Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Jain, J. R., Hryciw, A., Baer, T. M., Miller, D. A. B., Brongersma, M. L., & Howe, R. T. (2012). A micromachining-based technology for enhancing germanium light emission via tensile strain. Nature Photonics, 6(6), 398–405.

Authors 6
  1. Jinendra Raja Jain (first)
  2. Aaron Hryciw (additional)
  3. Thomas M. Baer (additional)
  4. David A. B. Miller (additional)
  5. Mark L. Brongersma (additional)
  6. Roger T. Howe (additional)
References 25 Referenced 196
  1. Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quant. Electron. 12, 1678–1687 (2006). (10.1109/JSTQE.2006.883151) / IEEE J. Sel. Top. Quant. Electron. by R Soref (2006)
  2. Kasper, E. Prospects and challenges of silicon/germanium on-chip optoelectronics. Frontiers Optoelectron. China 3, 143–152 (2010). (10.1007/s12200-010-0007-y) / Frontiers Optoelectron. China by E Kasper (2010)
  3. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010). (10.1038/nphoton.2010.179) / Nature Photon. by GT Reed (2010)
  4. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nature Photon. 4, 527–534 (2010). (10.1038/nphoton.2010.157) / Nature Photon. by J Michel (2010)
  5. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010). (10.1038/nphoton.2010.185) / Nature Photon. by J Leuthold (2010)
  6. Dosunmu, O. I. et al. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates. IEEE J. Sel. Top. Quant. Electron. 10, 694–701 (2004). (10.1109/JSTQE.2004.833900) / IEEE J. Sel. Top. Quant. Electron. by OI Dosunmu (2004)
  7. Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901–7906 (2009). (10.1364/OE.17.007901) / Opt. Express by L Chen (2009)
  8. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010). (10.1038/nature08813) / Nature by S Assefa (2010)
  9. Fischetti, M. V. & Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996). (10.1063/1.363052) / J. Appl. Phys. by MV Fischetti (1996)
  10. Cao, L., Park, J.-S., Fan, P., Clemens, B. & Brongersma, M. L. Resonant germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010). (10.1021/nl9037278) / Nano Lett. by L Cao (2010)
  11. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. Math. Phys. Eng. Sci. 82, 172–175 (1909). (10.1098/rspa.1909.0021) / Proc. Math. Phys. Eng. Sci. by GG Stoney (1909)
  12. Thompson, S. E. et al. A logic nanotechnology featuring strained-silicon. IEEE Electron. Dev. Lett. 25, 191–193 (2004). (10.1109/LED.2004.825195) / IEEE Electron. Dev. Lett. by SE Thompson (2004)
  13. Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. IEDM Tech. Dig. 978–980 (2003).
  14. Mistry, K. et al. Delaying forever: uniaxial strained silicon transistors in a 90 nm CMOS technology. Symp. VLSI Tech. Dig. 50–51 (2004). (10.1109/VLSIT.2004.1345387)
  15. Philipp, H. R. & Taft, E. A. Optical constants of germanium in the region 1 to 10 eV. Phys. Rev. 113, 1002–1005 (1959). (10.1103/PhysRev.113.1002) / Phys. Rev. by HR Philipp (1959)
  16. Jain, J. R. et al. Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics. Opt. Mater. Express 1, 1121–1126 (2011). (10.1364/OME.1.001121) / Opt. Mater. Express by JR Jain (2011)
  17. Sun, X., Liu, J., Kimerling, L. C. & Michel, J. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett. 34, 1198–1200 (2009). (10.1364/OL.34.001198) / Opt. Lett. by X Sun (2009)
  18. Klingenstein, W. & Schweizer, H. Direct gap recombination in germanium at high excitation level and low temperature. Solid State Electron. 21, 1371–1374 (1978). (10.1016/0038-1101(78)90210-1) / Solid State Electron. by W Klingenstein (1978)
  19. Cheng, T.-H. et al. Competitiveness between direct and indirect radiative transitions of Ge. Appl. Phys. Lett. 96, 091105 (2010). (10.1063/1.3352048) / Appl. Phys. Lett. by T-H Cheng (2010)
  20. Liu, J. et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15, 11272–11277 (2007). (10.1364/OE.15.011272) / Opt. Express by J Liu (2007)
  21. van Roosbroeck, W. & Shockley, W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954). (10.1103/PhysRev.94.1558) / Phys. Rev. by W van Roosbroeck (1954)
  22. Brill, P. H. & Schwarz, R. F. Radiative recombination in germanium. Phys. Rev. 112, 330–333 (1958). (10.1103/PhysRev.112.330) / Phys. Rev. by PH Brill (1958)
  23. Marchetti, S., Martinelli, M., Simili, R., Giorgi, M. & Fantoni, R. Measurement of Ge electrical parameters by analysing its optical dynamics. Phys. Scr. 64, 509–511 (2001). (10.1238/Physica.Regular.064a00509) / Phys. Scr. by S Marchetti (2001)
  24. van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989). (10.1103/PhysRevB.39.1871) / Phys. Rev. B by CG van de Walle (1989)
  25. Zhang, F., Crespi, V. H. & Zhang, P. Prediction that uniaxial tension along <111> produces a direct band gap in germanium. Phys. Rev. Lett. 102, 156401 (2009). (10.1103/PhysRevLett.102.156401) / Phys. Rev. Lett. by F Zhang (2009)
Dates
Type When
Created 13 years, 3 months ago (May 18, 2012, 7:21 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 8:05 p.m.)
Indexed 2 weeks, 5 days ago (Aug. 7, 2025, 5:23 p.m.)
Issued 13 years, 3 months ago (May 20, 2012)
Published 13 years, 3 months ago (May 20, 2012)
Published Online 13 years, 3 months ago (May 20, 2012)
Published Print 13 years, 2 months ago (June 1, 2012)
Funders 0

None

@article{Jain_2012, title={A micromachining-based technology for enhancing germanium light emission via tensile strain}, volume={6}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2012.111}, DOI={10.1038/nphoton.2012.111}, number={6}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Jain, Jinendra Raja and Hryciw, Aaron and Baer, Thomas M. and Miller, David A. B. and Brongersma, Mark L. and Howe, Roger T.}, year={2012}, month=may, pages={398–405} }