Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Goushi, K., Yoshida, K., Sato, K., & Adachi, C. (2012). Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics, 6(4), 253–258.

Authors 4
  1. Kenichi Goushi (first)
  2. Kou Yoshida (additional)
  3. Keigo Sato (additional)
  4. Chihaya Adachi (additional)
References 36 Referenced 1,508
  1. Mitschke, U. & Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem. 10, 1471–1507 (2000). (10.1039/a908713c) / J. Mater. Chem. by U Mitschke (2000)
  2. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998). (10.1038/25954) / Nature by MA Baldo (1998)
  3. Lamansky, S. et al. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 123, 4304–4312 (2001). (10.1021/ja003693s) / J. Am. Chem. Soc. by S Lamansky (2001)
  4. Tsutsui, T. & Saito, S. Organic Multilayer-Dye Electroluminescent Diodes—Is There Any Difference with Polymer LED? (Kluwer Academic, 1993). (10.1007/978-94-017-1952-0_12) / Organic Multilayer-Dye Electroluminescent Diodes—Is There Any Difference with Polymer LED? by T Tsutsui (1993)
  5. Rothberg, L. J. & Lovinger, A. J. Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 3174–3187 (1996). (10.1557/JMR.1996.0403) / J. Mater. Res. by LJ Rothberg (1996)
  6. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90, 5048–5051 (2001). (10.1063/1.1409582) / J. Appl. Phys. by C Adachi (2001)
  7. Deaton, J. C. et al. E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet exactions in OLEDs. J. Am. Chem. Soc. 132, 9499–9508 (2010). (10.1021/ja1004575) / J. Am. Chem. Soc. by JC Deaton (2010)
  8. Bolton, O., Kangwon, L., Kim, H.-J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nature Chem. 3, 205–210 (2011). (10.1038/nchem.984) / Nature Chem. by O Bolton (2011)
  9. Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K. & Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106, 124510 (2009). (10.1063/1.3273407) / J. Appl. Phys. by DY Kondakov (2009)
  10. Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light-emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009). (10.1002/adma.200900983) / Adv. Mater. by A Endo (2009)
  11. Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011). (10.1063/1.3558906) / Appl. Phys. Lett. by A Endo (2011)
  12. Morteani, A. C. et al. Barrier-free electron–hole capture in polymer blend heterojunction light-emitting diodes. Adv. Mater. 15, 1708–1712 (2003). (10.1002/adma.200305618) / Adv. Mater. by AC Morteani (2003)
  13. Osaheni, J. A. & Jenekhe, S. A. Efficient blue luminescence of a conjugated polymer exciplex. Macromolecules 27, 739–742 (1994). (10.1021/ma00081a018) / Macromolecules by JA Osaheni (1994)
  14. Berggren, M. et al. White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2′-bithiophene] and an oxadiazole derivative. J. Appl. Phys. 76, 7530–7534 (1994). (10.1063/1.357984) / J. Appl. Phys. by M Berggren (1994)
  15. Tamoto, N., Adachi, C. & Nagai, K. Electroluminescence of 1,3,4-oxadiazole and triphenylamine-containing molecules as an emitter in organic multilayer light emitting diodes. Chem. Mater. 9, 1077–1085 (1997). (10.1021/cm960391+) / Chem. Mater. by N Tamoto (1997)
  16. Gebler, D. D. et al. Exciplex emission in bilayer polymer light-emitting devices. Appl. Phys. Lett. 70, 1644–1646 (1997). (10.1063/1.118657) / Appl. Phys. Lett. by DD Gebler (1997)
  17. Wang, J.-F. et al. Exciplex electroluminescence from organic bilayer devices composed of triphenyldiamine and quinoxaline derivatives. Adv. Mater. 10, 230–233 (1998). (10.1002/(SICI)1521-4095(199802)10:3<230::AID-ADMA230>3.0.CO;2-Y) / Adv. Mater. by J-F Wang (1998)
  18. Itano, K., Ogawa, H. & Shirota, Y. Exciplex formation at the organic solid-state interface: yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials. Appl. Phys. Lett. 72, 636–638 (1998). (10.1063/1.120826) / Appl. Phys. Lett. by K Itano (1998)
  19. Chao, C.-L. & Chen S.-A. White light emission from exciplex in a bilayer device with two blue light-emitting polymers. Appl. Phys. Lett. 73, 426–428 (1998). (10.1063/1.121888) / Appl. Phys. Lett. by C-L Chao (1998)
  20. Noda, T., Ogawa, H. & Shirota, Y. A blue-emitting organic electroluminescent device using a novel emitting amorphous molecular material, 5,5′-bis(dimesitylboryl)-2,2′-bithiophene. Adv. Mater. 11, 283–285 (1999). (10.1002/(SICI)1521-4095(199903)11:4<283::AID-ADMA283>3.0.CO;2-V) / Adv. Mater. by T Noda (1999)
  21. Cocchi, M. et al. Efficient exciplex emitting organic electroluminescent devices. Appl. Phys. Lett. 80, 2401–2403 (2002). (10.1063/1.1467614) / Appl. Phys. Lett. by M Cocchi (2002)
  22. Palilis, L. C., Mäkinen, A. J., Uchida, M. & Kafafi, Z. H. Highly efficient molecular organic light-emitting diodes based on exciplex emission. Appl. Phys. Lett. 82, 2209–2211 (2003). (10.1063/1.1563838) / Appl. Phys. Lett. by LC Palilis (2003)
  23. Matsumoto, N., Nishiyama, M. & Adachi, C. Exciplex formations between tris(8-hydoxyquinolate)aluminum and hole transport materials and their photoluminescence and electroluminescence characteristics. J. Phys. Chem. C 112, 7735–7741 (2008). (10.1021/jp800443r) / J. Phys. Chem. C by N Matsumoto (2008)
  24. Iwata, S., Tanaka, J. & Nagakura, S. Phosphorescence of the charge-transfer triplet states of some molecular complexes. J. Chem. Phys. 47, 2203–2209 (1967). (10.1063/1.1703292) / J. Chem. Phys. by S Iwata (1967)
  25. Gordon, M. & Ware, W. R. The Exciplex (Academic Press, 1975). / The Exciplex by M Gordon (1975)
  26. Luňák, S., Nepraš, M., Hrdina, R., Kurfürst, A. & Kuthan, J. Photophysics of PBD derivatives. II. The character of the lowest excited triplet state of 2-(biphenyl-4′-yl)-5-phenyl-1,3,4-oxadiazole. Chem. Phys. 170, 77–88 (1993). (10.1016/0301-0104(93)80094-P) / Chem. Phys. by S Luňák (1993)
  27. Madigan, C. F. & Bulović, V. Solid state salvation in amorphous organic thin films. Phys. Rev. Lett. 91, 247403 (2003). (10.1103/PhysRevLett.91.247403) / Phys. Rev. Lett. by CF Madigan (2003)
  28. Wolf, M. W., Legg, K. D., Brown, R. E., Singer, L. A. & Parks, J. H. Photophysical studies on the benzophenones. Prompt and delayed fluorescences and self-quenching. J. Am. Chem. Soc. 97, 4490–4497 (1975). (10.1021/ja00849a008) / J. Am. Chem. Soc. by MW Wolf (1975)
  29. Fang, T.-S., Brown, R. E., Kwan, C. L. & Parks, J. H. Photophysical studies on benzil. Time resolution of the prompt and delayed emissions and a photokinetic study indicating deactivation of the triplet by reversible exciplex formation. J. Phys. Chem. 82, 2489–2496 (1978). (10.1021/j100512a008) / J. Phys. Chem. by T-S Fang (1978)
  30. Levy, D. & Avnir, D. Room temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol-gel glasses. J. Photochem. Photobiol. A 57, 41–63 (1991). (10.1016/1010-6030(91)85006-3) / J. Photochem. Photobiol. A by D Levy (1991)
  31. Smith, L. H., Wasey, J. A. E. & Barnes, W. L. Light outcoupling efficiency of top-emitting organic light-emitting diodes. Appl. Phys. Lett. 84, 2986–2988 (2004). (10.1063/1.1712036) / Appl. Phys. Lett. by LH Smith (2004)
  32. Granlund, T., Pettersson, L. A. A., Anderson, M. R. & Inganäs, O. Interference phenomenon determines the color in an organic light emitting diode. J. Appl. Phys. 81, 8097–8103 (1997). (10.1063/1.365418) / J. Appl. Phys. by T Granlund (1997)
  33. Kalinowski, J. et al. Impact of high electric fields on the charge recombination process in organic light-emitting diodes. J. Phys. D 33, 2379–2387 (2000). (10.1088/0022-3727/33/19/306) / J. Phys. D by J Kalinowski (2000)
  34. Giro, G., Cocchi, M., Kalinowski, J., Di Marco, P. & Fattori, V. Multicomponent emission from organic light emitting diodes based on polymer dispersion of an aromatic diamine and an oxadiazole derivative. Chem. Phys. Lett. 318, 127–141 (2000). (10.1016/S0009-2614(99)01456-6) / Chem. Phys. Lett. by G Giro (2000)
  35. Gould, I. R., Young, R. H., Mueller, L. J., Albrecht, A. C. & Farid, S. Electronic structures of exciplexes and excited charge-transfer complexes. J. Am. Chem. Soc. 116, 8188–8199 (1994). (10.1021/ja00097a028) / J. Am. Chem. Soc. by IR Gould (1994)
  36. Huang, Y.-S. et al. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nature Mater. 7, 483–489 (2008). (10.1038/nmat2182) / Nature Mater. by Y-S Huang (2008)
Dates
Type When
Created 13 years, 5 months ago (March 9, 2012, 2:20 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:07 p.m.)
Indexed 49 minutes ago (Aug. 28, 2025, 6:23 p.m.)
Issued 13 years, 5 months ago (March 11, 2012)
Published 13 years, 5 months ago (March 11, 2012)
Published Online 13 years, 5 months ago (March 11, 2012)
Published Print 13 years, 4 months ago (April 1, 2012)
Funders 0

None

@article{Goushi_2012, title={Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion}, volume={6}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2012.31}, DOI={10.1038/nphoton.2012.31}, number={4}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Goushi, Kenichi and Yoshida, Kou and Sato, Keigo and Adachi, Chihaya}, year={2012}, month=mar, pages={253–258} }