Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Tassin, P., Koschny, T., Kafesaki, M., & Soukoulis, C. M. (2012). A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photonics, 6(4), 259–264.

Authors 4
  1. Philippe Tassin (first)
  2. Thomas Koschny (additional)
  3. Maria Kafesaki (additional)
  4. Costas M. Soukoulis (additional)
References 49 Referenced 354
  1. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004). (10.1126/science.1096796) / Science by DR Smith (2004)
  2. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2006). (10.1038/nphoton.2006.49) / Nature Photon. by VM Shalaev (2006)
  3. Soukoulis, C. M. & Wegener, M. Optical metamaterials—more bulky and less lossy. Science 330, 1633–1634 (2010). (10.1126/science.1198858) / Science by CM Soukoulis (2010)
  4. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004). (10.1126/science.1094025) / Science by TJ Yen (2004)
  5. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004). (10.1126/science.1105371) / Science by S Linden (2004)
  6. Enkrich, C. et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005). (10.1103/PhysRevLett.95.203901) / Phys. Rev. Lett. by C Enkrich (2005)
  7. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001). (10.1126/science.1058847) / Science by RA Shelby (2001)
  8. Zhang, S. et al. Experimental demonstration of near-infrared negative index metamaterials. Phys. Rev. Lett. 95, 137404 (2005). (10.1103/PhysRevLett.95.137404) / Phys. Rev. Lett. by S Zhang (2005)
  9. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005). (10.1364/OL.30.003356) / Opt. Lett. by VM Shalaev (2005)
  10. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009). (10.1103/PhysRevB.79.035407) / Phys. Rev. B by E Plum (2009)
  11. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969). (10.1103/PhysRev.182.539) / Phys. Rev. by EN Economou (1969)
  12. Boardman, A. D. Electromagnetic Surface Modes (Wiley, 1982). / Electromagnetic Surface Modes by AD Boardman (1982)
  13. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005). (10.1063/1.1951057) / J. Appl. Phys. by SA Maier (2005)
  14. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010). (10.1038/nphoton.2009.282) / Nature Photon. by DK Gramotnev (2010)
  15. Catchpole, K. R. & Polman, A. Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008). (10.1364/OE.16.021793) / Opt. Express by KR Catchpole (2008)
  16. Soukoulis, C. M., Zhou, J., Koschny, T., Kafesaki, M. & Economou, E. N. The science of negative index materials. J. Phys. Condens. Matter 20, 304217 (2008). (10.1088/0953-8984/20/30/304217) / J. Phys. Condens. Matter by CM Soukoulis (2008)
  17. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E. & Ebbesen T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005). (10.1103/PhysRevLett.95.046802) / Phys. Rev. Lett. by SI Bozhevolnyi (2005)
  18. Kolomenski, A., Kolomenskii, A., Noel, J., Peng, S. & Schuessler, H. Propagation length of surface plasmons in a metal film with roughness. Appl. Opt. 48, 5683–5691 (2009). (10.1364/AO.48.005683) / Appl. Opt. by A Kolomenski (2009)
  19. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011). (10.1126/science.1198258) / Science by A Boltasseva (2011)
  20. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011). (10.1126/science.1202691) / Science by A Vakil (2011)
  21. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011). (10.1021/nl201771h) / Nano Lett. by FHL Koppens (2011)
  22. Chen, H.-T. et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010). (10.1103/PhysRevLett.105.247402) / Phys. Rev. Lett. by H-T Chen (2010)
  23. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999). (10.1109/22.798002) / IEEE Trans. Microwave Theory Tech. by JB Pendry (1999)
  24. Gorkunov, M., Lapine, M., Shamonina, E. & Ringhofer, K. H. Effective magnetic properties of a composite material with circular conductive elements. Eur. Phys. J. B 28, 263–269 (2002). (10.1140/epjb/e2002-00228-4) / Eur. Phys. J. B by M Gorkunov (2002)
  25. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007). (10.1126/science.1133268) / Science by N Engheta (2007)
  26. Koschny, T., Kafeski, M., Economou, E. N. & Soukoulis, C. M. Effective medium theory of left-handed materials. Phys. Rev. Lett. 93, 107402 (2004). (10.1103/PhysRevLett.93.107402) / Phys. Rev. Lett. by T Koschny (2004)
  27. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008). (10.1103/PhysRevLett.101.047401) / Phys. Rev. Lett. by S Zhang (2008)
  28. Papasimakis, N., Fedotov, V. A., Zheludev, N. I. & Prosvirnin, S. L. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008). (10.1103/PhysRevLett.101.253903) / Phys. Rev. Lett. by N Papasimakis (2008)
  29. Tassin, P., Zhang, L., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009). (10.1103/PhysRevLett.102.053901) / Phys. Rev. Lett. by P Tassin (2009)
  30. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009). (10.1038/nmat2495) / Nature Mater. by N Liu (2009)
  31. Penciu, R. S., Kafesaki, M., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Magnetic response of nanoscale left-handed metamaterials. Phys. Rev. B 81, 235111 (2010). (10.1103/PhysRevB.81.235111) / Phys. Rev. B by RS Penciu (2010)
  32. Luan, P. G. Power loss and electromagnetic energy density in a dispersive metamaterial medium. Phys. Rev. E 80, 046601 (2009). (10.1103/PhysRevE.80.046601) / Phys. Rev. E by PG Luan (2009)
  33. Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005). (10.1103/PhysRevLett.95.223902) / Phys. Rev. Lett. by J Zhou (2005)
  34. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). (10.1103/RevModPhys.81.109) / Rev. Mod. Phys. by AH Castro Neto (2009)
  35. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010). (10.1038/nphoton.2010.186) / Nature Photon. by F Bonaccorso (2010)
  36. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008). (10.1038/nphys989) / Nature Phys. by ZQ Li (2008)
  37. Horng, J. et al., Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011). (10.1103/PhysRevB.83.165113) / Phys. Rev. B by J Horng (2011)
  38. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008). (10.1126/science.1156965) / Science by RR Nair (2008)
  39. Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8358 (2010). (10.1364/OE.18.008353) / Opt. Express by N Papasimakis (2010)
  40. Hanson, G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008). (10.1063/1.2891452) / J. Appl. Phys. by GW Hanson (2008)
  41. Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009). (10.1103/PhysRevB.80.245435) / Phys. Rev. B by M Jablan (2009)
  42. Peres, N. M. R., Ribeiro, R. M. & Castro Neto, A. H. Excitonic effects in the optical conductivity of gated graphene. Phys. Rev. Lett. 105, 055501 (2010). (10.1103/PhysRevLett.105.055501) / Phys. Rev. Lett. by NMR Peres (2010)
  43. Grushin, A. G., Valenzuela, B. & Vozmediano, M. A. H. Effect of Coulomb interactions on the optical properties of doped graphene. Phys. Rev. B 80, 155417 (2009). (10.1103/PhysRevB.80.155417) / Phys. Rev. B by AG Grushin (2009)
  44. Anlage, S. M. The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011). (10.1088/2040-8978/13/2/024001) / J. Opt. by SM Anlage (2011)
  45. Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L. & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985). (10.1364/AO.24.004493) / Appl. Opt. by MA Ordal (1985)
  46. Kumar, A. R. et al. Far-infrared transmittance and reflectance of YBa2Cu3O7–δ films on Si substrates. J. Heat Transfer 121, 844–851 (1999). (10.1115/1.2826074) / J. Heat Transfer by AR Kumar (1999)
  47. Khurgin, J. B. & Sun, G., Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211106 (2011). (10.1063/1.3664105) / Appl. Phys. Lett. by JB Khurgin (2011)
  48. Blaber, M. G., Arnold, M. D. & Ford, M. J. Designing materials for plasmonic systems: the alkali-noble intermetallics. J. Phys. Condens. Matter 22, 095501 (2010). (10.1088/0953-8984/22/9/095501) / J. Phys. Condens. Matter by MG Blaber (2010)
  49. Bobb, D. A. et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications. Appl. Phys. Lett. 95, 151102 (2009). (10.1063/1.3237179) / Appl. Phys. Lett. by DA Bobb (2009)
Dates
Type When
Created 13 years, 5 months ago (March 4, 2012, 7:28 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:06 p.m.)
Indexed 6 days ago (Aug. 26, 2025, 2:59 a.m.)
Issued 13 years, 5 months ago (March 4, 2012)
Published 13 years, 5 months ago (March 4, 2012)
Published Online 13 years, 5 months ago (March 4, 2012)
Published Print 13 years, 5 months ago (April 1, 2012)
Funders 0

None

@article{Tassin_2012, title={A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics}, volume={6}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2012.27}, DOI={10.1038/nphoton.2012.27}, number={4}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Tassin, Philippe and Koschny, Thomas and Kafesaki, Maria and Soukoulis, Costas M.}, year={2012}, month=mar, pages={259–264} }