Crossref
journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
References
133
Referenced
1,114
- Snitzer, E. et al. Double clad, offset core Nd fiber laser in Optical Fiber Sensors, Vol. 2, paper PD5 of OSA Technical Digest Series (OSA, 1988). / Optical Fiber Sensors by E Snitzer (1988)
-
Zenteno, L. High-power double clad fiber lasers. J. Lightwave Technol. 11, 1435–1446 (1993).
(
10.1109/50.241933
) / J. Lightwave Technol. by L Zenteno (1993) -
Jeong, Y., Sahu, J. K., Payne, D. N. & Nilsson, J. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004).
(
10.1364/OPEX.12.006088
) / Opt. Express by Y Jeong (2004) -
Poole, S. B., Payne, D. N. & Fermann M. E. Fabrication of low-loss optical fibers containing rare earth ions. Electron. Lett. 21, 737–738 (1985).
(
10.1049/el:19850520
) / Electron. Lett. by SB Poole (1985) -
Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).
(
10.1126/science.264.5158.553
) / Science by J Faist (1994) -
Vurgaftman, I. & Meyer, J. R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers. J. Appl. Phys. 99, 123108 (2006).
(
10.1063/1.2206847
) / J. Appl. Phys. by I Vurgaftman (2006) -
Deloach, L. D. et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quant. Electron. 32, 885–895 (1996).
(
10.1109/3.502365
) / IEEE J. Quant. Electron. by LD Deloach (1996) -
Sanghera, J. et al. Ceramic laser materials. Materials 5, 258–277 (2012).
(
10.3390/ma5020258
) / Materials by J Sanghera (2012) - http://www.ipgphotonics.com/ .
-
Sorokin, E., Naumov, S. & Sorokina, I. T. Ultrabroadband infrared solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 11, 690–712 (2005).
(
10.1109/JSTQE.2003.850255
) / IEEE J. Sel. Top. Quant. Electron. by E Sorokin (2005) -
Garbuzov, D. Z. et al. 2.3–2.7 μm room temperature CW operation of InGaAsSb–AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Photon. Tech. Lett. 11, 794–796 (1999).
(
10.1109/68.769710
) / IEEE Photon. Tech. Lett. by DZ Garbuzov (1999) -
Vodopyanov, K. L. Mid-infrared optical parametric generator with extra-wide (3–19 μm) tunability: applications for spectroscopy of two dimensional electrons in quantum wells. J. Opt. Soc. Am. B 16, 1579–1586 (1999).
(
10.1364/JOSAB.16.001579
) / J. Opt. Soc. Am. B by KL Vodopyanov (1999) -
Shen, Y. et al. PPMgLN based high power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporating active pulse shaping. IEEE J. Sel. Top. Quant. Electron. 15, 385–392 (2009).
(
10.1109/JSTQE.2008.2010412
) / IEEE J. Sel. Top. Quant. Electron. by Y Shen (2009) -
Pask, H. M. et al. Ytterbium-doped silica fiber lasers — versatile sources for the 1–12 μm region. IEEE J. Sel. Top. Quant. Electron. 1, 2–13 (1995).
(
10.1109/2944.468377
) / IEEE J. Sel. Top. Quant. Electron. by HM Pask (1995) -
Offerhaus, H. L. et al. High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. Opt. Lett. 23, 1683–1685 (1998).
(
10.1364/OL.23.001683
) / Opt. Lett. by HL Offerhaus (1998) -
Knight, J. C. et al. Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998).
(
10.1049/el:19980965
) / Electron. Lett. by JC Knight (1998) -
Rottwitt, K. et al. Scaling of the Raman gain coefficient: applications to germanosilicate fibers. J. Lightwave Technol. 21, 1652–1662 (2003).
(
10.1109/JLT.2003.814386
) / J. Lightwave Technol. by K Rottwitt (2003) -
Koponen, J. J., Söderlund, M. J., Hoffman, H. J. & Tammela, S. K. T. Measuring photodarkening from single-mode ytterbium doped silica fibers. Opt. Express 14, 11539–11544 (2006).
(
10.1364/OE.14.011539
) / Opt. Express by JJ Koponen (2006) -
Jetschke, S., Unger, S., Röpke, U. & Kirchhof, J. Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power. Opt. Express 15, 14838–14843 (2007).
(
10.1364/OE.15.014838
) / Opt. Express by S Jetschke (2007) - Fomin, V. et al. 10 kW single-mode fiber laser, presented at the 5th International Symposium on High-Power Fiber Lasers and Their Applications (2010).
-
Jeong, Y. et al. Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power. IEEE J. Sel. Top. Quant. Electron. 13, 573–579 (2007).
(
10.1109/JSTQE.2007.897178
) / IEEE J. Sel. Top. Quant. Electron. by Y Jeong (2007) - Ehrenreich, T. et al. 1 kW, all-glass Tm:fiber laser. SPIE Photonics West 2010: LASE, Fibre Lasers VII: Technology, Systems and Applications, Conference 7850 (2010).
-
Hemming, A. V. et al. Development of resonantly cladding-pumped holmium-doped fibre lasers. Proc. SPIE 8237, 82371J (2012).
(
10.1117/12.909458
) / Proc. SPIE by AV Hemming (2012) -
Tokita, S. et al. Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser. Opt. Lett. 34, 3062–3064 (2009).
(
10.1364/OL.34.003062
) / Opt. Lett. by S Tokita (2009) -
Jackson, S. D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm. Opt. Lett. 29, 334–336 (2004).
(
10.1364/OL.29.000334
) / Opt. Lett. by SD Jackson (2004) -
Li, J., Hudson, D. D. & Jackson S. D. High-power diode-pumped fiber laser operating at 3 μm. Opt. Lett. 36, 3642–3644 (2011).
(
10.1364/OL.36.003642
) / Opt. Lett. by J Li (2011) -
Carbonnier, C., Többen, H., Unrau, U. B. Room temperature CW fibre laser at 3.22 μm. Electron. Lett. 34, 893–894 (1998).
(
10.1049/el:19980604
) / Electron. Lett. by C Carbonnier (1998) -
Tobben, H. Room temperature CW fibre laser at 3.5 μm in Er3+-doped ZBLAN glass. Electron. Lett. 28, 1361–1363 (1992).
(
10.1049/el:19920865
) / Electron. Lett. by H Tobben (1992) -
Schneider, J., Carbonnier, C. & Unrau, U. B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength. Appl. Opt. 36, 8595–8600 (1997).
(
10.1364/AO.36.008595
) / Appl. Opt. by J Schneider (1997) -
Brown, D. C. & Hoffman, H. J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quant. Electron. 37, 207–217 (2001).
(
10.1109/3.903070
) / IEEE J. Quant. Electron. by DC Brown (2001) -
Esterowitz, L., Eckardt, R. C., Allen, R. E. Long-wavelength stimulated-emission via cascade laser action in Ho-YLF. Appl. Phys. Lett. 35, 236–239 (1979).
(
10.1063/1.91083
) / Appl. Phys. Lett. by L Esterowitz (1979) - International Standard ISO 20473 “Optics and Photonics — Spectral bands” (2007).
-
Eichhorn, M. & Jackson, S. D. Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers. Appl. Phys. B 90, 35–41 (2008).
(
10.1007/s00340-007-2841-1
) / Appl. Phys. B by M Eichhorn (2008) -
Jackson, S. D. et al. High-power 83 W holmium-doped silica fiber laser operating with high beam quality. Opt. Lett. 32, 241–243 (2007).
(
10.1364/OL.32.000241
) / Opt. Lett. by SD Jackson (2007) -
El-Agmy, R. M. & Al-Hosiny, N. M. 2. 31 μm laser under up-conversion pumping at 1.064 μm in Tm3+:ZBLAN fibre lasers. Electron. Lett. 46, 936–937 (2010).
(
10.1049/el.2010.1248
) / Electron. Lett. by RM El-Agmy (2010) -
Jackson, S. D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett. 83, 1316–1318 (2003).
(
10.1063/1.1603353
) / Appl. Phys. Lett. by SD Jackson (2003) -
Greaves, G. N. EXAFS and the structure of glass. J. Non-cryst. Solids 71, 203–217 (1985).
(
10.1016/0022-3093(85)90289-3
) / J. Non-cryst. Solids by GN Greaves (1985) -
Caro, P., Beaury, O. & Antic, E. Nephelauxetic effect for 4fN configurations in solid-state. J. Phys.-Paris 37, 671–676 (1976).
(
10.1051/jphys:01976003706067100
) / J. Phys.-Paris by P Caro (1976) -
Hanna, D. C., Percival, R. M., Smart, R. G. & Tropper A. C. Efficient and tunable operation of a Tm-doped fibre laser. Opt. Commun. 75, 283–286 (1990).
(
10.1016/0030-4018(90)90533-Y
) / Opt. Commun. by DC Hanna (1990) -
Jackson, S. D. & King, T. A. High-power diode-cladding-pumped Tm-doped silica fiber laser. Opt. Lett. 23, 1462–1464 (1998).
(
10.1364/OL.23.001462
) / Opt. Lett. by SD Jackson (1998) -
Hayward, R. A. et al. Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 μm. Electron. Lett. 36, 711–712 (2000).
(
10.1049/el:20000577
) / Electron. Lett. by RA Hayward (2000) -
Moulton, P. F. et al. Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Top. Quant. Electron. 15, 85–92 (2009).
(
10.1109/JSTQE.2008.2010719
) / IEEE J. Sel. Top. Quant. Electron. by PF Moulton (2009) -
Clarkson, W. A. et al. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm. Opt. Lett. 27, 1989–1991 (2002).
(
10.1364/OL.27.001989
) / Opt. Lett. by WA Clarkson (2002) -
Jackson, S. D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt. Commun. 230, 197–203 (2004).
(
10.1016/j.optcom.2003.11.045
) / Opt. Commun. by SD Jackson (2004) -
Jackson, S. D. Midinfrared holmium fiber lasers. IEEE J. Quant. Electron. 42, 187–191 (2006).
(
10.1109/JQE.2005.861824
) / IEEE J. Quant. Electron. by SD Jackson (2006) -
Oh, K. et al. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser. Opt. Lett. 19, 278–280 (1994).
(
10.1364/OL.19.000278
) / Opt. Lett. by K Oh (1994) -
Jackson, S. D., Bugge, F. & Erbert, G. Directly diode-pumped holmium fiber lasers. Opt. Lett. 32, 2496–2498 (2007).
(
10.1364/OL.32.002496
) / Opt. Lett. by SD Jackson (2007) -
Tokita, S. et al. Stable 10 W Er:ZBLAN fiber laser operating at 2.71–2.88 μm. Opt. Lett. 35, 3943–3945 (2010).
(
10.1364/OL.35.003943
) / Opt. Lett. by S Tokita (2010) -
Faucher, D. et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm. Opt. Lett. 36, 1104–1106 (2011).
(
10.1364/OL.36.001104
) / Opt. Lett. by D Faucher (2011) -
Bernier, M. et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett. 32, 454–456 (2007).
(
10.1364/OL.32.000454
) / Opt. Lett. by M Bernier (2007) -
Faucher, D., Bernier, M., Caron, N. & Vallee, R. Erbium-doped all-fiber laser at 2.94 μm. Opt. Lett. 34, 3313–3315 (2009).
(
10.1364/OL.34.003313
) / Opt. Lett. by D Faucher (2009) -
Gorjan, M., Marincek, M. & Copic, M. Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers. IEEE J. Quant. Electron. 47, 262–273 (2011).
(
10.1109/JQE.2010.2073447
) / IEEE J. Quant. Electron. by M Gorjan (2011) -
Schneider, J. Mid-infrared fluoride fiber lasers in multiple cascade operation. IEEE Photon. Tech. Lett. 7, 354–356 (1995).
(
10.1109/68.376800
) / IEEE Photon. Tech. Lett. by J Schneider (1995) -
Pollnau, M. et al. Three-transition cascade erbium laser at 1.7,2.7, and 6 μm. Opt. Lett. 22, 612–614 (1997).
(
10.1364/OL.22.000612
) / Opt. Lett. by M Pollnau (1997) -
Jackson, S. D. High-power erbium cascade fibre laser. Electron. Lett. 45, 830–832 (2009).
(
10.1049/el.2009.1526
) / Electron. Lett. by SD Jackson (2009) -
Li, J. & Jackson, S. D. Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers. IEEE J. Quant. Electron. 48, 454–464 (2012).
(
10.1109/JQE.2012.2183856
) / IEEE J. Quant. Electron. by J Li (2012) -
Wetenkamp, L., West, G. F. & Tobben. H. Optical properties of rare earth-doped ZBLAN glasses. J. Non-cryst. Solids 140, 35–40 (1992).
(
10.1016/S0022-3093(05)80737-9
) / J. Non-cryst. Solids by L Wetenkamp (1992) -
Hruby, A. Evaluation of glass-forming tendency by means of DTA. Czech J. Phys. B22, 1187–1193 (1972).
(
10.1007/BF01690134
) / Czech J. Phys. by A Hruby (1972) -
Tünnermann, A. et al. The renaissance and bright future of fibre lasers. J. Phys. B 38, S681–S693 (2005).
(
10.1088/0953-4075/38/9/016
) / J. Phys. B by A Tünnermann (2005) -
Layne, C. B., Lowdermilk, W. H. & Weber, M. J. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys. Rev. B 16, 10–20 (1977).
(
10.1103/PhysRevB.16.10
) / Phys. Rev. B by CB Layne (1977) -
Saito, K. et al. Limit of the Rayleigh scattering loss in silica fiber. Appl. Phys. Lett. 83, 5175–5177 (2003).
(
10.1063/1.1635072
) / Appl. Phys. Lett. by K Saito (2003) -
Arai, K. et al. Aluminium or phosphorous co-doping effects on the fluorescence properties of neodymium-doped silica glass. J. Appl. Phys. 59, 3430–3436 (1986).
(
10.1063/1.336810
) / J. Appl. Phys. by K Arai (1986) -
Sacks, Z. S., Schiffer, Z. & David, D. Long wavelength operation of double-clad Tm:silica fiber lasers. Proc. SPIE 6453, 645320 (2007).
(
10.1117/12.700525
) / Proc. SPIE by ZS Sacks (2007) - Zhu, X. & Peyghambarian, N. High-power ZBLAN glass fiber lasers: review and prospect. Adv. Optoelectron. 2010, 501956 (2010). / Adv. Optoelectron. by X Zhu (2010)
- Ohsawa, K., Shibata, T., Nakamura, K. & Yoshida, S. Fluorozirconate glasses for infrared transmitting optical fibers. Paper 1.1, Technical Digest, 7th European Conference on Optical Communication (1981).
-
Mitachi, S., Miyashita, T. & Kanamori, T. Fluoride-glass cladded optical fibers for mid-infra-red ray transmission. Electron. Lett. 17, 591–592 (1981).
(
10.1049/el:19810416
) / Electron. Lett. by S Mitachi (1981) -
Tran, D. C., Fisher, C. F. & Sigel, G. H. Jr. Fluoride glass performs prepared by a rotation casting process. Electron. Lett. 18, 657–658 (1982).
(
10.1049/el:19820448
) / Electron. Lett. by DC Tran (1982) -
Carter, S. F. et al. Low loss fluoride fibre by reduced pressure casting. Electron. Lett. 26, 2115–2117 (1990).
(
10.1049/el:19901361
) / Electron. Lett. by SF Carter (1990) -
Almeida, R. M. & Mackenzie, J. D. Vibrational spectra and structure of fluorozirconate glasses. J. Chem. Phys. 74, 5954–5961 (1981).
(
10.1063/1.441033
) / J. Chem. Phys. by RM Almeida (1981) -
Day, C. R. et al. Fluoride fibres for optical transmission. Opt. Quant. Electron. 22, 259–277 (1990).
(
10.1007/BF02189431
) / Opt. Quant. Electron. by CR Day (1990) -
Zhu, X. & Jain, R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser. Opt. Lett. 32, 26–28 (2007).
(
10.1364/OL.32.000026
) / Opt. Lett. by X Zhu (2007) -
Fortin, V., Bernier, M., Carrier, J. & Vallée, R. Fluoride glass Raman fiber laser at 2185 nm. Opt. Lett. 36, 4152–4154 (2011).
(
10.1364/OL.36.004152
) / Opt. Lett. by V Fortin (2011) -
Wang, J., et al. Fabrication and optical-properties of lead-germanate glasses and a new class of optical fiber lasers doped with Tm3+, J. Appl. Phys. 73, 8066–8075 (1993).
(
10.1063/1.353922
) / J. Appl. Phys. by J Wang (1993) -
Lincoln J. R. et al. New class of fibre laser based on lead-germanate glass. Electron. Lett. 28, 1021–1022 (1992).
(
10.1049/el:19920648
) / Electron. Lett. by JR Lincoln (1992) -
Wu, J., Yao, Z., Zong, J. & Jiang, S. Highly efficient high-power thulium-doped germanate glass fiber laser. Opt. Lett. 32, 638–640 (2007).
(
10.1364/OL.32.000638
) / Opt. Lett. by J Wu (2007) -
Geng, J., Wu, J., Jiang, S. & Yu, J. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm. Opt. Lett. 32, 355–357 (2007).
(
10.1364/OL.32.000355
) / Opt. Lett. by J Geng (2007) -
Mori, A., Ohishi, Y. & Sudo, S. Erbium-doped tellurite glass fibre laser and amplifier. Electron. Lett. 33, 863–864 (1997).
(
10.1049/el:19970585
) / Electron. Lett. by A Mori (1997) -
Gomes, L. et al. Energy level decay and excited state absorption processes in erbium-doped tellurite glass. J. Appl. Phys. 110, 083111 (2011).
(
10.1063/1.3651399
) / J. Appl. Phys. by L Gomes (2011) -
Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photon. 5, 141–148 (2011).
(
10.1038/nphoton.2011.309
) / Nature Photon. by BJ Eggleton (2011) -
Julien, C. et al. Raman and infrared spectroscopic studies of Ge–Ga–Ag sulfide glasses. Mat. Sci. Eng. B22, 191–200 (1994).
(
10.1016/0921-5107(94)90243-7
) / Mat. Sci. Eng. by C Julien (1994) -
Weszka, J. et al. Raman scattering in In2Se3 and InSe2 amorphous films. J. Non-cryst. Solids 265, 98–104 (2000).
(
10.1016/S0022-3093(99)00710-3
) / J. Non-cryst. Solids by J Weszka (2000) -
Uemura, O., Hayasaka, N., Tokairin, S. & Usuki, T. Local atomic arrangement in Ge–Te and Ge–S–Te glasses. J. Non-cryst. Solids 205, 189–193 (1996).
(
10.1016/S0022-3093(96)00376-6
) / J. Non-cryst. Solids by O Uemura (1996) - Maurugeon, S. et al. Telluride glass step index fiber for the far infrared. J. Lightwave Technol. 28, 3358–3363 (2010). / J. Lightwave Technol. by S Maurugeon (2010)
-
Schweizer, T., Hewak, D. W., Samson, B. N., Payne, D. N. Spectroscopic data of the 1.8-, 2.9- and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass. Opt. Lett. 21, 1594–1596 (1996).
(
10.1364/OL.21.001594
) / Opt. Lett. by T Schweizer (1996) -
Schweizer, T. et al. Rare-earth doped chalcogenide glass laser. Electron. Lett. 32, 666–667 (1996).
(
10.1049/el:19960430
) / Electron. Lett. by T Schweizer (1996) -
Brady, D. J. & Schweizer, T. Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers. J. Non-cryst. Solids 242, 92–98 (1998).
(
10.1016/S0022-3093(98)00801-1
) / J. Non-cryst. Solids by DJ Brady (1998) -
Seddon, A. B. et al. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express 18, 26704–26719 (2010).
(
10.1364/OE.18.026704
) / Opt. Express by AB Seddon (2010) - Aggarwal, I. D. & Sanghera, J. S. Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mat. 4, 665–678 (2002). / J. Optoelectron. Adv. Mat. by ID Aggarwal (2002)
-
Nelson, L. E., Ippen, E. P. & Haus, H. A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Appl. Phys. Lett. 67, 19–21 (1995).
(
10.1063/1.115477
) / Appl. Phys. Lett. by LE Nelson (1995) -
Sharp, R. C., Spock, D. E., Pan, N. & Elliot, J. 190-fs passively mode-locked thulium fiber laser with a low threshold. Opt. Lett. 21, 881–883 (1996).
(
10.1364/OL.21.000881
) / Opt. Lett. by RC Sharp (1996) -
Solodyankn, M. A. et al. Mode-locked 1.93 μm thulium laser with a carbon nanotube absorber. Opt. Lett. 33, 1336–1338 (2008).
(
10.1364/OL.33.001336
) / Opt. Lett. by MA Solodyankn (2008) -
Imeshev, I. & Fermann, M. E. 230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber. Opt. Express 13, 7424–7431 (2005).
(
10.1364/OPEX.13.007424
) / Opt. Express by I Imeshev (2005) -
Engelbrecht, M., Haxsen, F., Ruehl, A., Wandt, D. & Kracht, D. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ. Opt. Lett. 33, 690–692 (2008).
(
10.1364/OL.33.000690
) / Opt. Lett. by M Engelbrecht (2008) -
Haxsen, F. et al. Pulse energy of 151-nJ from ultrafast thulium-doped chirped-pulse fiber amplifier. Opt. Lett. 35, 2991–2993 (2010).
(
10.1364/OL.35.002991
) / Opt. Lett. by F Haxsen (2010) -
El-Sherif, A. F. & King, T. A. High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 μm. Opt. Lett. 28, 22–24 (2003).
(
10.1364/OL.28.000022
) / Opt. Lett. by AF El-Sherif (2003) -
Eichhorn, M. & Jackson, S. D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm. Opt. Lett. 32, 2780–2782 (2007).
(
10.1364/OL.32.002780
) / Opt. Lett. by M Eichhorn (2007) -
Jiang, M. & Tayebati, P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser. Opt. Lett. 32, 1797–1799 (2007).
(
10.1364/OL.32.001797
) / Opt. Lett. by M Jiang (2007) -
Ding, J. W. et al. A monolithic thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8 kW peak power. Proc. SPIE 7914, 79140X (2011).
(
10.1117/12.876867
) / Proc. SPIE by JW Ding (2011) -
Tokita, S. et al. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt. Lett. 36, 2812–2814 (2011).
(
10.1364/OL.36.002812
) / Opt. Lett. by S Tokita (2011) -
Gorjan, M., Petkovšek, R., Marinček, M. & Čopič, M. High-power pulsed diode-pumped Er:ZBLAN fiber laser. Opt. Lett. 36, 1923–1925 (2011).
(
10.1364/OL.36.001923
) / Opt. Lett. by M Gorjan (2011) -
Hu, T., Hudson, D. D. & Jackson, S. D. Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser. Opt. Lett. 37, 2145–2147 (2012).
(
10.1364/OL.37.002145
) / Opt. Lett. by T Hu (2012) -
Li, J., Hu, T. & Jackson, S. D. Q-switched fiber cascade laser. Opt. Lett. 37, 2208–2210 (2012).
(
10.1364/OL.37.002208
) / Opt. Lett. by J Li (2012) -
Eichhorn, M. High-peak-power Tm-doped double-clad fluoride fiber amplifier. Opt. Lett. 30, 3329–3331 (2005).
(
10.1364/OL.30.003329
) / Opt. Lett. by M Eichhorn (2005) -
Hale, G. M. & Querry, M. R. Optical-constants of water in 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973).
(
10.1364/AO.12.000555
) / Appl. Opt. by GM Hale (1973) -
Fried, N. M. & Murray, K. E. New technologies in enodurology — high power thulium fiber laser ablation of urinary tissues at 1.94 μm. J. Endourol. 19, 25–31 (2005).
(
10.1089/end.2005.19.25
) / J. Endourol. by NM Fried (2005) -
Bach, T., Herrman, T. R., Cellarius, C. & Gross, A. J. Bladder neck incision using a 70 W, 2 micron continuous wave laser (RevoLix). World J. Urol. 25, 263–267 (2007).
(
10.1007/s00345-007-0169-4
) / World J. Urol. by T Bach (2007) -
Fried, N. M. High-power laser vaporization of the canine prostrate using a 110 W thulium fiber laser at 1.91 μm. Las. Surg. Med. 36, 52–56 (2005).
(
10.1002/lsm.20126
) / Las. Surg. Med. by NM Fried (2005) -
Xia, S. J. et al. Thulium fiber laser versus standard transurethral resection of the prostrate: a randomized prospective trial. Eur. Urol. 53, 382–390 (2008).
(
10.1016/j.eururo.2007.05.019
) / Eur. Urol. by SJ Xia (2008) -
Kourambas, J., Delvecchio, F. C. & Preminger, G. M. Low-power holmium laser for the management of urinary tract calculi, strictures and tumors. J. Endourol. 15, 529–532 (2001).
(
10.1089/089277901750299348
) / J. Endourol. by J Kourambas (2001) -
Bui, M. H. et al. Less smoke and minimal tissue carbonization using a thulium laser for laparoscopic partial nephrectomy without hilar clamping in a porcine model. J. Endourol. 21, 1107–1111 (2007).
(
10.1089/end.2006.0440
) / J. Endourol. by MH Bui (2007) -
Bilici, T. et al. Development of a thulium (Tm:YAP) laser system for brain tissue ablation. Las. Med. Sci. 26, 699–706 (2011).
(
10.1007/s10103-011-0915-0
) / Las. Med. Sci. by T Bilici (2011) -
Chen, B. et al. Histological and modeling study of skin thermal injury to 2 μm laser radiation. Las. Surg. Med. 40, 358–370 (2008).
(
10.1002/lsm.20630
) / Las. Surg. Med. by B Chen (2008) -
Zeitels, S. M. et al. Office-based and microlaryngeal applications of fiber-based thulium laser. Ann. Otol. Rhinol. Laryngol. 115, 891–896 (2006).
(
10.1177/000348940611501206
) / Ann. Otol. Rhinol. Laryngol. by SM Zeitels (2006) -
Burns, J. A. et al. Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study. Ann. Otol. Rhinol. Laryngol. 116, 853–857 (2007).
(
10.1177/000348940711601111
) / Ann. Otol. Rhinol. Laryngol. by JA Burns (2007) -
Pierce, M. C., Jackson S. D., Dickinson, M. R. & King T. A. Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue. Las. Surg. Med. 25, 407–413 (1999).
(
10.1002/(SICI)1096-9101(1999)25:5<407::AID-LSM7>3.0.CO;2-9
) / Las. Surg. Med. by MC Pierce (1999) -
Hazey, J. W. et al. Natural-orifice transgastric endoscopic peritoneoscopy in humans: initial clinical trial. Surg. Endosc. 22, 16–20 (2008).
(
10.1007/s00464-007-9548-6
) / Surg. Endosc. by JW Hazey (2008) -
Pierce, M. C. et al. Laser-tissue interaction with a continuous wave 3 μm fiber laser: preliminary studies with soft tissue. Las. Surg. Med. 26, 491–495 (2000).
(
10.1002/1096-9101(2000)26:5<491::AID-LSM9>3.0.CO;2-E
) / Las. Surg. Med. by MC Pierce (2000) -
Anderson R. R. et al. Selective photothermolysis of lipid-rich tissues: a free electron study. Las. Surg. Med. 38, 913–919 (2006).
(
10.1002/lsm.20393
) / Las. Surg. Med. by RR Anderson (2006) -
Peavy, G. M., Reinisch, L., Payne, J. T. & Venugopalan, V. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 μm. Las. Surg. Med. 26, 421–434 (1999).
(
10.1002/(SICI)1096-9101(1999)25:5<421::AID-LSM9>3.0.CO;2-J
) / Las. Surg. Med. by GM Peavy (1999) -
Edwards, G. et al. Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994).
(
10.1038/371416a0
) / Nature by G Edwards (1994) -
Lippert, E. et al. Midinfrared laser source with high power and beam quality. Appl. Opt. 45, 3839–3845 (2006).
(
10.1364/AO.45.003839
) / Appl. Opt. by E Lippert (2006) -
Kieleck, C. et al. High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser. Opt. Lett. 34, 262–264 (2009).
(
10.1364/OL.34.000262
) / Opt. Lett. by C Kieleck (2009) -
Creeden, D. et al. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 μm Tm-doped fiber laser. Opt. Lett. 33, 315–317 (2008).
(
10.1364/OL.33.000315
) / Opt. Lett. by D Creeden (2008) -
Kulkarni, O. P. et al. Supercontinuum generation from ∼1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier. J. Opt. Soc. Am. B 28, 2486–2498 (2011).
(
10.1364/JOSAB.28.002486
) / J. Opt. Soc. Am. B by OP Kulkarni (2011) - Phillips, C. R. et al. Self-referenced frequency comb from a Tm-fiber amplifier via PPLN waveguide supercontinuum generation. Paper PDPA5 in CLEO:2011 — Laser Applications to Photonic Applications, OSA Technical Digest (OSA, 2011). / CLEO:2011 — Laser Applications to Photonic Applications by CR Phillips (2011)
-
Zhang, J., Fromzel, V. & Dubinskii, M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency. Opt. Express 19, 5574–5578 (2011).
(
10.1364/OE.19.005574
) / Opt. Express by J Zhang (2011) -
Meleshkevich, M. et al. 415W single-mode CW thulium fiber laser in all-fiber format. Paper CP2_3 in CLEO/Europe and IQEC 2007 Conference Digest (OSA, 2007).
(
10.1109/CLEOE-IQEC.2007.4386516
) -
Modsching, N. et al. Lasing in thulium-doped polarizing photonic crystal fiber. Opt. Lett. 36, 3873–3875 (2011).
(
10.1364/OL.36.003873
) / Opt. Lett. by N Modsching (2011) -
Fan, T. Y. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quant. Electron. 11, 567–577 (2005).
(
10.1109/JSTQE.2005.850241
) / IEEE J. Sel. Top. Quant. Electron. by TY Fan (2005) -
Shaw, L. B. et al. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quant. Electron. 48, 1127–1137 (2001).
(
10.1109/3.945317
) / IEEE J. Quant. Electron. by LB Shaw (2001) -
Nagli, L., Gayer, O. & Katzir, A. Middle-infrared luminescence of praseodymium ions in silver halide crystals and fibers. Opt. Lett. 30, 1831–1833 (2005).
(
10.1364/OL.30.001831
) / Opt. Lett. by L Nagli (2005) -
Rave, E. et al. Silver halide photonic crystal fibers for the middle infrared. Appl. Opt. 43, 2236–2241 (2004).
(
10.1364/AO.43.002236
) / Appl. Opt. by E Rave (2004) -
Jones, A. M. et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 19, 2309–2316 (2011).
(
10.1364/OE.19.002309
) / Opt. Express by AM Jones (2011)
Dates
Type | When |
---|---|
Created | 13 years, 1 month ago (June 28, 2012, 12:34 a.m.) |
Deposited | 2 years, 3 months ago (May 18, 2023, 8:05 p.m.) |
Indexed | 2 days, 2 hours ago (Aug. 23, 2025, 9:27 p.m.) |
Issued | 13 years, 1 month ago (June 28, 2012) |
Published | 13 years, 1 month ago (June 28, 2012) |
Published Online | 13 years, 1 month ago (June 28, 2012) |
Published Print | 13 years, 1 month ago (July 1, 2012) |
@article{Jackson_2012, title={Towards high-power mid-infrared emission from a fibre laser}, volume={6}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2012.149}, DOI={10.1038/nphoton.2012.149}, number={7}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Jackson, Stuart D.}, year={2012}, month=jun, pages={423–431} }