Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Wang, X., Cheng, Z., Xu, K., Tsang, H. K., & Xu, J.-B. (2013). High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nature Photonics, 7(11), 888–891.

Authors 5
  1. Xiaomu Wang (first)
  2. Zhenzhou Cheng (additional)
  3. Ke Xu (additional)
  4. Hon Ki Tsang (additional)
  5. Jian-Bin Xu (additional)
References 36 Referenced 784
  1. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009). (10.1038/nnano.2009.292) / Nature Nanotech. by F Xia (2009)
  2. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011). (10.1038/nnano.2011.146) / Nature Nanotech. by L Ju (2011)
  3. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011). (10.1038/nature10067) / Nature by M Liu (2011)
  4. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). (10.1038/nature11254) / Nature by J Chen (2012)
  5. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012). (10.1038/nature11253) / Nature by Z Fei (2012)
  6. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012). (10.1038/nnano.2012.59) / Nature Nanotech. by H Yan (2012)
  7. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008). (10.1038/nphys989) / Nature Phys. by ZQ Li (2008)
  8. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008). (10.1126/science.1152793) / Science by F Wang (2008)
  9. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007). (10.1038/nmat1849) / Nature Mater. by AK Geim (2007)
  10. Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008). (10.1103/PhysRevLett.101.196405) / Phys. Rev. Lett. by KF Mak (2008)
  11. Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010). (10.1103/PhysRevLett.105.097401) / Phys. Rev. Lett. by E Hendry (2010)
  12. Liu, X. et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nature Photon. 6, 667–671 (2012). (10.1038/nphoton.2012.221) / Nature Photon. by X Liu (2012)
  13. Jalali, B. et al. Prospects for silicon mid-IR Raman lasers. IEEE J. Sel. Top. Quant. 12, 1618–1627 (2006). (10.1109/JSTQE.2006.885340) / IEEE J. Sel. Top. Quant. by B Jalali (2006)
  14. Keuleyan, S., Lhuillier, E., Brajuskovic, V. & Guyot-Sionnest, P. Mid-infrared HgTe colloidal quantum dot photodetectors. Nature Photon. 5, 489–493 (2011). (10.1038/nphoton.2011.142) / Nature Photon. by S Keuleyan (2011)
  15. Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005). (10.1088/0034-4885/68/10/R01) / Rep. Prog. Phys. by A Rogalski (2005)
  16. Lackner, D. et al. Growth of InAsSb/InAs MQWs on GaSb for mid-IR photodetector applications. J. Cryst. Growth 311, 3563–3567 (2009). (10.1016/j.jcrysgro.2009.04.027) / J. Cryst. Growth by D Lackner (2009)
  17. Stiff-Roberts, A. D. Quantum-dot infrared photodetectors: a review. J. Nanophoton. 3, 031607 (2009). (10.1117/1.3125802) / J. Nanophoton. by AD Stiff-Roberts (2009)
  18. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008). (10.1038/nnano.2008.172) / Nature Nanotech. by EJH Lee (2008)
  19. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009). (10.1021/nl8029493) / Nano Lett. by J Park (2009)
  20. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010). (10.1038/nphoton.2010.40) / Nature Photon. by T Mueller (2010)
  21. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). (10.1126/science.1156965) / Science by RR Nair (2008)
  22. Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nature Nanotech. 7, 363–368 (2012). (10.1038/nnano.2012.60) / Nature Nanotech. by G Konstantatos (2012)
  23. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012). (10.1038/ncomms1911) / Nature Commun. by M Engel (2012)
  24. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012). (10.1021/nl204512x) / Nano Lett. by M Furchi (2012)
  25. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011). (10.1038/ncomms1464) / Nature Commun. by TJ Echtermeyer (2011)
  26. Gu, T. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photon. 6, 554–559 (2012). (10.1038/nphoton.2012.147) / Nature Photon. by T Gu (2012)
  27. Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011). (10.1038/nphoton.2011.102) / Nature Photon. by Q Bao (2011)
  28. Koester, S. J. & Li, M. High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012). (10.1063/1.4704663) / Appl. Phys. Lett. by SJ Koester (2012)
  29. Li, H., Anugrah, Y., Koester, S. J. & Li, M. Optical absorption in graphene integrated on silicon waveguides. Appl. Phys. Lett. 101, 111110 (2012). (10.1063/1.4752435) / Appl. Phys. Lett. by H Li (2012)
  30. Pospischil, A. et al. CMOS-integrated graphene photodetector covering all optical communication bands. Nature Photon. http://dx.doi.org/10.1038/nphoton.2013.240 (15 September 2013). (10.1038/nphoton.2013.240)
  31. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech. 3, 210–215 (2008). (10.1038/nnano.2008.67) / Nature Nanotech. by A Das (2008)
  32. Yang, H. et al. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336, 1140–1143 (2012). (10.1126/science.1220527) / Science by H Yang (2012)
  33. An, Y., Behnam, A., Pop, E. & Ural, A. Metal–semiconductor–metal photodetectors based on graphene/p-type silicon Schottky junctions. Appl. Phys. Lett. 102, 013110 (2013). (10.1063/1.4773992) / Appl. Phys. Lett. by Y An (2013)
  34. Cheng, Z., Chen, X., Wong, C. Y., Xu, K. & Tsang, H. K. Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator. IEEE Photon. J. 4, 1510–1519 (2012). (10.1109/JPHOT.2012.2210700) / IEEE Photon. J. by Z Cheng (2012)
  35. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). (10.1103/PhysRevLett.97.187401) / Phys. Rev. Lett. by AC Ferrari (2006)
  36. Wang, X. M., Xu, J. B., Wang, C. L., Du, J. & Xie, W. G. High-performance graphene devices on SiO2/Si substrate modified by highly ordered self-assembled monolayers. Adv. Mater. 23, 2464–2468 (2011). (10.1002/adma.201100476) / Adv. Mater. by XM Wang (2011)
Dates
Type When
Created 11 years, 11 months ago (Sept. 13, 2013, 3:58 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:10 p.m.)
Indexed 5 hours, 15 minutes ago (Aug. 30, 2025, 12:53 p.m.)
Issued 11 years, 11 months ago (Sept. 15, 2013)
Published 11 years, 11 months ago (Sept. 15, 2013)
Published Online 11 years, 11 months ago (Sept. 15, 2013)
Published Print 11 years, 9 months ago (Nov. 1, 2013)
Funders 0

None

@article{Wang_2013, title={High-responsivity graphene/silicon-heterostructure waveguide photodetectors}, volume={7}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2013.241}, DOI={10.1038/nphoton.2013.241}, number={11}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Wang, Xiaomu and Cheng, Zhenzhou and Xu, Ke and Tsang, Hon Ki and Xu, Jian-Bin}, year={2013}, month=sep, pages={888–891} }