Lett. by JH Noh (2013) -
Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).
(
10.1021/ic401215x
) / Inorg. Chem. by CC Stoumpos (2013) -
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
(
10.1038/nature12340
) / Nature by J Burschka (2013) -
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 43). Prog. Photovolt. 22, 1–9 (2014).
(
10.1002/pip.2452
) / Prog. Photovolt. by MA Green (2014) -
Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).
(
10.1038/nature12509
) / Nature by M Liu (2013) - Burschka, J. High performance solid-state mesoscopic solar cells. PhD thesis, École Polytechnique Fédérale de Lausanne 107 (2013).
-
Chen, Q. et al. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014).
(
10.1021/ja411509g
) / J. Am. Chem. Soc. by Q Chen (2014) -
Liu, D. & Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photon. 8, 133–138 (2014).
(
10.1038/nphoton.2013.342
) / Nature Photon. by D Liu (2014) -
Christians, J. A., Fung, R. C. M. & Kamat, P. V. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014).
(
10.1021/ja411014k
) / J. Am. Chem. Soc. by JA Christians (2014) - Ito, S. Pb perovskite solar cells using inorganic hole conductor of CuSCN. Paper Y-RS-14 in 2013 MRS Fall Meeting & Exhibit (MRS, 2013). / 2013 MRS Fall Meeting & Exhibit by S Ito (2013)
-
Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E. & Snaith, H. J. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Commun. 4, 2761 (2013).
(
10.1038/ncomms3761
) / Nature Commun. by P Docampo (2013) -
Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers. Nature Photon. 8, 128–132 (2014).
(
10.1038/nphoton.2013.341
) / Nature Photon. by O Malinkiewicz (2014) -
Sun, S. et al. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7, 399–407 (2014).
(
10.1039/C3EE43161D
) / Energy Environ. Sci. by S Sun (2014) -
Wang, J. T.-W. et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14, 724–730 (2014).
(
10.1021/nl403997a
) / Nano Lett. by JT-W Wang (2014) -
Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A. & Snaith, H. J. Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142–1147 (2014).
(
10.1039/C3EE43707H
) / Energy Environ. Sci. by K Wojciechowski (2014) -
Eperon, G. E., Burlakov, V. M., Goriely, A. & Snaith, H. J. Neutral color semitransparent microstructured perovskite solar cells. ACS Nano 8, 591–598 (2014).
(
10.1021/nn4052309
) / ACS Nano by GE Eperon (2014) -
Wang, J. et al. Performance improvement of amorphous silicon see-through solar modules with high transparency by the multi-line ns-laser scribing technique. Opt. Las. Eng. 51, 1206–1212 (2013).
(
10.1016/j.optlaseng.2013.04.015
) / Opt. Las. Eng. by J Wang (2013) -
Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).
(
10.1021/jz401532q
) / J. Phys. Chem. Lett. by J Even (2013) -
Sell, D. D. & Lawaetz, P. New analysis of direct exciton transitions: application to GaP. Phys. Rev. Lett. 26, 311–314 (1971).
(
10.1103/PhysRevLett.26.311
) / Phys. Rev. Lett. by DD Sell (1971) -
Even, J., Pedesseau, L., Dupertuis, M.-A., Jancu, J.-M. & Katan, C. Electronic model for self-assembled hybrid organic/perovskite semiconductors: reverse band edge electronic states ordering and spin-orbit coupling. Phys. Rev. B 86, 205301 (2012).
(
10.1103/PhysRevB.86.205301
) / Phys. Rev. B by J Even (2012) -
Ishihara, T. Optical properties of PbI-based perovskite structures. J. Luminescence 60, 269–274 (1994).
(
10.1016/0022-2313(94)90145-7
) / J. Luminescence by T Ishihara (1994) -
D'Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nature Commun. 5, 3586 10.1038/ncomms4586(2014).
(
10.1038/ncomms4586
) / Nature Commun. by V D'Innocenzo (2014) -
Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968).
(
10.1016/0025-5408(68)90023-8
) / Mater. Res. Bull. by J Tauc (1968) -
Elliott, R. J. Intensity of optical absorption by excitons. Phys. Rev. 108, 1384–1389 (1957).
(
10.1103/PhysRev.108.1384
) / Phys. Rev. by RJ Elliott (1957) -
Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 . Solid State Commun. 127, 619–623 (2003).
(
10.1016/S0038-1098(03)00566-0
) / Solid State Commun. by K Tanaka (2003) -
Combescot, M. Thermodynamics of an electron-hole system in semiconductors. Phys. Status Solidi B 86, 349–358 (1978).
(
10.1002/pssb.2220860141
) / Phys. Status Solidi B by M Combescot (1978) -
Corkish, R., Chan, D. S.-P. & Green, M. A. Excitons in silicon diodes and solar cells: a three-particle theory. J. Appl. Phys. 79, 195–203 (1996).
(
10.1063/1.360931
) / J. Appl. Phys. by R Corkish (1996) - Geelhaar, F. Coulomb Correlation Effects in Silicon Devices (Series in Microelectronics 147 Hartung-Gorre, 2004). / Coulomb Correlation Effects in Silicon Devices by F Geelhaar (2004)
- Green, M. A. Many-body theory applied to solar cells: excitonic and related carrier correlation effects in Proc. 26th IEEE Photovoltaic Specialists Conference (1997). / Proc. 26th IEEE Photovoltaic Specialists Conference by MA Green (1997)
-
Green, M. A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovolt. 20, 472–476 (2012).
(
10.1002/pip.1147
) / Prog. Photovolt. by MA Green (2012) -
Ungár, T. The meaning of size obtained from broadened X-ray diffraction peaks. Adv. Eng. Mater. 5, 323–329 (2003).
(
10.1002/adem.200310086
) / Adv. Eng. Mater. by T Ungár (2003) - Edalati, K. & Horita, Z. Significance of homologous temperature in softening behavior and grain size of pure metals processed by high-pressure torsion. Mater. Sci. Eng. A 528, 7514–7523 (2011). / A by K Edalati (2011)
-
Edri, E. et al. Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014).
(
10.1021/nl404454h
) / Nano Lett. by E Edri (2014) -
Liang, K., Mitzi D. B. & Prikas, M. T. Synthesis and characterization of organic–inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem. Mater. 10, 403–411 (1998).
(
10.1021/cm970568f
) / Chem. Mater. by K Liang (1998) -
Kim, J., Lee, S.-H., Lee, J. H. & Hong, K.-H. The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014).
(
10.1021/jz500370k
) / J. Phys. Chem. Lett. by J Kim (2014) -
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).
(
10.1063/1.4864778
) / Appl. Phys. Lett. by W-J Yin (2014) -
Onoda-Yamamuro, N., Matsuo, T. & Suga, H. Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53, 935–939 (1992).
(
10.1016/0022-3697(92)90121-S
) / J. Phys. Chem. Solids by N Onoda-Yamamuro (1992) -
Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373 (1987).
(
10.1063/1.453467
) / J. Chem. Phys. by A Poglitsch (1987) -
Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. & Miura, N. Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3 . Physica B 201, 427–430 (1994).
(
10.1016/0921-4526(94)91130-4
) / Physica B by M Hirasawa (1994) -
Yuan, Y., Xiao, Z., Yang, B. & Huang, J. Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2, 6027–6041 (2014).
(
10.1039/C3TA14188H
) / J. Mater. Chem. A by Y Yuan (2014) -
Frost, J. M. et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014).
(
10.1021/nl500390f
) / Nano Lett. by JM Frost (2014) -
Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).
(
10.1021/jz500113x
) / J. Phys. Chem. Lett. by HJ Snaith (2014) - Hoke, E. T., Unger, E. L., Vandewal, K. & McGehee, M. D. Charge recombination and transport in hybrid perovskite solar cells: why do perovskite solar cells have large Voc? in Proc. MRS Fall Meeting and Exhibit (2013). / Proc. MRS Fall Meeting and Exhibit by ET Hoke (2013)
-
Marchioro, A. et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nature Photon. 8, 250–255 (2014).
(
10.1038/nphoton.2013.374
) / Nature Photon. by A Marchioro (2014) -
Edri, E. et al. Elucidating the charge carrier separation mechanism in CH3NH3PbI3-xClx perovskite solar cells. Nature Commun. 5, 3461 (2014).
(
10.1038/ncomms4461
) / Nature Commun. by E Edri (2014) -
Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
(
10.1126/science.1243982
) / Science by SD Stranks (2013) -
Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3Pbl3 . Science 342, 344–347 (2013).
(
10.1126/science.1243167
) / Science by G Xing (2013) -
Anderson, R. L. Germanium-gallium arsenide heterojunction. IBM J. Res. Dev. 4, 283–287 (1960).
(
10.1147/rd.43.0283
) / IBM J. Res. Dev. by RL Anderson (1960) - Peressi, M., Baldereschi, A. & Baroni, S. in Characterization of Semiconductor Heterostructures and Nanostructures 2nd Edn (eds Agostini G. & Lamberti, C) Ch. 2 (Elsevier, 2008). / Characterization of Semiconductor Heterostructures and Nanostructures by M Peressi (2008)
-
Kavan, L. & Grätzel, M. Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta 40, 643–652 (1995).
(
10.1016/0013-4686(95)90400-W
) / Electrochimica Acta by L Kavan (1995) -
Green, M. A. The depletion layer collection efficiency for p-n junction, Schottky diode, and surface insulator solar cells. J. Appl. Phys. 47, 547–554 (1976).
(
10.1063/1.322658
) / J. Appl. Phys. by MA Green (1976) -
Lindblad, R. et al. Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014).
(
10.1021/jz402749f
) / J. Phys. Chem. Lett. by R Lindblad (2014) -
Schulz, P. et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014).
(
10.1039/c4ee00168k
) / Energy Environ. Sci. by P Schulz (2014) - First Solar Sets New World Record for CdTe Solar Cell Efficiency. http://investor.firstsolar.com/releasedetail.cfm?releaseid=743398 (26 February 2013).
- Widmar, M. First Solar Q4′13 Earnings Call. http://files.shareholder.com/downloads/fslr/1347979521x0x728649/bddfd430-a025-43e4-8b91-c1915066b274/q413_earnings_call_presentation_final1.pdf (25 February 2014). / First Solar Q4′13 Earnings Call by M Widmar (2014)
- De Jong, T. First Solar Manufacturing Update. http://files.shareholder.com/downloads/fslr/3084163747x0x652323/53f7a04f-fcf5-4729-8bb2-0abf6033c046/4.%20fsanalystday_manufacturing.pdf (11 April 2014). / First Solar Manufacturing Update by T De Jong (2014)
- Garabedian, R. Technology Update. 2013 Analyst Meeting, First Solar. http://files.shareholder.com/downloads/FSLR/3084163747x0x652328/d0af6554-e193-47e4-9dd0-59b02968272b/fsanalystday_technologyupdate.pdf (11 April 2014). / First Solar by R Garabedian (2014)
- Rinaldi, N. Solar PV Module Costs to Fall to 36 Cents per Watt by 2017 http://www.greentechmedia.com/articles/read/solar-pv-module-costs-to-fall-to-36-cents-per-watt (18 June 2013). / Solar PV Module Costs to Fall to 36 Cents per Watt by 2017 by N Rinaldi (2013)
- Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (recast). http://eur-lex.europa.eu/legal-content/en/TXT/?uri=celex:32011L0065 (8 June 2011).
-
Coyle, D. J. Life prediction for CIGS solar modules part 1: modeling moisture ingress and degradation. Prog. Photovolt. 21, 156–172 (2013).
(
10.1002/pip.1172
) / Prog. Photovolt. by DJ Coyle (2013) -
Coyle, D. J. et al. Life prediction for CIGS solar modules part 2: degradation kinetics, accelerated testing, and encapsulant effects. Prog. Photovolt. 21, 173–186 (2013).
(
10.1002/pip.1171
) / Prog. Photovolt. by DJ Coyle (2013) -
Kempe, M. D., Dameron, A. A. & Reese, M. O. Evaluation of moisture ingress from the perimeter of photovoltaic modules. Prog. Photovolt. http://dx.doi.org/10.1002/pip.2374 (2013).
(
10.1002/pip.2374
) -
Kempe, M. D., Panchagade, D., Reese, M. O. & Dameron, A. A. Modeling moisture ingress through polyisobutylene-based edge-seals. Prog. Photovolt. http://dx.doi.org/10.1002/pip.2465 (2014).
(
10.1002/pip.2465
) -
Niu, G. et al. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014).
(
10.1039/C3TA13606J
) / J. Mater. Chem. A by G Niu (2014) - Carcia, P. F., McLean, R. S. & Hegedus, S. ALD Moisture barrier for Cu(InGa)Se2 solar cells. in Proc. 218th ECS Meeting (ECS, 2010). / Proc. 218th ECS Meeting by PF Carcia (2010)
-
Leijtens, T. et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Commun. 4, 2885 (2013).
(
10.1038/ncomms3885
) / Nature Commun. by T Leijtens (2013) - Werner, J. H., Zapf-Gottwick, R., Koch, M. & Fischer, K. Toxic substances in photovoltaic modules. in Proc. 21st Int. Photovoltaic Sci. Eng. Conf. (2011). / Proc. 21st Int. Photovoltaic Sci. Eng. Conf. by JH Werner (2011)
-
Noel, N. K. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. http://dx.doi.org/10.1039/c4ee01076K (2014).
(
10.1039/c4ee01076K
) -
Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3-xClx . J. Phys. Chem. Lett. 5, 1300–1306 (2014).
(
10.1021/jz500434p
) / J. Phys. Chem. Lett. by C Wehrenfennig (2014) -
Rühle, S. & Dittrich, T. Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients. J. Phys. Chem. B 109, 9522–9526 (2005).
(
10.1021/jp046211y
) / J. Phys. Chem. B by S Rühle (2005) -
Snaith, H. J. & Grätzel, M. The role of a “Schottky barrier” at an electron-collection electrode in solid-state dye-sensitized solar cells. Adv. Mater. 18, 1910–1914 (2006).
(
10.1002/adma.200502256
) / Adv. Mater. by HJ Snaith (2006) -
Kron, G., Rau, U. & Werner, J. H. Influence of the built-in voltage on the fill factor of dye-sensitized solar cells. J. Phys. Chem. B 107, 13258–13261 (2003).
(
10.1021/jp036039i
) / J. Phys. Chem. B by G Kron (2003)
Dates
Type | When |
---|---|
Created | 11 years, 1 month ago (June 27, 2014, 3 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 8:12 p.m.) |
Indexed | 38 minutes ago (Aug. 23, 2025, 7:06 p.m.) |
Issued | 11 years, 1 month ago (June 27, 2014) |
Published | 11 years, 1 month ago (June 27, 2014) |
Published Online | 11 years, 1 month ago (June 27, 2014) |
Published Print | 11 years, 1 month ago (July 1, 2014) |
@article{Green_2014, title={The emergence of perovskite solar cells}, volume={8}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2014.134}, DOI={10.1038/nphoton.2014.134}, number={7}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Green, Martin A. and Ho-Baillie, Anita and Snaith, Henry J.}, year={2014}, month=jun, pages={506–514} }