Crossref journal-article
Springer Science and Business Media LLC
Nature Photonics (297)
Bibliography

Avouris, P., Freitag, M., & Perebeinos, V. (2008). Carbon-nanotube photonics and optoelectronics. Nature Photonics, 2(6), 341–350.

Authors 3
  1. Phaedon Avouris (first)
  2. Marcus Freitag (additional)
  3. Vasili Perebeinos (additional)
References 105 Referenced 1,056
  1. Physical properties of carbon nanotubes (eds Saito, R., Dresselhaus, G. & Dresselhaus, M. S.) (Imperial College Press, London, 1998).
  2. Carbon Nanotubes: Synthesis, Structure, Properties and Applications (eds Dresselhaus, M. S., Dresselhaus, G. & Avouris, P.) (Springer, New York, 2000).
  3. Topics in Applied Physics: Carbon Nanotubes — Basic Concepts and Physical Properties. (eds Reich, S., Thomsen, C. & Maultzsch, J.) (Wiley, New York, 2004).
  4. McEuen, P. L., Fuhrer, M. & Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotech. 1, 78–85 (2002). (10.1109/TNANO.2002.1005429) / IEEE Trans. Nanotech. by PL McEuen (2002)
  5. (eds Dai, H. et al.) Nano: Brief Reports and Reviews — Electrical Transport Properties and Field-Effect Transistors of Carbon Nanotubes (World Scientific, 2006). (10.1142/S1793292006000070)
  6. Avouris, P. Carbon nanotube electronics. Phys. World 20, 40–45 (2007). (10.1088/2058-7058/20/3/32) / Phys. World by P Avouris (2007)
  7. O'Connell, M. J. et al. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593–596 (2002). (10.1126/science.1072631) / Science by MJ O'Connell (2002)
  8. Bachilo, S. M. et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361–2366 (2002). (10.1126/science.1078727) / Science by SM Bachilo (2002)
  9. Lefebvre, J., Austing, D. G., Bond, J. & Finnie, P. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett. 6, 1603–1608 (2006). (10.1021/nl060530e) / Nano Lett. by J Lefebvre (2006)
  10. Lefebvre, J., Homma, Y. & Finnie, P. Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes. Phys. Rev. Lett. 90, 217401 (2003). (10.1103/PhysRevLett.90.217401) / Phys. Rev. Lett. by J Lefebvre (2003)
  11. Ma, Y.-Z. et al. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys. 120, 3368–3373 (2004). (10.1063/1.1640339) / J. Chem. Phys. by Y-Z Ma (2004)
  12. Ostojic, G. N. et al. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Phys. Rev. Lett. 92, 117402 (2004). (10.1103/PhysRevLett.92.117402) / Phys. Rev. Lett. by GN Ostojic (2004)
  13. Huang, L., Pedrosa, H. N. & Krauss, T. D. Ultrafast ground-state recovery of single-walled carbon nanotubes. Phys. Rev. Lett. 93, 017403 (2004). (10.1103/PhysRevLett.93.017403) / Phys. Rev. Lett. by L Huang (2004)
  14. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92, 177401 (2004). (10.1103/PhysRevLett.92.177401) / Phys. Rev. Lett. by F Wang (2004)
  15. Hagen, A., Moos, G., Talalaev, V. & Hertel, T. Electronic structure and dynamics of optically excited single-wall carbon nanotubes. Appl. Phys. A 78, 1137–1045 (2004). (10.1007/s00339-003-2465-1) / Appl. Phys. A by A Hagen (2004)
  16. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005). (10.1103/PhysRevLett.95.247402) / Phys. Rev. Lett. by CD Spataru (2005)
  17. Perebeinos, V., Tersoff, J. & Avouris, P. Radiative lifetime of excitons in carbon nanotubes. Nano Lett. 5, 2495–2499 (2005). (10.1021/nl051828s) / Nano Lett. by V Perebeinos (2005)
  18. Citrin, D. S. Long intrinsic radiative lifetimes of excitons in quantum wires. Phys. Rev. Lett. 69, 3393–3396 (1992). (10.1103/PhysRevLett.69.3393) / Phys. Rev. Lett. by DS Citrin (1992)
  19. Zhao, H. & Mazumdar, S. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93, 157402 (2004). (10.1103/PhysRevLett.93.157402) / Phys. Rev. Lett. by H Zhao (2004)
  20. Perebeinos, V., Tersoff, J. & Avouris, P. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92, 257402 (2004). (10.1103/PhysRevLett.92.257402) / Phys. Rev. Lett. by V Perebeinos (2004)
  21. Mortimer, I. B. & Nicholas, R. J. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Phys. Rev. Lett. 98, 027404 (2007). (10.1103/PhysRevLett.98.027404) / Phys. Rev. Lett. by IB Mortimer (2007)
  22. Berger, S. et al. Temperature dependence of exciton recombination in semiconducting single-wall carbon nanotubes. Nano Lett. 7, 398–402 (2007). (10.1021/nl062609p) / Nano Lett. by S Berger (2007)
  23. Shaver, J. et al. Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking. Nano Lett. 7, 1851–1855 (2007). (10.1021/nl070260f) / Nano Lett. by J Shaver (2007)
  24. Spontaneous emission and laser oscillation in microcavities (eds Yokohama, H. & Ujihara, K.) (CRC, Boca Raton, Florida, 1995).
  25. Steiner, M., Qian, H., Hartschuh, A. & Meixner, A. J. Controlling nonequilibrium phonon populations in single-walled carbon nanotubes. Nano Lett. 7, 2239–2242 (2007). (10.1021/nl070693i) / Nano Lett. by M Steiner (2007)
  26. Hertel, T. et al. Intersubband decay of 1-d exciton resonances in carbon nanotubes. Nano Lett. 8, 87–91 (2008). (10.1021/nl0720915) / Nano Lett. by T Hertel (2008)
  27. Wang, F., Dukovic, G., Knoesel, E., Brus, L. E. & Heinz, T. F. Observation of rapid auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70, 241403 (2004). (10.1103/PhysRevB.70.241403) / Phys. Rev. B by F Wang (2004)
  28. Ma, Y.-Z., Valkunas, L., Dexheimer, S. L., Bachilo, S. M. & Fleming, G. R. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: Evidence for exciton-exciton annihilation. Phys. Rev. Lett. 94, 157402 (2005). (10.1103/PhysRevLett.94.157402) / Phys. Rev. Lett. by Y-Z Ma (2005)
  29. Perebeinos, V., Tersoff, J. & Avouris, P. Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett 94, 027402 (2005). (10.1103/PhysRevLett.94.027402) / Phys. Rev. Lett by V Perebeinos (2005)
  30. Perebeinos, V. & Avouris, P. Multiphonon decay and exciton indirect phononassisted ionization in semiconducting carbon nanotubes. < http://arxiv.org/abs/0804.0767v2 >.
  31. Avouris, P., Chen, J., Freitag, M., Perebeinos, V. & Tsang, J. C. Carbon nanotube optoelectronics. Phys. Status Solidi b 243, 3197–3203 (2006). (10.1002/pssb.200669137) / Phys. Status Solidi b by P Avouris (2006)
  32. Cognet, L. et al. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316, 1465–1468 (2007). (10.1126/science.1141316) / Science by L Cognet (2007)
  33. Lefebvre, J., Finnie, P. & Homma, Y. Temperature-dependent photoluminescence from single-walled carbon nanotubes. Phys. Rev. B 70, 045419 (2004). (10.1103/PhysRevB.70.045419) / Phys. Rev. B by J Lefebvre (2004)
  34. Perebeinos, V., Tersoff, J. & Avouris, P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys. Rev. Lett 94, 086802 (2005). (10.1103/PhysRevLett.94.086802) / Phys. Rev. Lett by V Perebeinos (2005)
  35. Högele, A., Galland, C., Winger, M. & Imamoglu, A. Quantum light from a carbon nanotube. < http://arxiv.org/abs/0707.1923v2 >.
  36. Rybczynski, J. et al. Subwavelength waveguide for visible light. Appl. Phys. Lett. 90, 021104 (2007). (10.1063/1.2430400) / Appl. Phys. Lett. by J Rybczynski (2007)
  37. Quantum theory of the optical and electronic properties of semiconductors (eds Haug, H. & Koch, S. W.) (World Scientific, London, 2005).
  38. Taishi, T., Yuji, M. & Yoshihiro, I. Optical evidence of stark effect in singlewalled carbon nanotube transistors. Appl. Phys. Lett. 89, 263510 (2006). (10.1063/1.2425009) / Appl. Phys. Lett. by T Taishi (2006)
  39. Takenobu, T., Murayama, Y., Shiraishi, M. & Iwasa, Y. Optical observation of carrier accumulation in single-walled carbon nanotube transistors. Jpn J. Appl. Phys. 45, L1190–L1192 (2006). (10.1143/JJAP.45.L1190) / Jpn J. Appl. Phys. by T Takenobu (2006)
  40. Perebeinos, V. & Avouris, P. Exciton ionization, Franz-Keldysh, and Stark effects in carbon nanotubes. Nano Lett. 7, 609–613 (2007). (10.1021/nl0625022) / Nano Lett. by V Perebeinos (2007)
  41. Mohite, A., Lin, J. T., Sumanasekera, G. & Alphenaar, B. W. Field-enhanced photocurrent spectroscopy of excitonic states in single-wall carbon nanotubes. Nano Lett. 6, 1369–1373 (2006). (10.1021/nl060333f) / Nano Lett. by A Mohite (2006)
  42. Liu, X. et al. Third-order optical nonlinearity of the carbon nanotubes. Appl. Phys. Lett. 74, 164–166 (1999). (10.1063/1.123282) / Appl. Phys. Lett. by X Liu (1999)
  43. Seo, J. et al. Third-order optical nonlinearities of singlewall carbon nanotubes for nonlinear transmission limiting application. J. Phys.: Conf. Series 38, 37–40 (2006). / J. Phys.: Conf. Series by J Seo (2006)
  44. Chen, Y. C. et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 μm. Appl. Phys. Lett. 81, 975–977 (2002). (10.1063/1.1498007) / Appl. Phys. Lett. by YC Chen (2002)
  45. Tatsuura, S. et al. Semiconductor carbon nanotubes as ultrafast switching materials for optical telecommunications. Adv. Mater. 15, 534–537 (2003). (10.1002/adma.200390125) / Adv. Mater. by S Tatsuura (2003)
  46. Rozhina, A. G. et al. Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol. Chem. Phys. Lett. 405, 288–293 (2005). (10.1016/j.cplett.2005.02.049) / Chem. Phys. Lett. by AG Rozhina (2005)
  47. Sakakibara, Y., Tatsuura, S., Kataura, H., Tokumoto, M. & Achiba, Y. Nearinfrared saturable absorption of single-wall carbon nanotubes prepared by laser ablation method. Jpn J. Appl. Phys. 42, L494–L496 (2003). (10.1143/JJAP.42.L494) / Jpn J. Appl. Phys. by Y Sakakibara (2003)
  48. Rozhin, A. G. et al. Sub-200-fs pulsed erbium-doped fiber laser using a carbon nanotube-polyvinylalcohol mode locker. Appl. Phys. Lett. 88, 051118 (2006). (10.1063/1.2172398) / Appl. Phys. Lett. by AG Rozhin (2006)
  49. Valle, G. D. et al. Passive mode locking by carbon nanotubes in a femtosecond laser written waveguide laser. Appl. Phys. Lett. 89, 231115 (2006). (10.1063/1.2403912) / Appl. Phys. Lett. by GD Valle (2006)
  50. Kashiwagi, K. et al. Planar waveguide-type saturable absorber based on carbon nanotubes. Appl. Phys. Lett. 89, 081125 (2006). (10.1063/1.2338779) / Appl. Phys. Lett. by K Kashiwagi (2006)
  51. Schibli, T. et al. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt. Express 13, 8025–8031 (2005). (10.1364/OPEX.13.008025) / Opt. Express by T Schibli (2005)
  52. Léonard, F. & Tersoff, J. Novel length scales in nanotube devices. Phys. Rev. Lett. 83, 5174–5177 (1999). (10.1103/PhysRevLett.83.5174) / Phys. Rev. Lett. by F Léonard (1999)
  53. Martel, R. et al. Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys. Rev. Lett. 87, 256805 (2001). (10.1103/PhysRevLett.87.256805) / Phys. Rev. Lett. by R Martel (2001)
  54. Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003). (10.1038/nature01797) / Nature by A Javey (2003)
  55. Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002). (10.1103/PhysRevLett.89.106801) / Phys. Rev. Lett. by S Heinze (2002)
  56. Nakanishi, T., Bachtold, A. & Dekker, C. Transport through the interface between a semiconducting carbon nanotube and a metal electrode. Phys. Rev. B 66, 073307 (2002). (10.1103/PhysRevB.66.073307) / Phys. Rev. B by T Nakanishi (2002)
  57. Radosavljevic, M., Heinze, S., Tersoff, J. & Avouris, P. Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435–2437 (2003). (10.1063/1.1610791) / Appl. Phys. Lett. by M Radosavljevic (2003)
  58. Lin, Y. M., Appenzeller, J. & Avouris, P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett. 4, 947–950 (2004). (10.1021/nl049745j) / Nano Lett. by YM Lin (2004)
  59. Klinke, C., Chen, J., Afzali, A. & Avouris, P. Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett. 5, 555–558 (2005). (10.1021/nl048055c) / Nano Lett. by C Klinke (2005)
  60. Misewich, J. A. et al. Electrically induced optical emission from a carbon nanotube FET. Science 300, 783–786 (2003). (10.1126/science.1081294) / Science by JA Misewich (2003)
  61. Freitag, M. et al. Hot carrier electroluminescence from a single carbon nanotube. Nano Lett. 4, 1063–1066 (2004). (10.1021/nl049607u) / Nano Lett. by M Freitag (2004)
  62. Freitag, M. et al. Mobile ambipolar domain in carbon-nanotube infrared emitters. Phys. Rev. Lett 93, 076803 (2004). (10.1103/PhysRevLett.93.076803) / Phys. Rev. Lett by M Freitag (2004)
  63. Tersoff, J., Freitag, M., Tsang, J. C. & Avouris, P. Device modeling of longchannel nanotube electro-optical emitter. Appl. Phys. Lett. 86, 263108 (2005). (10.1063/1.1957116) / Appl. Phys. Lett. by J Tersoff (2005)
  64. Jing, G. & Muhammad, A. A. Carrier transport and light-spot movement in carbon-nanotube infrared emitters. Appl. Phys. Lett. 86, 023105 (2005). (10.1063/1.1848186) / Appl. Phys. Lett. by G Jing (2005)
  65. Perebeinos, V. & Avouris, P. Impact excitation by hot carriers in carbon nanotubes. Phys. Rev. B 74, 121410 (2006). (10.1103/PhysRevB.74.121410) / Phys. Rev. B by V Perebeinos (2006)
  66. Chen, J. et al. Bright infrared emission from electrically induced excitons in carbon nanotubes. Science 310, 1171–1174 (2005). (10.1126/science.1119177) / Science by J Chen (2005)
  67. Marty, L. et al. Exciton formation and annihilation during 1d impact excitation of carbon nanotubes. Phys. Rev. Lett. 96, 136803 (2006). (10.1103/PhysRevLett.96.136803) / Phys. Rev. Lett. by L Marty (2006)
  68. Freitag, M. et al. Electrically excited, localized infrared emission from single carbon nanotubes. Nano Lett. 6, 1425–1433 (2006). (10.1021/nl060462w) / Nano Lett. by M Freitag (2006)
  69. Freitag, M. et al. Scanning photovoltage microscopy of potential modulations in carbon nanotubes. Appl. Phys. Lett. 91, 031101 (2007). (10.1063/1.2757100) / Appl. Phys. Lett. by M Freitag (2007)
  70. Mann, D. et al. Electrically driven thermal light emission from individual singlewalled carbon nanotubes. Nature Nanotech. 2, 33–38 (2007). (10.1038/nnano.2006.169) / Nature Nanotech. by D Mann (2007)
  71. Lee, K. et al. Single wall carbon nanotubes for p-type ohmic contacts to gan light-emitting diodes. Nano Lett. 4, 911–914 (2004). (10.1021/nl0496522) / Nano Lett. by K Lee (2004)
  72. Li, J. et al. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 6, 2472–2477 (2006). (10.1021/nl061616a) / Nano Lett. by J Li (2006)
  73. Woo, H. S. et al. Hole blocking in carbon nanotube–polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-pphenylene vinylene). Appl. Phys. Lett. 77, 1393–1395 (2000). (10.1063/1.1290275) / Appl. Phys. Lett. by HS Woo (2000)
  74. Fournet, P. et al. Enhanced brightness in organic light-emitting diodes using a carbon nanotube composite as an electron-transport layer. J. Appl. Phys. 90, 969–975 (2001). (10.1063/1.1383023) / J. Appl. Phys. by P Fournet (2001)
  75. Kima, J.-Y., Kima, M., Kimb, H., Joob, J. & Choi, J.-H. Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 21, 147–151 (2003). (10.1016/S0925-3467(02)00127-1) / Opt. Mater. by J-Y Kima (2003)
  76. Lee, K. W. et al. Enhanced electroluminescence in polymer-nanotube composites. Appl. Phys. Lett. 91, 023110 (2007). (10.1063/1.2756290) / Appl. Phys. Lett. by KW Lee (2007)
  77. Kymakis, E. & Amaratunga, G. A. J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl. Phys. Lett. 80, 112–114 (2002). (10.1063/1.1428416) / Appl. Phys. Lett. by E Kymakis (2002)
  78. Bhattacharyya, S., Kymakis, E. & Amaratunga, G. A. J. Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem. Mater. 16, 4819–4823 (2004). (10.1021/cm0496063) / Chem. Mater. by S Bhattacharyya (2004)
  79. Landi, B. J. et al. Cdse quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Solar Energy Mater. Solar Cells 87, 733–746 (2005). (10.1016/j.solmat.2004.07.047) / Solar Energy Mater. Solar Cells by BJ Landi (2005)
  80. Freitag, M., Martin, Y., Misewich, J. A., Martel, R. & Avouris, P. H. Photoconductivity of single carbon nanotubes. Nano Lett. 3, 1067–1071 (2003). (10.1021/nl034313e) / Nano Lett. by M Freitag (2003)
  81. Avouris, P. et al. Carbon nanotube electronics and optoelectronics. Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, San Francisco, USA 525 (2004). (10.1109/IEDM.2004.1419208) / Electron Devices Meeting, 2004. IEDM Technical Digest by P Avouris (2004)
  82. Balasubramanian, K. et al. Photoelectronic transport imaging of individual semiconducting carbon nanotubes. Appl. Phys. Lett. 84, 2400–2402 (2004). (10.1063/1.1688451) / Appl. Phys. Lett. by K Balasubramanian (2004)
  83. Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 87, 073101 (2005). (10.1063/1.2010598) / Appl. Phys. Lett. by JU Lee (2005)
  84. Balasubramanian, K., Burghard, M., Kern, K., Scolari, M. & Mews, A. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 5, 507–510 (2005). (10.1021/nl050053k) / Nano Lett. by K Balasubramanian (2005)
  85. Freitag, M. et al. Imaging of the Schottky barriers and charge depletion in carbon nanotube transistors. Nano Lett. 7, 2037–2042 (2007). (10.1021/nl070900e) / Nano Lett. by M Freitag (2007)
  86. Itkis, M. E., Borondics, F., Yu, A. & Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006). (10.1126/science.1125695) / Science by ME Itkis (2006)
  87. Qiu, X. H., Freitag, M., Perebeinos, V. & Avouris, P. Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 5, 749–752 (2005). (10.1021/nl050227y) / Nano Lett. by XH Qiu (2005)
  88. Lee, J. U., Codella, P. J. & Pietrzykowski, M. Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes. Appl. Phys. Lett. 90, 053103 (2007). (10.1063/1.2435980) / Appl. Phys. Lett. by JU Lee (2007)
  89. Lee, J. U. Band-gap renormalization in carbon nanotubes: Origin of the ideal diode behavior in carbon nanotube p-n structures. Phys. Rev. B 75, 075409 (2007). (10.1103/PhysRevB.75.075409) / Phys. Rev. B by JU Lee (2007)
  90. Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005). (10.1126/science.1110265) / Science by F Wang (2005)
  91. Maultzsch, J. et al. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72, 241402 (2005). (10.1103/PhysRevB.72.241402) / Phys. Rev. B by J Maultzsch (2005)
  92. Mohite, A., Chakraborty, S., Gopinath, P., Sumanasekera, G. U. & Alphenaar, B. W. Displacement current detection of photoconduction in carbon nanotubes. Appl. Phys. Lett. 86, 061114 (2005). (10.1063/1.1863447) / Appl. Phys. Lett. by A Mohite (2005)
  93. Borghetti, J. et al. Optoelectronic switch and memory devices based on polymerfunctionalized carbon nanotube transistors. Adv. Mater. 18, 2535–2540 (2006). (10.1002/adma.200601138) / Adv. Mater. by J Borghetti (2006)
  94. Ahn, Y. H., Tsen, W., Kim, B., Park, Y. W. & Park, J. Photocurrent imaging of p-n junctions and local defects in ambipolar carbon nanotube transistors. < http://arxiv.org/abs/0707.3176v1 >.
  95. Lee, E. J. H. et al. Electronic band structure mapping of nanotube transistors by scanning photocurrent microscopy. Small 3, 2038–2042 (2007). (10.1002/smll.200700418) / Small by EJH Lee (2007)
  96. Dresselhaus, M. S., Dresselhaus, G., Saito, R. & Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005). (10.1016/j.physrep.2004.10.006) / Phys. Rep. by MS Dresselhaus (2005)
  97. Ando, T. J. Excitons in carbon nanotubes. Phys. Soc. Jpn 66, 1066–1073 (1997). (10.1143/JPSJ.66.1066) / Phys. Soc. Jpn by TJ Ando (1997)
  98. Spataru, C. D., Ismail-Beigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett 92, 077402 (2004). (10.1103/PhysRevLett.92.077402) / Phys. Rev. Lett by CD Spataru (2004)
  99. Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005). (10.1021/nl0518122) / Nano Lett. by G Dukovic (2005)
  100. Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986). (10.1103/PhysRevB.34.5390) / Phys. Rev. B by MS Hybertsen (1986)
  101. Kane, C. L. & Mele, E. J. Electron interactions and scaling relations for optical excitations in carbon nanotubes. Phys. Rev. Lett. 93, 197402 (2004). (10.1103/PhysRevLett.93.197402) / Phys. Rev. Lett. by CL Kane (2004)
  102. Moore, V. C. et al. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379–1382 (2003). (10.1021/nl034524j) / Nano Lett. by VC Moore (2003)
  103. Lefebvre, J., Fraser, J. M., Homma, Y. & Finnie, P. Photoluminescence from single-walled carbon nanotubes: A comparison between suspended and micelleencapsulated nanotubes. Appl. Phys. A 78, 1107–1110 (2004). (10.1007/s00339-003-2460-6) / Appl. Phys. A by J Lefebvre (2004)
  104. Hertel, T. et al. Spectroscopy of single- and double-wall carbon nanotubes in different environments. Nano Lett. 5, 511–514 (2005). (10.1021/nl050069a) / Nano Lett. by T Hertel (2005)
  105. Ohno, Y. et al. Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Phys. Rev. B 73, 235427 (2006). (10.1103/PhysRevB.73.235427) / Phys. Rev. B by Y Ohno (2006)
Dates
Type When
Created 17 years, 2 months ago (May 30, 2008, 8:01 a.m.)
Deposited 2 years, 3 months ago (May 18, 2023, 7:56 p.m.)
Indexed 9 hours, 44 minutes ago (Aug. 23, 2025, 1:04 a.m.)
Issued 17 years, 2 months ago (June 1, 2008)
Published 17 years, 2 months ago (June 1, 2008)
Published Print 17 years, 2 months ago (June 1, 2008)
Funders 0

None

@article{Avouris_2008, title={Carbon-nanotube photonics and optoelectronics}, volume={2}, ISSN={1749-4893}, url={http://dx.doi.org/10.1038/nphoton.2008.94}, DOI={10.1038/nphoton.2008.94}, number={6}, journal={Nature Photonics}, publisher={Springer Science and Business Media LLC}, author={Avouris, Phaedon and Freitag, Marcus and Perebeinos, Vasili}, year={2008}, month=jun, pages={341–350} }