Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Rechtsman, M. C., Zeuner, J. M., Tünnermann, A., Nolte, S., Segev, M., & Szameit, A. (2012). Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photonics, 7(2), 153–158.

Authors 6
  1. Mikael C. Rechtsman (first)
  2. Julia M. Zeuner (additional)
  3. Andreas Tünnermann (additional)
  4. Stefan Nolte (additional)
  5. Mordechai Segev (additional)
  6. Alexander Szameit (additional)
References 40 Referenced 367
  1. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008). (10.1103/PhysRevLett.100.013904) / Phys. Rev. Lett. by FDM Haldane (2008)
  2. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). (10.1038/nature08293) / Nature by Z Wang (2009)
  3. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011). (10.1038/nphys2063) / Nature Phys. by M Hafezi (2011)
  4. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999). (10.1364/OL.24.000711) / Opt. Lett. by A Yariv (1999)
  5. Cai, W. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications (Springer, 2009). / Optical Metamaterials: Fundamentals and Applications by W Cai (2009)
  6. Plum, E. et al. Metamaterials: optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009). (10.1103/PhysRevLett.102.113902) / Phys. Rev. Lett. by E Plum (2009)
  7. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997). (10.1103/PhysRevLett.78.1932) / Phys. Rev. Lett. by CL Kane (1997)
  8. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010). (10.1038/nphys1420) / Nature Phys. by F Guinea (2010)
  9. Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007). (10.1103/PhysRevLett.98.103901) / Phys. Rev. Lett. by O Peleg (2007)
  10. Bahat-Treidel, O., Peleg, O. & Segev, M. Symmetry breaking in honeycomb photonic lattices. Opt. Lett. 33, 2251–2253 (2008). (10.1364/OL.33.002251) / Opt. Lett. by O Bahat-Treidel (2008)
  11. Bahat-Treidel, O. & Segev, M. Nonlinear wave dynamics in honeycomb lattices. Phys. Rev. A 84, 021802(R) (2011). (10.1103/PhysRevA.84.021802) / Phys. Rev. A by O Bahat-Treidel (2011)
  12. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806(R) (2011). (10.1103/PhysRevA.84.021806)
  13. Ablowitz, M. J., Nixon, S. D. & Zhu, Y. Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009). (10.1103/PhysRevA.79.053830) / Phys. Rev. A by MJ Ablowitz (2009)
  14. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004). (10.1038/nmat1097) / Nature Mater. by M Soljačić (2004)
  15. Molina, M. I. & Kivshar, Y. S. Discrete and surface solitons in photonic graphene nanoribbons. Opt. Lett. 35, 2895–2897 (2010). (10.1364/OL.35.002895) / Opt. Lett. by MI Molina (2010)
  16. Birks, T. A., Knight, J. C. & Russell, P. S. J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997). (10.1364/OL.22.000961) / Opt. Lett. by TA Birks (1997)
  17. Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988). (10.1364/OL.13.000794) / Opt. Lett. by DN Christodoulides (1988)
  18. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003). (10.1038/nature01452) / Nature by JW Fleischer (2003)
  19. Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchison, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998). (10.1103/PhysRevLett.81.3383) / Phys. Rev. Lett. by HS Eisenberg (1998)
  20. Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008). (10.1016/j.physrep.2008.04.004) / Phys. Rep. by F Lederer (2008)
  21. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007). (10.1038/nature05623) / Nature by T Schwartz (2007)
  22. Makris, K. G., Suntsov, S., Christodoulides, D. N., Stegeman, G. I. & Hache, A. Discrete surface solitons. Opt. Lett. 30, 2466–2468 (2005). (10.1364/OL.30.002466) / Opt. Lett. by KG Makris (2005)
  23. Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009). (10.1364/OL.34.001633) / Opt. Lett. by N Malkova (2009)
  24. Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009). (10.1002/lpor.200810055) / Laser Photon. Rev. by S Longhi (2009)
  25. Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010). (10.1088/0953-4075/43/16/163001) / J. Phys. B by A Szameit (2010)
  26. Bahat-Treidel, O. et al. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett. 104, 063901 (2010). (10.1103/PhysRevLett.104.063901) / Phys. Rev. Lett. by O Bahat-Treidel (2010)
  27. Sepkhanov, R. A., Bazaliy, Y. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007). (10.1103/PhysRevA.75.063813) / Phys. Rev. A by RA Sepkhanov (2007)
  28. Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl Acad. Sci. USA 109, 9761–9765 (2012). (10.1073/pnas.1207335109) / Proc. Natl Acad. Sci. USA by J Bravo-Abad (2012)
  29. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009). (10.1038/nphoton.2008.273) / Nature Photon. by Z Yu (2009)
  30. Stone, M. Quantum Hall Effect (World Scientific, 1992). (10.1142/1584) / Quantum Hall Effect by M Stone (1992)
  31. Kohmoto, M. & Hasegawa, Y. Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007). (10.1103/PhysRevB.76.205402) / Phys. Rev. B by M Kohmoto (2007)
  32. Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004). (10.1038/nature02772) / Nature by P Lodahl (2004)
  33. Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Kolodziejski, L. A. Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999). (10.1103/PhysRevB.60.5751) / Phys. Rev. B by SG Johnson (1999)
  34. Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946). (10.1103/PhysRev.69.37) / Phys. Rev. by E Purcell (1946)
  35. Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008). (10.1103/PhysRevB.77.085423) / Phys. Rev. B by AR Akhmerov (2008)
  36. Ruter, C. E. et al. Observation of parity-time symmetry in optics. Nature Phys. 6, 192–195 (2010). (10.1038/nphys1515) / Nature Phys. by CE Ruter (2010)
  37. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009). (10.1103/PhysRevLett.103.093902) / Phys. Rev. Lett. by A Guo (2009)
  38. Kottos, T. Optical physics: broken symmetry makes light work. Nature Phys. 6, 166–167 (2010). (10.1038/nphys1612) / Nature Phys. by T Kottos (2010)
  39. Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008). (10.1103/PhysRevLett.100.103904) / Phys. Rev. Lett. by KG Makris (2008)
  40. Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008). (10.1103/PhysRevLett.101.080402) / Phys. Rev. Lett. by S Klaiman (2008)
Dates
Type When
Created 12 years, 8 months ago (Dec. 7, 2012, 3:29 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:07 p.m.)
Indexed 32 minutes ago (Aug. 27, 2025, 9:56 p.m.)
Issued 12 years, 8 months ago (Dec. 9, 2012)
Published 12 years, 8 months ago (Dec. 9, 2012)
Published Online 12 years, 8 months ago (Dec. 9, 2012)
Published Print 12 years, 6 months ago (Feb. 1, 2013)
Funders 0

None

@article{Rechtsman_2012, title={Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures}, volume={7}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2012.302}, DOI={10.1038/nphoton.2012.302}, number={2}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Rechtsman, Mikael C. and Zeuner, Julia M. and Tünnermann, Andreas and Nolte, Stefan and Segev, Mordechai and Szameit, Alexander}, year={2012}, month=dec, pages={153–158} }