Crossref
journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
References
49
Referenced
354
-
Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).
(
10.1126/science.1096796
) / Science by DR Smith (2004) -
Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2006).
(
10.1038/nphoton.2006.49
) / Nature Photon. by VM Shalaev (2006) -
Soukoulis, C. M. & Wegener, M. Optical metamaterials—more bulky and less lossy. Science 330, 1633–1634 (2010).
(
10.1126/science.1198858
) / Science by CM Soukoulis (2010) -
Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).
(
10.1126/science.1094025
) / Science by TJ Yen (2004) -
Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).
(
10.1126/science.1105371
) / Science by S Linden (2004) -
Enkrich, C. et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005).
(
10.1103/PhysRevLett.95.203901
) / Phys. Rev. Lett. by C Enkrich (2005) -
Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
(
10.1126/science.1058847
) / Science by RA Shelby (2001) -
Zhang, S. et al. Experimental demonstration of near-infrared negative index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).
(
10.1103/PhysRevLett.95.137404
) / Phys. Rev. Lett. by S Zhang (2005) -
Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).
(
10.1364/OL.30.003356
) / Opt. Lett. by VM Shalaev (2005) -
Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).
(
10.1103/PhysRevB.79.035407
) / Phys. Rev. B by E Plum (2009) -
Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).
(
10.1103/PhysRev.182.539
) / Phys. Rev. by EN Economou (1969) - Boardman, A. D. Electromagnetic Surface Modes (Wiley, 1982). / Electromagnetic Surface Modes by AD Boardman (1982)
-
Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).
(
10.1063/1.1951057
) / J. Appl. Phys. by SA Maier (2005) -
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).
(
10.1038/nphoton.2009.282
) / Nature Photon. by DK Gramotnev (2010) -
Catchpole, K. R. & Polman, A. Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008).
(
10.1364/OE.16.021793
) / Opt. Express by KR Catchpole (2008) -
Soukoulis, C. M., Zhou, J., Koschny, T., Kafesaki, M. & Economou, E. N. The science of negative index materials. J. Phys. Condens. Matter 20, 304217 (2008).
(
10.1088/0953-8984/20/30/304217
) / J. Phys. Condens. Matter by CM Soukoulis (2008) -
Bozhevolnyi, S. I., Volkov, V. S., Devaux, E. & Ebbesen T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005).
(
10.1103/PhysRevLett.95.046802
) / Phys. Rev. Lett. by SI Bozhevolnyi (2005) -
Kolomenski, A., Kolomenskii, A., Noel, J., Peng, S. & Schuessler, H. Propagation length of surface plasmons in a metal film with roughness. Appl. Opt. 48, 5683–5691 (2009).
(
10.1364/AO.48.005683
) / Appl. Opt. by A Kolomenski (2009) -
Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).
(
10.1126/science.1198258
) / Science by A Boltasseva (2011) -
Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).
(
10.1126/science.1202691
) / Science by A Vakil (2011) -
Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).
(
10.1021/nl201771h
) / Nano Lett. by FHL Koppens (2011) -
Chen, H.-T. et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010).
(
10.1103/PhysRevLett.105.247402
) / Phys. Rev. Lett. by H-T Chen (2010) -
Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
(
10.1109/22.798002
) / IEEE Trans. Microwave Theory Tech. by JB Pendry (1999) -
Gorkunov, M., Lapine, M., Shamonina, E. & Ringhofer, K. H. Effective magnetic properties of a composite material with circular conductive elements. Eur. Phys. J. B 28, 263–269 (2002).
(
10.1140/epjb/e2002-00228-4
) / Eur. Phys. J. B by M Gorkunov (2002) -
Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).
(
10.1126/science.1133268
) / Science by N Engheta (2007) -
Koschny, T., Kafeski, M., Economou, E. N. & Soukoulis, C. M. Effective medium theory of left-handed materials. Phys. Rev. Lett. 93, 107402 (2004).
(
10.1103/PhysRevLett.93.107402
) / Phys. Rev. Lett. by T Koschny (2004) -
Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).
(
10.1103/PhysRevLett.101.047401
) / Phys. Rev. Lett. by S Zhang (2008) -
Papasimakis, N., Fedotov, V. A., Zheludev, N. I. & Prosvirnin, S. L. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008).
(
10.1103/PhysRevLett.101.253903
) / Phys. Rev. Lett. by N Papasimakis (2008) -
Tassin, P., Zhang, L., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009).
(
10.1103/PhysRevLett.102.053901
) / Phys. Rev. Lett. by P Tassin (2009) -
Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).
(
10.1038/nmat2495
) / Nature Mater. by N Liu (2009) -
Penciu, R. S., Kafesaki, M., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Magnetic response of nanoscale left-handed metamaterials. Phys. Rev. B 81, 235111 (2010).
(
10.1103/PhysRevB.81.235111
) / Phys. Rev. B by RS Penciu (2010) -
Luan, P. G. Power loss and electromagnetic energy density in a dispersive metamaterial medium. Phys. Rev. E 80, 046601 (2009).
(
10.1103/PhysRevE.80.046601
) / Phys. Rev. E by PG Luan (2009) -
Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005).
(
10.1103/PhysRevLett.95.223902
) / Phys. Rev. Lett. by J Zhou (2005) -
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).
(
10.1103/RevModPhys.81.109
) / Rev. Mod. Phys. by AH Castro Neto (2009) -
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).
(
10.1038/nphoton.2010.186
) / Nature Photon. by F Bonaccorso (2010) -
Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).
(
10.1038/nphys989
) / Nature Phys. by ZQ Li (2008) -
Horng, J. et al., Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011).
(
10.1103/PhysRevB.83.165113
) / Phys. Rev. B by J Horng (2011) -
Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).
(
10.1126/science.1156965
) / Science by RR Nair (2008) -
Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8358 (2010).
(
10.1364/OE.18.008353
) / Opt. Express by N Papasimakis (2010) -
Hanson, G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).
(
10.1063/1.2891452
) / J. Appl. Phys. by GW Hanson (2008) -
Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).
(
10.1103/PhysRevB.80.245435
) / Phys. Rev. B by M Jablan (2009) -
Peres, N. M. R., Ribeiro, R. M. & Castro Neto, A. H. Excitonic effects in the optical conductivity of gated graphene. Phys. Rev. Lett. 105, 055501 (2010).
(
10.1103/PhysRevLett.105.055501
) / Phys. Rev. Lett. by NMR Peres (2010) -
Grushin, A. G., Valenzuela, B. & Vozmediano, M. A. H. Effect of Coulomb interactions on the optical properties of doped graphene. Phys. Rev. B 80, 155417 (2009).
(
10.1103/PhysRevB.80.155417
) / Phys. Rev. B by AG Grushin (2009) -
Anlage, S. M. The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011).
(
10.1088/2040-8978/13/2/024001
) / J. Opt. by SM Anlage (2011) -
Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L. & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985).
(
10.1364/AO.24.004493
) / Appl. Opt. by MA Ordal (1985) -
Kumar, A. R. et al. Far-infrared transmittance and reflectance of YBa2Cu3O7–δ films on Si substrates. J. Heat Transfer 121, 844–851 (1999).
(
10.1115/1.2826074
) / J. Heat Transfer by AR Kumar (1999) -
Khurgin, J. B. & Sun, G., Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211106 (2011).
(
10.1063/1.3664105
) / Appl. Phys. Lett. by JB Khurgin (2011) -
Blaber, M. G., Arnold, M. D. & Ford, M. J. Designing materials for plasmonic systems: the alkali-noble intermetallics. J. Phys. Condens. Matter 22, 095501 (2010).
(
10.1088/0953-8984/22/9/095501
) / J. Phys. Condens. Matter by MG Blaber (2010) -
Bobb, D. A. et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications. Appl. Phys. Lett. 95, 151102 (2009).
(
10.1063/1.3237179
) / Appl. Phys. Lett. by DA Bobb (2009)
Dates
Type | When |
---|---|
Created | 13 years, 5 months ago (March 4, 2012, 7:28 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 8:06 p.m.) |
Indexed | 6 days ago (Aug. 26, 2025, 2:59 a.m.) |
Issued | 13 years, 5 months ago (March 4, 2012) |
Published | 13 years, 5 months ago (March 4, 2012) |
Published Online | 13 years, 5 months ago (March 4, 2012) |
Published Print | 13 years, 5 months ago (April 1, 2012) |
@article{Tassin_2012, title={A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics}, volume={6}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2012.27}, DOI={10.1038/nphoton.2012.27}, number={4}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Tassin, Philippe and Koschny, Thomas and Kafesaki, Maria and Soukoulis, Costas M.}, year={2012}, month=mar, pages={259–264} }